Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA
Abstract
:1. Introduction
2. Methods
2.1. Interview
2.2. Blood Collection
2.3. DNA Extraction, Quantitative Polymerase Chain Reaction (qPCR) Experiments and Sequencing of 16S rRNA Gene Amplicons
2.4. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wirbel, J.; Pyl, P.T.; Kartal, E.; Zych, K.; Kashani, A.; Milanese, A.; Fleck, J.S.; Voigt, A.Y.; Palleja, A.; Ponnudurai, R.; et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 2019, 25, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.C.H. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: Exploring a common ground hypothesis. J. Biomed. Sci. 2018, 25, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeming, E.R.; Johnson, A.J.; Spector, T.D.; Le Roy, C.I. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients 2019, 11, 2862. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Kong, E.; Meydani, M. Dietary polyphenols, inflammation, and cancer. Nutr. Cancer 2009, 61, 807–810. [Google Scholar] [CrossRef]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.; Ballester, I.; Lopez-Posadas, R.; Suarez, M.D.; Zarzuelo, A.; Martinez-Augustin, O.; Sanchez de Medina, F. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 2011, 51, 331–362. [Google Scholar] [CrossRef]
- Schmitt, M.; Greten, F.R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 2021, 21, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Lei, L.; Zhou, Y.; Ye, F.; Zhao, G. Dietary flavonoids and the risk of colorectal cancer: An updated meta-analysis of epidemiological studies. Nutrients 2018, 10, 950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fike, L.T.; Munro, H.; Yu, D.; Dai, Q.; Shrubsole, M.J. Dietary polyphenols and the risk of colorectal cancer in the prospective southern community cohort study. Am. J. Clin. Nutr. 2022, 115, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Negri, E.; Talamini, R.; Bosetti, C.; Parpinel, M.; Gnagnarella, P.; Franceschi, S.; Dal Maso, L.; Montella, M.; Giacosa, A.; et al. Flavonoids and colorectal cancer in italy. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1555–1558. [Google Scholar] [CrossRef] [Green Version]
- Cardona, F.; Andres-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuno, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selma, M.V.; Espin, J.C.; Tomas-Barberan, F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef]
- Nishida, A.; Inoue, R.; Inatomi, O.; Bamba, S.; Naito, Y.; Andoh, A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 2018, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Ling, Z.; Li, L. The intestinal microbiota and colorectal cancer. Front. Immunol. 2020, 11, 615056. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.M.; Manghi, P.; Asnicar, F.; Pasolli, E.; Armanini, F.; Zolfo, M.; Beghini, F.; Manara, S.; Karcher, N.; Pozzi, C.; et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 2019, 25, 667–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janney, A.; Powrie, F.; Mann, E.H. Host-microbiota maladaptation in colorectal cancer. Nature 2020, 585, 509–517. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, H.; Wen, X.; Ho, C.T.; Li, S. Citrus flavonoids and the intestinal barrier: Interactions and effects. Compr. Rev. Food Sci. Food Saf. 2021, 20, 225–251. [Google Scholar] [CrossRef] [PubMed]
