Are Foods from the COVID-19 Pandemic Lockdown Low in Nutrients? An Analysis of Chinese Psychological Distress Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure
2.2. Measurements
2.3. Data Processing
3. Results
3.1. Descriptive Analysis
3.2. Food Intake before and during the COVID-19 Lockdown
3.3. Food Advice before and during the COVID-19 Lockdown
3.4. Psychological Distress and Nutrient Intake during the COVID-19 Lockdown
3.5. Link between Psychological Distress and Nutrient-Dense or Nutrient-Poor Foods
4. Discussion
4.1. Lockdown Impacts on Dietary Changes for Chinese in Mainland China, Macao, and Taiwan
4.2. Nutritional Advice and Education
4.3. Implications and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
M (SD) | 95% CI | t515 | ||||
---|---|---|---|---|---|---|
Category | During | Before | Difference | Lower | Upper | |
Nutrient-dense foods | ||||||
Fruit | 4.96 (1.53) | 4.94 (1.48) | 0.02 (0.90) | −0.060 | 0.095 | 0.440 |
Vegetables | 5.02 (1.36) | 5.07 (1.38) | −0.05 (0.93) | −0.133 | 0.028 | −1.272 |
Legumes/pulses | 4.43 (1.41) | 4.47 (1.34) | −0.04 (1.04) | −0.130 | 0.049 | −0.891 |
Unsalted nuts or nut spread | 4.19 (1.68) | 4.21 (1.57) | −0.03 (1.09) | −0.120 | 0.069 | −0.525 |
Unprocessed fish | 4.14 (1.51) | 4.12 (1.54) | 0.03 (0.94) | −0.056 | 0.106 | 0.609 |
Unprocessed poultry | 4.20 (1.54) | 4.15 (1.55) | 0.05 (1.02) | −0.036 | 0.141 | 1.166 |
Unprocessed red meat | 4.28 (1.56) | 4.34 (1.57) | −0.07 (1.07) | −0.162 | 0.023 | −1.481 |
Unprocessed vegetarian alternative | 4.30 (1.61) | 4.27 (1.60) | 0.03 (1.18) | −0.067 | 0.137 | 0.670 |
Whole wheat | 4.19 (1.58) | 4.29 (1.52) | −0.10 (1.21) | −0.203 | 0.006 | −1.861 |
Milk | 4.49 (1.52) | 4.45 (1.47) | 0.04 (1.01) | −0.051 | 0.125 | 0.824 |
Other dairy products | 4.37 (1.56) | 4.36 (1.56) | 0.02 (1.14) | −0.083 | 0.114 | 0.309 |
Plant-based drinks | 4.10 (1.64) | 4.13 (1.66) | −0.03 (1.16) | −0.131 | 0.069 | −0.609 |
Non-sugared beverages | 5.00 (1.64) | 4.97 (1.63) | 0.03 (1.08) | −0.062 | 0.124 | 0.652 |
Nutrient-poor foods | ||||||
Processed meat | 4.26 (1.62) | 4.29 (1.64) | −0.04 (1.11) | −0.133 | 0.059 | −0.752 |
Sweet snacks | 4.16 (1.57) | 4.24 (1.48) | −0.08 (1.19) | −0.182 | 0.023 | −1.520 |
Salty snacks | 3.98 (1.57) | 4.10 (1.56) | −0.12 (1.13) | −0.220 | −0.025 | −2.459 * |
White wheat | 4.28 (1.66) | 4.28 (1.60) | 0.01 (1.18) | −0.096 | 0.108 | 0.112 |
Sugared beverages | 4.18 (1.63) | 4.13 (1.56) | 0.05 (1.08) | −0.043 | 0.144 | 1.058 |
Alcoholic beverages | 3.59 (1.86) | 3.68 (1.86) | −0.09 (1.06) | −0.184 | −0.002 | −2.002 * |
References
- Pérez-Rodrigo, C.; Gianzo Citores, M.; Hervás Bárbara, G.; Ruiz-Litago, F.; Casis Sáenz, L.; Arija, V.; López-Sobaler, A.M.; Martínez de Victoria, E.; Ortega, R.M.; Partearroyo, T.; et al. Patterns of change in dietary habits and physical activity during lockdown in Spain due to the COVID-19 pandemic. Nutrients 2021, 13, 300. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Li, Z.; Ke, Y.; Huo, S.; Ma, Y.; Zhang, Y.; Zhang, J.; Ren, Z. Dietary diversity among Chinese residents during the COVID-19 outbreak and its associated factors. Nutrients 2020, 12, 1699. [Google Scholar] [CrossRef] [PubMed]
