Effect of a Multi-Strain Probiotic on Growth and Time to Reach Full Feeds in Preterm Neonates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.3. Study Participants
2.4. Randomization
2.5. Procedures
2.5.1. Probiotic/Placebo
2.5.2. Demographics and Medical Records
2.5.3. Anthropometry
2.5.4. Nutrition
2.5.5. Definitions Size at Birth
2.6. Statistical Analysis
2.7. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olhager, E.; Forsum, E. Total energy expenditure, body composition and weight gain in moderately preterm and full-term infants at term postconceptional age. Acta Paediatr. 2003, 92, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- De Curtis, M.; Rigo, J. The nutrition of preterm infants. Early Hum. Dev. 2012, 88, S5–S7. [Google Scholar] [CrossRef] [PubMed]
- Dusick, A.; Poindexter, B.; Ehrenkranz, R.; Lemons, J. Growth Failure in the Preterm Infant: Can We Catch Up? Semin. Perinatol. 2003, 27, 302–310. [Google Scholar] [CrossRef]
- Simmer, K. Aggressive nutrition for preterm infants—Benefits and risks. Early Hum. Dev. 2007, 83, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Lemons, J.A.; Bauer, C.R.; Oh, W.; Korones, S.B.; Papile, L.A.; Stoll, B.J.; Verter, J.; Temprosa, M.; Wright, L.L.; Ehrenkranz, R.A.; et al. Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 2001, 107, E1. [Google Scholar] [CrossRef] [Green Version]
- Athalye-Jape, G.; Deshpande, G.; Rao, S.; Patole, S. Benefits of probiotics on enteral nutrition in preterm neonates: A systematic review. Am. J. Clin. Nutr. 2014, 100, 1508–1519. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y. Adult-Onset Diseases in Low Birth Weight Infants: Association with Adipose Tissue Maldevelopment. J. Atheroscler. Thromb. 2020, 27, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Euser, A.M.; Finken, M.J.; Keijzer-Veen, M.G.; Hille, E.T.; Wit, J.M.; Dekker, F.W. Dutch POPS-19 Collaborative Study Group. Associations between prenatal and infancy weight gain and BMI, fat mass, and fat distribution in young adulthood: A prospective cohort study in males and females born very preterm. Am. J. Clin. Nutr. 2005, 81, 480–487. [Google Scholar]
- Sowden, M.; van Niekerk, E.; Bulabula, A.N.H.; Dramowski, A.; Whitelaw, A.; Twisk, J.; van Weissenbruch, M.M. Impact of a multi-strain probiotic administration on peri-rectal colonization with drug-resistant Gram-negative bacteria in preterm neonates. Front. Pediatr. 2022, 1–10. [Google Scholar] [CrossRef]
- Sowden, M.; van Weissenbruch, M.M.; Bulabula, A.N.H.; van Wyk, L.; Twisk, J.; van Niekerk, E. Effect of a Multi-Strain Probiotic on the Incidence and Severity of Necrotizing Enterocolitis and Feeding Intolerances in Preterm Neonates. Nutrients 2022, 14, 3305. [Google Scholar] [CrossRef]
- WHO. WHO Training Course on Child Growth Assessment. In WHO Child Growth Standards; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Lee, R.D.; Nieman, D.C. Anthropometry. In Nutritional Assessment; McGraw-Hill: New York, NY, USA, 2003; pp. 163–215. [Google Scholar]
- Fenton, T.R.; Nasser, R.; Eliasziw, M.; Kim, J.H.; Bilan, D.; Sauve, R. Validating the weight gain of preterm infants between the reference growth curve of the fetus and the term infant. BMC Pediatr. 2013, 13, 92. [Google Scholar] [CrossRef]
- Hua, X.T.; Tang, J.; Mu, D.Z. Effect of oral administration of probiotics on intestinal colonization with drug-resistant bacteria in preterm infants. Chin. J. Contemp. Pediatr. 2014, 16, 606–609. [Google Scholar]