- Del Bo’, C.; Bernardi, S.; Cherubini, A.; Porrini, M.; Gargari, G.; Hidalgo-Liberona, N.; Gonzalez-Dominguez, R.; Zamora-Ros, R.; Peron, G.; Marino, M.; et al. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The maple randomised controlled trial. Clin. Nutr. 2021, 40, 3006–3018. [Google Scholar] [CrossRef] [PubMed]
- Verediano, T.A.; Stampini Duarte Martino, H.; Dias Paes, M.C.; Tako, E. Effects of anthocyanin on intestinal health: A systematic review. Nutrients 2021, 13, 1331. [Google Scholar] [CrossRef]
- Nunes, C.; Freitas, V.; Almeida, L.; Laranjinha, J. Red wine extract preserves tight junctions in intestinal epithelial cells under inflammatory conditions: Implications for intestinal inflammation. Food Funct. 2019, 10, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Tanabe, S.; Suzuki, T. Differential effects of flavonoids on barrier integrity in human intestinal caco-2 cells. J. Agric. Food Chem. 2012, 60, 4628–4633. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Hara, H. Role of flavonoids in intestinal tight junction regulation. J. Nutr. Biochem. 2011, 22, 401–408. [Google Scholar] [CrossRef]
- Bernardi, S.; Del Bo’, C.; Marino, M.; Gargari, G.; Cherubini, A.; Andres-Lacueva, C.; Hidalgo-Liberona, N.; Peron, G.; Gonzalez-Dominguez, R.; Kroon, P.; et al. Polyphenols and intestinal permeability: Rationale and future perspectives. J. Agric. Food Chem. 2020, 68, 1816–1829. [Google Scholar] [CrossRef]
- Messaritakis, I.; Vogiatzoglou, K.; Tsantaki, K.; Ntretaki, A.; Sfakianaki, M.; Koulouridi, A.; Tsiaoussis, J.; Mavroudis, D.; Souglakos, J. The prognostic value of the detection of microbial translocation in the blood of colorectal cancer patients. Cancers 2020, 12, 1058. [Google Scholar] [CrossRef] [Green Version]
- Mutignani, M.; Penagini, R.; Gargari, G.; Guglielmetti, S.; Cintolo, M.; Airoldi, A.; Leone, P.; Carnevali, P.; Ciafardini, C.; Petrocelli, G.; et al. Blood bacterial DNA load and profiling differ in colorectal cancer patients compared to tumor-free controls. Cancers 2021, 13, 6363. [Google Scholar] [CrossRef]
- Xiao, Q.; Lu, W.; Kong, X.; Shao, Y.W.; Hu, Y.; Wang, A.; Bao, H.; Cao, R.; Liu, K.; Wang, X.; et al. Alterations of circulating bacterial DNA in colorectal cancer and adenoma: A proof-of-concept study. Cancer Lett. 2021, 499, 201–208. [Google Scholar] [CrossRef]
- Franceschi, S.; Negri, E.; Salvini, S.; Decarli, A.; Ferraroni, M.; Filiberti, R.; Giacosa, A.; Talamini, R.; Nanni, O.; Panarello, G.; et al. Reproducibility of an italian food frequency questionnaire for cancer studies: Results for specific food items. Eur. J. Cancer 1993, 29A, 2298–2305. [Google Scholar] [CrossRef]
- Decarli, A.; Franceschi, S.; Ferraroni, M.; Gnagnarella, P.; Parpinel, M.T.; La Vecchia, C.; Negri, E.; Salvini, S.; Falcini, F.; Giacosa, A. Validation of a food-frequency questionnaire to assess dietary intakes in cancer studies in Italy. Results for specific nutrients. Ann. Epidemiol. 1996, 6, 110–118. [Google Scholar] [CrossRef]
- Rossi, M.; Edefonti, V.; Parpinel, M.; Lagiou, P.; Franchi, M.; Ferraroni, M.; Decarli, A.; Zucchetto, A.; Serraino, D.; Dal Maso, L.; et al. Proanthocyanidins and other flavonoids in relation to endometrial cancer risk: A case-control study in italy. Br. J. Cancer 2013, 109, 1914–1920. [Google Scholar] [CrossRef]
- US Department of Agriculture. Iowa State University Database on the Isoflavone Content of Foods, Release 1.3, 2002; USDA: Beltsville, MD, USA, 2002.
- US Department of Agriculture. Usda Database for the Flavonoid Content of Selected Foods; USDA: Beltsville, MD, USA, 2003.