- De Backer, C.; Teunissen, L.; Cuykx, I.; Decorte, P.; Pabian, S.; Gerritsen, S.; Matthys, C.; Al Sabbah, H.; Van Royen, K.; The Corona Cooking Survey Study Group. An evaluation of the COVID-19 pandemic and perceived social distancing policies in relation to planning, selecting, and preparing healthy meals: An observational study in 38 countries worldwide. Front. Nutr. 2021, 7, 621726. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, S.; Egli, V.; Roy, R.; Haszard, J.; De Backer, C.; Teunissen, L.; Cuykx, I.; Decorte, P.; Pabian Pabian, S.; Van Royen, K.; et al. Seven weeks of home-cooked meals: Changes to New Zealanders’ grocery shopping, cooking and eating during the COVID-19 lockdown. J. R. Soc. N. Z. 2021, 51, S4–S22. [Google Scholar] [CrossRef]
- Grunert, K.G.; Janssen, M.; Christensen, R.N.; Teunissen, L.; Cuykx, I.; Decorte, P.; Reisch, L.A. “Corona Cooking”: The interrelation between emotional response to the first lockdown during the COVID-19 pandemic and cooking attitudes and behaviour in Denmark. Food. Qual. Prefer. 2022, 96, 104425. [Google Scholar] [CrossRef]
- Janssen, M.; Chang, B.P.; Hristov, H.; Pravst, I.; Profeta, A.; Millard, J. Changes in food consumption during the COVID-19 pandemic: Analysis of consumer survey data from the first lockdown period in Denmark, Germany, and Slovenia. Front. Nutr. 2021, 8, 635859. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.H.; Yaroch, A.L.; Blanck, H.M. Reported changes in eating habits related to less healthy foods and beverages during the COVID-19 pandemic among US adults. Nutrients 2022, 14, 526. [Google Scholar] [CrossRef]
- Scarmozzino, F.; Visioli, F. Covid-19 and the subsequent lockdown modified dietary habits of almost half the population in an Italian sample. Foods 2020, 9, 675. [Google Scholar] [CrossRef]
- Sidor, A.; Rzymski, P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef]
- Yang, G.Y.; Lin, X.L.; Fang, A.P.; Zhu, H.L. Eating habits and lifestyles during the initial stage of the COVID-19 lockdown in China: A cross-sectional study. Nutrients 2021, 13, 970. [Google Scholar] [CrossRef]
- Bemanian, M.; Mæland, S.; Blomhoff, R.; Rabben, Å.K.; Arnesen, E.K.; Skogen, J.C.; Fadnes, L.T. Emotional eating in relation to worries and psychological distress amid the COVID-19 pandemic: A population-based survey on adults in Norway. Int. J. Environ. Res. Public Health 2021, 18, 130. [Google Scholar] [CrossRef] [PubMed]
- Pfefferbaum, B.; North, C.S. Mental health and the Covid-19 pandemic. N. Engl. J. Med. 2020, 383, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Costanzo, S.; Bracone, F.; Gialluisi, A.; Di Castelnuovo, A.; Ruggiero, E.; Esposito, S.; Olivieri, M.; Persichillo, M.; Cerletti, C. Psychological distress resulting from the COVID-19 confinement is associated with unhealthy dietary changes in two Italian population-based cohorts. Eur. J. Nutr. 2022, 61, 1491–1505. [Google Scholar] [CrossRef]
- Salazar-Fernández, C.; Palet, D.; Haeger, P.A.; Román Mella, F. The perceived impact of COVID-19 on comfort food consumption over time: The mediational role of emotional distress. Nutrients 2021, 13, 1910. [Google Scholar] [CrossRef] [PubMed]
- Jagielski, P.; Łuszczki, E.; Wnęk, D.; Micek, A.; Bolesławska, I.; Piórecka, B.; Kawalec, P. Associations of nutritional behavior and gut microbiota with the risk of COVID-19 in healthy young adults in Poland. Nutrients 2022, 14, 350. [Google Scholar] [CrossRef]
- Chang, A.; Schulz, P.J.; Cheong, A.W. Online newspaper framing of non-communicable diseases: Comparison of Mainland China, Taiwan, Hong Kong and Macao. Int. J. Environ. Res. Public Health 2020, 17, 5593. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Ramos-Campo, D.J.; Mielgo-Ayuso, J.; Dalamitros, A.A.; Nikolaidis, P.A.; Hormeño-Holgado, A.; Tornero-Aguilera, J.F. Nutrition in the actual COVID-19 pandemic. A narrative review. Nutrients 2021, 13, 1924. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in dietary behaviours during the COVID-19 outbreak confinement in the Spanish COVIDiet study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef]