- Sreekumar, K.; Baracho, B.; Bhoomkar, N.; Joshi, V. Impact of a standard feeding protocol to decrease time to reach full feeds and central line usage in babies; less than 1500g: A quality improvement initiative. J. Neonatal Nurs. 2022, in press. [Google Scholar] [CrossRef]
- Kwok, T.; Dorling, J.; Gale, C. Early enteral feeding in preterm infants. Semin. Perinatol. 2019, 43, 151159. [Google Scholar] [CrossRef]
- Thoene, M.; Anderson-Berry, A. Early Enteral Feeding in Preterm Infants: A Narrative Review of the Nutritional, Metabolic and Developmental Benefits. Nutrients 2021, 13, 2289. [Google Scholar] [CrossRef]
- Totsu, S.; Yamasaki, C.; Terahara, M.; Uchiyama, A.; Kusuda, S. Bifidobacterium and enteral feeding in preterm infants: Cluster-randomized tria. Pediatr. Int. 2014, 56, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, C.; Totsu, S.; Uchiyama, A.; Nakanishi, H.; Masumoto, K.; Washio, Y.; Shuri, K.; Ishida, S.; Imai, K.; Kusuda, S. Effect of Bifidobacterium administration on very-low-birthweight infants. Pediatr Int. 2012, 54, 651–656. [Google Scholar] [CrossRef]
- Lee, S.J.; Cho, S.J.; Park, E.A. Effects of probiotics on enteric flora and feeding tolerance in preterm infants. Neonatology 2007, 91, 174–179. [Google Scholar] [CrossRef]
- Underwood, M.A.; Umberger, E.; Patel, R.M. Safety and Effecicacy of Probiotics Administration to Preterm Infants: Ten Common Questions. Pediatr. Res. 2020, 88, 48–55. [Google Scholar] [CrossRef]
- Johnson, M.J.; Wootton, S.A.; Leaf, A.A.; Jackson, A.A. Preterm birth and body composition at term equivalent age: A systematic review and meta-analysis. Pediatrics 2012, 130, e640–e649. [Google Scholar] [CrossRef] [Green Version]
- Yumani, D.; Lafeber, H.; van Weissenbruch, M. Dietary proteins and IGF I levels in preterm infants: Determinants of growth, body composition and neurodevelopment. Pediatr. Res. 2015, 77, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Moyer-Mileur, L.J. Anthropometric and laboratory assessment of very low birth weight infants: The most helpful measurements and why. Semin. Perinatol. 2007, 31, 96–103. [Google Scholar] [CrossRef]
- Hays, S.; Jacquot, A.; Gauthier, H.; Kempf, C.; Beissel, A.; Pidoux, O.; Jumas-Bilak, E.; Decullier, E.; Lachambre, E.; Beck, L.; et al. Probiotics and growth in preterm infants: A randomized controlled trial, PREMAPRO study. Clin. Nutr. 2016, 35, 802–811. [Google Scholar] [CrossRef]
Probiotic Group (n = 100) | Placebo Group (n = 100) | |
---|---|---|
Gender | ||
Male (n, %) | 47 (47) | 37 (37) |
Female (n, %) | 53 (53) | 63 (63) |
Birth weight | ||
750–1000 g (n, %) | 30 (30) | 32 (32) |
1001–1500 g (n, %) | 70 (70) | 68 (68) |
Gestational age | ||
26–28 weeks (n, %) | 34 (34) | 30 (30) |
29–32 weeks (n, %) | 60 (60) | 62 (62) |
33–36 weeks (n, %) | 6 (6) | 8 (8) |
HIV | ||
Exposed (n, %) | 22 (22) | 26 (26) |
Unexposed (n, %) | 78 (78) | 74 (74) |
Mode of delivery | ||
C-section (n, %) | 73 (73) | 73 (73) |
Vaginal delivery (n, %) | 27 (27) | 27 (27) |
Birth number | ||
Single neonate (n, %) | 79 (79) | 86 (86) |
Twin neonates (n, %) | 21 (21) | 14 (14) |
Probiotic Group n = 100 | Placebo Group n = 100 | |
---|---|---|
Time of initiating enteral feeds (DOL mean, SD, and range) | 3.1 ± 1.1 (0–6) | 3.0 ± 1.0 (2–6) |
Days to reach full feeds of 160 mL/kg/day (DOL mean, SD, and range) | 8.7± 2.0 (5–18) | 9.7 ± 4.3 (6–28) |