- Gnagnarella, P.; Parpinel, M.; Salvini, S.; Franceschi, S.; Palli, D.; Boyle, P. The update of the italian food composition database. J. Food Compos. Anal. 2004, 17, 509–522. [Google Scholar] [CrossRef]
- Paisse, S.; Valle, C.; Servant, F.; Courtney, M.; Burcelin, R.; Amar, J.; Lelouvier, B. Comprehensive description of blood microbiome from healthy donors assessed by 16s targeted metagenomic sequencing. Transfusion 2016, 56, 1138–1147. [Google Scholar] [CrossRef]
- Lluch, J.; Servant, F.; Paisse, S.; Valle, C.; Valiere, S.; Kuchly, C.; Vilchez, G.; Donnadieu, C.; Courtney, M.; Burcelin, R.; et al. The characterization of novel tissue microbiota using an optimized 16s metagenomic sequencing pipeline. PLoS ONE 2015, 10, e0142334. [Google Scholar] [CrossRef] [PubMed]
- Escudie, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. Frogs: Find, rapidly, otus with galaxy solution. Bioinformatics 2018, 34, 1287–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, G.; Eslick, G.D. Soy and isoflavone consumption and risk of gastrointestinal cancer: A systematic review and meta-analysis. Eur. J. Nutr. 2016, 55, 63–73. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, J.; Wang, Y.; Wang, D. The relationship between plant-based diet and risk of digestive system cancers: A meta-analysis based on 3,059,009 subjects. Front. Public Health 2022, 10, 892153. [Google Scholar] [CrossRef]
- Randi, G.; Edefonti, V.; Ferraroni, M.; La Vecchia, C.; Decarli, A. Dietary patterns and the risk of colorectal cancer and adenomas. Nutr. Rev. 2010, 68, 389–408. [Google Scholar] [CrossRef]
- Lippert, E.; Ruemmele, P.; Obermeier, F.; Goelder, S.; Kunst, C.; Rogler, G.; Dunger, N.; Messmann, H.; Hartmann, A.; Endlicher, E. Anthocyanins prevent colorectal cancer development in a mouse model. Digestion 2017, 95, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Yun, S.M.; Song, M.Y.; Jung, K.; Kim, E.H. Cyanidin chloride induces apoptosis by inhibiting nf-kappab signaling through activation of nrf2 in colorectal cancer cells. Antioxidants 2020, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Feng, P.; He, W.; Du, X.; Chen, C.; Suo, L.; Liang, M.; Zhang, N.; Na, A.; Zhang, Y. The prevention and inhibition effect of anthocyanins on colorectal cancer. Curr. Pharm. Des. 2019, 25, 4919–4927. [Google Scholar] [CrossRef]
- Ansari, B.; Aschner, M.; Hussain, Y.; Efferth, T.; Khan, H. Suppression of colorectal carcinogenesis by naringin. Phytomedicine 2022, 96, 153897. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.C.; Lin, J.K. Liquiritigenin inhibits colorectal cancer proliferation, invasion, and epithelial-to-mesenchymal transition by decreasing expression of runt-related transcription factor 2. Oncol. Res. 2019, 27, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; He, Y.; Li, Y.; Gu, M.; Wu, M.; Ji, L. Eriodictyol suppresses the malignant progression of colorectal cancer by downregulating tissue specific transplantation antigen p35b (tsta3) expression to restrain fucosylation. Bioengineered 2022, 13, 5551–5563. [Google Scholar] [CrossRef] [PubMed]
- Vinelli, V.; Biscotti, P.; Martini, D.; Del Bo’, C.; Marino, M.; Merono, T.; Nikoloudaki, O.; Calabrese, F.M.; Turroni, S.; Taverniti, V.; et al. Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: A systematic review. Nutrients 2022, 14, 2559. [Google Scholar] [CrossRef]