- Kagawa, Y. Influence of nutritional intakes in Japan and the United States on COVID-19 infection. Nutrients 2022, 14, 633. [Google Scholar] [CrossRef]
- Kyrkou, C.; Tsakoumaki, F.; Fotiou, M.; Dimitropoulou, A.; Symeonidou, M.; Menexes, G.; Biliaderis, C.G.; Michaelidou, A.-M. Changing trends in nutritional behavior among university students in Greece, between 2006 and 2016. Nutrients 2018, 10, 64. [Google Scholar] [CrossRef]
- Tulchinsky, T.H. Micronutrient deficiency conditions: Global health issues. Public Health Rev. 2010, 32, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.X.; Wang, X.L.; Leong, P.M.; Zhang, H.M.; Yang, X.G.; Kong, L.Z.; Zhai, F.Y.; Cheng, Y.Y.; Guo, J.S.; Su, Y.X. New Chinese dietary guidelines: Healthy eating patterns and food-based dietary recommendations. Asia Pac. J. Clin. Nutr. 2018, 27, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.; Chen, Y.M.; Chen, W.Q.; Su, Y.X.; Wang, C.L.; Wu, J.N. Food group intake among adolescents in Guangzhou city compared with the Chinese dietary guidelines. Asia Pac. J. Clin. Nutr. 2012, 21, 450–456. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Shen, Q. A consumer segmentation study of nutrition information seeking and its relation to food consumption in Beijing, China. Foods 2022, 11, 453. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, H. Online information seeking and disease prevention intent during COVID-19 outbreak. J. Mass Commun. Q. 2022, 99, 69–88. [Google Scholar] [CrossRef]
- Cerin, E.; Nathan, A.; Choi, W.K.; Ngan, W.; Yin, S.; Thornton, L.; Barnett, A. Built and social environmental factors influencing healthy behaviours in older Chinese immigrants to Australia: A qualitative study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 116. [Google Scholar] [CrossRef] [Green Version]
- Ng, B.; Chapman, G.E.; Levy-Milne, R.; Balneaves, L.G. Exploring the dietary choices of Chinese women living with breast cancer in Vancouver, Canada. Support. Care Cancer 2021, 29, 1675–1681. [Google Scholar] [CrossRef]
- Chang, A.; Schulz, P.J.; Tu, S.T.; Liu, M.T. Communicative blame in online communication of the COVID-19 pandemic: Computational approach of stigmatizing cues and negative sentiment gauged with automated analytic techniques. J. Med. Internet Res. 2020, 22, e21504. [Google Scholar] [CrossRef]
- Chen, I.H.; Chen, C.Y.; Liu, C.H.; Ahorsu, D.K.; Griffiths, M.D.; Chen, Y.P.; Kuo, Y.J.; Lin, C.Y.; Pakpour, A.H.; Wang, S.M. Internet addiction and psychological distress among Chinese schoolchildren before and during the COVID-19 outbreak: A latent class analysis. J. Behav. Addict 2021, 10, 731–746. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatry 2020, 33, e100213. [Google Scholar] [CrossRef]
- Chang, A.; Schulz, P.J.; Schirato, T.; Hall, B.J. Implicit messages regarding unhealthy foodstuffs in Chinese television advertisements: Increasing the risk of obesity. Int. J. Environ. Res. Public Health 2018, 15, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, W.; Liu, M.T.; Schulz, P.J.; Chang, A. Impacts of self-efficacy on food and dietary choices during the first COVID-19 lockdown in China. Foods 2022, 11, 2668. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.L.T.; Walters, E.E.; Zaslavsky, A.M. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.R.; Agho, K.E.; Stevens, G.J.; Raphael, B. Factors influencing psychological distress during a disease epidemic: Data from Australia’s first outbreak of equine influenza. BMC Public Health 2008, 8, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, A.S.; Freres, D.; Martinez, L.S.; Lewis, N.; Bourgoin, A.; Kelly, B.J.; Lee, C.J.; Nagler, R.; Schwartz, J.S.; Hornik, R.C. Information seeking from media and family/friends increases the likelihood of engaging in healthy lifestyle behaviors. J. Health Commun. 2013, 18, 527–542. [Google Scholar] [CrossRef] [Green Version]
- Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 2010, 19, 227–229. [Google Scholar]
- Miočević, M.; O’Rourke, H.P.; MacKinnon, D.P.; Brown, H.C. Statistical properties of four effect-size measures for mediation models. Behav. Res. Methods 2018, 50, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Schulz, P.J.; Jiao, W.; Liu, M.T. Obesity-related communication in digital Chinese news from Mainland China, Hong Kong, and Taiwan: Automated content analysis. JMIR Public Health Surveill. 2021, 7, e26660. [Google Scholar] [CrossRef]
- Pollard, C.M.; Pulker, C.E.; Meng, X.; Kerr, D.A.; Scott, J.A. Who uses the internet as a source of nutrition and dietary information? An Australian population perspective. J. Med. Internet Res. 2015, 17, e4548. [Google Scholar] [CrossRef] [Green Version]
- Adamski, M.; Truby, H.M.; Klassen, K.; Cowan, S.; Gibson, S. Using the Internet: Nutrition information-seeking behaviours of lay people enrolled in a massive online nutrition course. Nutrients 2020, 12, 750. [Google Scholar] [CrossRef] [Green Version]
- Kelly, B.; Hornik, R.; Romantan, A.; Schwartz, J.S.; Armstrong, K.; DeMichele, A.; Fishbein, M.; Gray, S.; Hull, S.; Kim, A.; et al. Cancer information scanning and seeking in the general population. J. Health Commun. 2010, 15, 734–753. [Google Scholar] [CrossRef] [PubMed]
Source | M (SD) | 95% CI | t515 | |||
---|---|---|---|---|---|---|
During | Before | Difference | Lower | Upper | ||
Food advice | 4.33 (1.25) | 4.29 (1.22) | 0.04 (0.44) | 0.006 | 0.082 | 2.277 * |
Family members | 4.82 (1.47) | 4.75 (1.50) | 0.07 (0.78) | 0.000 | 0.135 | 1.978 * |
Friends | 4.34 (1.45) | 4.32 (1.37) | 0.02 (0.93) | −0.057 | 0.104 | 0.567 |
Experts | 4.16 (1.54) | 4.13 (1.50) | 0.03 (0.63) | −0.025 | 0.084 | 1.071 |
Celebrities | 4.01 (1.56) | 3.95 (1.53) | 0.05 (0.69) | −0.005 | 0.115 | 1.799 |
Nutrient-Dense Foods | Psychological Distress | χ2 | OR | |
---|---|---|---|---|
Low Level | High Level | |||
312 (%) | 204 (%) | |||
Fruit | ||||
Low intake | 140 (44.9) | 63 (30.9) | 10.116 ** | 1.822 |
High intake | 172 (55.1) | 141 (69.1) | ||
Vegetables | ||||
Low intake | 125 (40.1) | 66 (32.4) | 3.146 | - |
High intake | 187 (59.9) | 138 (67.6) | ||
Legumes/pulses | ||||
Low intake | 204 (65.4) | 69 (33.8) | 49.314 *** | 3.696 |
High intake | 108 (34.6) | 135 (66.2) | ||
Unsalted nuts or nut spread | ||||
Low intake | 204 (65.4) | 93 (45.6) | 19.788 *** | 2.254 |
High intake | 108 (34.6) | 111 (54.4) | ||
Unprocessed fish | ||||
Low intake | 230 (73.7) | 79 (38.7) | 62.872 *** | 4.438 |
High intake | 82 (26.3) | 125 (61.3) | ||
Unprocessed poultry | ||||
Low intake | 217 (69.6) | 82 (40.2) | 43.619 *** | 3.398 |
High intake | 95 (30.4) | 122 (59.8) | ||
Unprocessed red meat | ||||
Low intake | 201 (64.4) | 91 (44.6) | 19.715 *** | 2.249 |
High intake | 111 (35.6) | 113 (55.4) | ||
Unprocessed vegetarian alternative | ||||
Low intake | 221 (70.8) | 76 (37.3) | 56.932 *** | 4.090 |
High intake | 91 (29.2) | 128 (62.7) | ||