First feed received | ||
EBM (n, %) | 68 (68) | 69 (69) |
DEBM (n, %) | 12 (12) | 6 (6) |
PEBM (n, %) | 19 (19) | 25 (25) |
FM (n, %) | 1 (1) | 0 (0) |
Subsequent feeds received: * | ||
EBM (n, %) | 63 (63) | 66 (66) |
DEBM (n, %) | 13 (13) | 9 (9) |
PEBM (n, %) | 15 (15) | 24 (24) |
FM (n, %) | 9 (9) | 1 (1) |
Feeds fortified: | ||
FM85 | 76 (76) | 80 (80) |
MCT oil | 3 (3) | 2 (2) |
Probiotic Group n = 100 | Placebo Group n = 100 | |
---|---|---|
Size at birth | ||
SGA (n, %) | 17 (17) | 23 (23) |
AGA (n, %) | 80 (80) | 74 (74) |
LGA (n, %) | 3 (3) | 3 (3) |
Types of growth restriction in SGA neonates | ||
Symmetrical | 8 (8) | 9 (9) |
Asymmetrical | 9 (9) | 14 (14) |
Weight | ||
Birthweight in grams (mean, SD) | 1174 g; ±226 g | 1150 g; ±230 g |
Days to regain birthweight (DOL mean, SD and range) | 11.5 ± 6.3 (1 to 28) | 13.3 ± 6.3 (4 to >28) |
Estimated Difference | 95% CI | p-Value | |
---|---|---|---|
Weight | |||
On average over time | 33.7 | 11.0 to 56.4 | 0.004 * |
Day 7 | 2.9 | −20.1 to 25.9 | 0.81 |
Day 14 | 18.8 | −6.2 to 43.8 | 0.14 |
Day 21 | 56.7 | 29.3 to 84.0 | <0.001 * |
Day 28 | 83.7 | 54.3 to 113.2 | <0.001 * |
Length | |||
On average over time | 0.1 | −0.1 to 0.2 | 0.33 |
Day 7 | 0.0 | −0.1 to 0.1 | 0.83 |
Day 14 | −0.0 | −0.1 to 0.1 | 0.96 |
Day 21 | 0.1 | −0.0 to 0.2 | 0.10 |
Day 28 | 0.2 | 0.1 to 0.3 | 0.006 * |
Head circumference | |||
On average over time | 0.1 | −0.2 to 0.4 | 0.46 |
Day 7 | −0.4 | −0.8 to 0.1 | 0.13 |
Day 14 | 0.3 | −0.2 to 0.8 | 0.25 |
Day 21 | 0.3 | −0.2 to 0.9 | 0.25 |
Day 28 | 0.4 | −0.2 to 1.1 | 0.17 |
Estimated Difference | 95% CI | p-Value | |
---|---|---|---|
Weight | |||
On average over time | 0.08 | 0.01 to 0.16 | 0.03 * |
Day 7 | 0.01 | −0.07 to 0.08 | 0.88 |
Day 14 | 0.05 | −0.03 to 0.13 | 0.23 |
Day 21 | 0.12 | 0.03 to 0.21 | 0.007 * |
Day 28 | 0.22 | 0.13 to 0.32 | <0.001 * |
Length | |||
On average over time | 0.08 | −0.09 to 0.25 | 0.35 |
Day 7 | −0.08 | −0.28 to 0.13 | 0.45 |
Day 14 | 0.17 | −0.05 to 0.40 | 0.13 |
Day 21 | 0.16 | −0.09 to 0.41 | 0.20 |
Day 28 | 0.19 | −0.08 to 0.46 | 0.16 |
Head circumference | |||
On average over time | 0.00 | 0.16 to 0.16 | 0.98 |
Day 7 | −0.02 | −0.18 to 0.14 | 0.78 |
Day 14 | −0.05 | −0.22 to 0.11 | 0.51 |
Day 21 | 0.03 | −0.14 to 0.20 | 0.70 |
Day 28 | 0.09 | −0.09 to 0.26 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowden, M.; van Niekerk, E.; Bulabula, A.N.H.; Twisk, J.; van Weissenbruch, M.M. Effect of a Multi-Strain Probiotic on Growth and Time to Reach Full Feeds in Preterm Neonates. Nutrients 2022, 14, 4658. https://doi.org/10.3390/nu14214658
Sowden M, van Niekerk E, Bulabula ANH, Twisk J, van Weissenbruch MM. Effect of a Multi-Strain Probiotic on Growth and Time to Reach Full Feeds in Preterm Neonates. Nutrients. 2022; 14(21):4658. https://doi.org/10.3390/nu14214658
Chicago/Turabian StyleSowden, Marwyn, Evette van Niekerk, Andre Nyandwe Hamama Bulabula, Jos Twisk, and Mirjam Maria van Weissenbruch. 2022. "Effect of a Multi-Strain Probiotic on Growth and Time to Reach Full Feeds in Preterm Neonates" Nutrients 14, no. 21: 4658. https://doi.org/10.3390/nu14214658
APA StyleSowden, M., van Niekerk, E., Bulabula, A. N. H., Twisk, J., & van Weissenbruch, M. M. (2022). Effect of a Multi-Strain Probiotic on Growth and Time to Reach Full Feeds in Preterm Neonates. Nutrients, 14(21), 4658. https://doi.org/10.3390/nu14214658