- Morais, C.A.; de Rosso, V.V.; Estadella, D.; Pisani, L.P. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J. Nutr. Biochem. 2016, 33, 1–7. [Google Scholar] [CrossRef]
- Stevens, Y.; Rymenant, E.V.; Grootaert, C.; Camp, J.V.; Possemiers, S.; Masclee, A.; Jonkers, D. The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients 2019, 11, 1464. [Google Scholar] [CrossRef] [Green Version]
- Kay, C.D.; Pereira-Caro, G.; Ludwig, I.A.; Clifford, M.N.; Crozier, A. Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annu. Rev. Food Sci. Technol. 2017, 8, 155–180. [Google Scholar] [CrossRef]
- Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Paz Soldan, M.M.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016, 6, 28484. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Du, J.; Pu, X.; Zheng, L.; Chen, S.; Wang, N.; Li, J.; Chen, S.; Pan, S.; Shen, B. The gut microbiome and metabolites are altered and interrelated in patients with rheumatoid arthritis. Front. Cell. Infect. Microbiol. 2021, 11, 763507. [Google Scholar] [CrossRef]
- Kay, C.; Wang, R.; Kirkby, M.; Man, S.M. Molecular mechanisms activating the naip-nlrc4 inflammasome: Implications in infectious disease, autoinflammation, and cancer. Immunol. Rev. 2020, 297, 67–82. [Google Scholar] [CrossRef]
- Shah, N.B.; Nigwekar, S.U.; Kalim, S.; Lelouvier, B.; Servant, F.; Dalal, M.; Krinsky, S.; Fasano, A.; Tolkoff-Rubin, N.; Allegretti, A.S. The gut and blood microbiome in iga nephropathy and healthy controls. Kidney360 2021, 2, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Gao, J.; Hao, R.; Yang, J.; Wei, J. Effects of simulated digestion on black chokeberry (Aronia melanocarpa (michx.) elliot) anthocyanins and intestinal flora. J. Food Sci. Technol. 2021, 58, 1511–1523. [Google Scholar] [CrossRef] [PubMed]
- Nouri, R.; Hasani, A.; Shirazi, K.M.; Alivand, M.R.; Sepehri, B.; Sotoodeh, S.; Hemmati, F.; Rezaee, M.A. Escherichia coli and colorectal cancer: Unfolding the enigmatic relationship. Curr. Pharm. Biotechnol. 2022, 23, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
- Breslow NE, D.N. Statistical Methods in Cancer Research. Vol 1. The Analysis of Case-Control Studies; IARC: Lyon, France, 1980.
- Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 2019, 17, 742–753. [Google Scholar] [CrossRef]
Characteristic | CRC | Controls |
---|---|---|
Study center | ||
Niguarda | 65 (65.0%) | 130 (65.0%) |
Policlinico | 35 (35.0%) | 70 (35.0%) |
Sex | ||
Male | 62 (62.0%) | 124 (62.0%) |
Female | 38 (38.0%) | 76 (38.0%) |
Age group | ||
<50 | 10 (10.0%) | 11 (5.5%) |
50–59 | 19 (19.0%) | 43 (21.5%) |
60–69 | 29 (29.0%) | 62 (31.0%) |
70–79 | 31 (31.0%) | 62 (31.0%) |
≥80 | 11 (11.0%) | 22 (11.0%) |
Mean (SD) age (years) † | 66.1 (11.6) | 65.9 (11.3) |
Education (years) ‡ | ||
<7 | 25 (25.0%) | 31 (15.5%) |
7–11 | 25 (25.0%) | 50 (25.0%) |
≥12 | 49 (49.0%) | 119 (59.5%) |
Energy intake § (kcal/day) | ||
<1589 | 35 (35.0%) | 66 (33.0%) |
1589–2003 | 30 (30.0%) | 67 (33.5%) |
≥2004 | 35 (35.0%) | 67 (33.5%) |
Alcohol intake § (g/day) | ||
<2.65 | 28 (28.0%) | 65 (32.5%) |