Whole wheat | ||||
Low intake | 215 (68.9) | 90 (44.1) | 31.369 *** | 2.808 |
High intake | 97 (31.1) | 114 (55.9) | ||
Milk | ||||
Low intake | 191 (61.2) | 77 (37.7) | 27.226 *** | 2.604 |
High intake | 121 (38.8) | 127 (62.3) | ||
Other dairy products | ||||
Low intake | 202 (64.7) | 71 (34.8) | 44.377 *** | 3.440 |
High intake | 110 (35.3) | 133 (65.2) | ||
Plant-based drinks | ||||
Low intake | 223 (71.5) | 96 (47.1) | 31.154 *** | 2.819 |
High intake | 89 (28.5) | 108 (52.9) | ||
Non-sugared beverages | ||||
Low intake | 141 (45.2) | 58 (28.4) | 14.626 *** | 2.076 |
High intake | 171 (54.8) | 146 (71.6) |
Nutrient-Poor Foods | Psychological Distress | χ2 | OR | |
---|---|---|---|---|
Low Level | High Level | |||
312 (%) | 204 (%) | |||
Processed meat | ||||
Low intake | 223 (71.5) | 77 (37.7) | 57.660 *** | 4.133 |
High intake | 89 (28.5) | 127 (62.3) | ||
Sweet snacks | ||||
Low intake | 224 (71.8) | 81 (39.7) | 52.549 *** | 3.865 |
High intake | 88 (28.2) | 123 (60.3) | ||
Salty snacks | ||||
Low intake | 236 (75.6) | 81 (39.7) | 67.230 *** | 4.715 |
High intake | 76 (24.4) | 123 (60.3) | ||
White wheat | ||||
Low intake | 221 (70.8) | 67 (32.8) | 72.186 *** | 4.966 |
High intake | 91 (29.2) | 137 (67.2) | ||
Sugared beverages | ||||
Low intake | 220 (70.5) | 74 (36.3) | 58.987 *** | 4.201 |
High intake | 92 (29.5) | 130 (63.7) | ||
Alcoholic beverages | ||||
Low intake | 247 (79.2) | 87 (42.6) | 72.056 *** | 5.110 |
High intake | 65 (20.8) | 117 (57.4) |
Unstandardized Effect (b) | |||||
---|---|---|---|---|---|
Variable | Food Advice | Nutrient-Dense Foods | Nutrient-Dense Foods T | Nutrient-Poor Foods | Nutrient-Poor Foods T |
Control block | |||||
Gender | −0.085 | 0.073 | 0.020 | 0.190 * | 0.137 |
Age a | −0.830 * | 0.250 | −0.267 | −0.562 | −1.083 * |
Geographic location | 0.793 *** | 0.018 | 0.512 *** | 0.043 | 0.540 *** |
Education | −0.082 | 0.040 | −0.011 | −0.026 | −0.077 |
Employment status | 0.233 * | −0.012 | 0.134 | 0.229 * | 0.375 *** |
Income loss | 0.053 | 0.065 | 0.098 | −0.028 | 0.005 |
Financial difficulties with food | 0.018 | 0.009 | 0.020 | 0.045 | 0.056 |
Degree of closure measures | 0.186 | −0.073 | 0.043 | −0.354 * | −0.237 |
Lockdown time a | −0.240 | −0.008 | −0.158 | −0.154 | −0.305 * |
Prediction block | |||||
Psychological distress | 0.298 *** | 0.050 | 0.236 *** | 0.115 *** | 0.302 *** |
Food advice | - | 0.623 *** | - | 0.627 *** | - |
Explanatory power | |||||
R-squared | 0.248 | 0.563 | 0.168 | 0.556 | 0.296 |
F-value | 16.675 *** | 59.090 *** | 10.189 *** | 57.455 *** | 21.247 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, W.; Xiang, Y.-T.; Chang, A. Are Foods from the COVID-19 Pandemic Lockdown Low in Nutrients? An Analysis of Chinese Psychological Distress Effects. Nutrients 2022, 14, 4702. https://doi.org/10.3390/nu14214702
Jiao W, Xiang Y-T, Chang A. Are Foods from the COVID-19 Pandemic Lockdown Low in Nutrients? An Analysis of Chinese Psychological Distress Effects. Nutrients. 2022; 14(21):4702. https://doi.org/10.3390/nu14214702
Chicago/Turabian StyleJiao, Wen, Yu-Tao Xiang, and Angela Chang. 2022. "Are Foods from the COVID-19 Pandemic Lockdown Low in Nutrients? An Analysis of Chinese Psychological Distress Effects" Nutrients 14, no. 21: 4702. https://doi.org/10.3390/nu14214702
APA StyleJiao, W., Xiang, Y. -T., & Chang, A. (2022). Are Foods from the COVID-19 Pandemic Lockdown Low in Nutrients? An Analysis of Chinese Psychological Distress Effects. Nutrients, 14(21), 4702. https://doi.org/10.3390/nu14214702