2.65–14.31 | 29 (29.0%) | 68 (34.0%) |
≥14.32 | 43 (43.0%) | 67 (33.5%) |
Classes of Flavonoids (mg/Day) | Mean (SD) † | Tertiles † | (p–Value) | Continuous ‡ | ||
---|---|---|---|---|---|---|
I | II | III | ||||
Isoflavones | 32.1 (40.5) | |||||
Upper cutpoint | 4.93 | 35.02 | – | |||
CRC : controls | 35 : 66 | 22 : 68 | 43 : 66 | |||
OR (95% CI) | 1 | 0.54 (0.26–1.13) | 1.20 (0.65–2.20) | 0.80 (0.37) | 1.23 (0.96–1.58) | |
Anthocyanidins | 28.3 (32.3) | |||||
Upper cutpoint | 9.45 | 30.62 | – | |||
CRC : controls | 49 : 66 | 38 : 67 | 13 : 67 | |||
OR (95% CI) | 1 | 0.69 (0.38–1.23) | 0.24 (0.11–0.52) | 12.30 (<0.001) | 0.71 (0.51–0.98) | |
Flavan–3–ols | 25.1 (40.3) | |||||
Upper cutpoint | 8.39 | 21.37 | – | |||
CRC : controls | 34 : 67 | 31 : 66 | 35 : 67 | |||
OR (95% CI) | 1 | 0.98 (0.51–1.89) | 0.88 (0.42–1.84) | 0.13 (0.72) | 0.96 (0.74–1.25) | |
Flavanones | 20.3 (23.0) | |||||
Upper cutpoint | 3.96 | 24.01 | – | |||
CRC : controls | 46 : 67 | 45 : 66 | 9 : 67 | |||
OR (95% CI) | 1 | 0.90 (0.51–1.61) | 0.18 (0.08–0.42) | 14.30 (<0.001) | 0.42 (0.27–0.65) | |
Flavones | 0.45 (0.23) | |||||
Upper cutpoint | 0.35 | 0.49 | – | |||
CRC : controls | 45 : 67 | 20 : 66 | 35 : 67 | |||
OR (95% CI) | 1 | 0.43 (0.22–0.87) | 0.93 (0.48–1.81) | 0.19 (0.66) | 1.00 (0.78–1.27) | |
Flavonols | 29.0 (16.5) | |||||
Upper cutpoint | 18.90 | 33.90 | – | |||
CRC : controls | 32 : 67 | 33 : 66 | 35 : 67 | |||
OR (95% CI) | 1 | 1.06 (0.57–1.98) | 1.17 (0.61–2.24) | 0.31 (0.58) | 1.21 (0.94–1.54) | |
Total Flavonoids | 135.2 (85.9) | |||||
Upper cutpoint | 89.44 | 155.40 | – | |||
CRC : controls | 37 : 66 | 37 : 68 | 26 : 66 | |||
OR (95% CI) | 1 | 0.98 (0.54–1.76) | 0.65 (0.34–1.26) | 1.03 (0.31) | 0.89 (0.68–1.16) |
Tertiles † | (p–Value) | Continuous ‡ | |||
---|---|---|---|---|---|
I | II | III | |||
Colon cancer | |||||
Anthocyanidins | |||||
Cases | 25 | 18 | 7 | ||
OR (95% CI) | 1 | 0.62 (0.27–1.46) | 0.32 (0.11–0.95) | 4.79 (0.03) | 0.82 (0.54–1.25) |
Flavanones | |||||
Cases | 24 | 20 | 6 | ||
OR (95% CI) | 1 | 0.62 (0.27–1.42) | 0.22 (0.07–0.67) | 7.04 (0.01) | 0.42 (0.22–0.80) |
Rectal cancer | |||||
Anthocyanidins | |||||
Cases | 24 | 20 | 6 | ||
OR (95% CI) | 1 | 0.64 (0.27–1.50) | 0.16 (0.05–0.52) | 8.19 (<0.001) | 0.59 (0.35–0.99) |
Flavanones | |||||
Cases | 22 | 25 | 3 | ||
OR (95% CI) | 1 | 1.11 (0.47–2.62) | 0.12 (0.03–0.47) | 8.35 (<0.001) | 0.39 (0.21–0.73) |
Tertiles * | Mann Whitney p–Value | ||
---|---|---|---|
I–II | III | ||
Anthocyanidins | |||
Overall | |||
N. | 220 | 80 | |
Median (I–III quartiles) | 7214.6 (5628.1–9663.6) | 7141.9 (5642.1–8790.7) | 0.769 |
Among controls | |||
N. | 133 | 67 | |
Median (I–III quartiles) | 7104.2 (5683.6–9104.2) | 7218.2 (5638.8–8769.8) | 0.772 |
Flavanones | |||
Overall | |||
N. | 224 | 76 | |
Median (I–III quartiles) | 7080.1 (5633.4–9212.0) | 7724.91(5634.1–9966.6) | 0.346 |
Among controls | |||
N. | 133 | 67 | |
Median (I–III quartiles) | 7056.7 (5655.0–8338.5) | 7478.9 (5447.2–10290.6) | 0.323 |
OTUs | Mean | Median (I–III Quartiles) | Mann Whitney p–Value | Prevalence (%) | p–Value | |||
---|---|---|---|---|---|---|---|---|
Tertiles | Tertiles * | Tertiles * | ||||||
I–II | III | I–II | III | I–II | III | |||
Anthocyanidins, n | 218 | 78 | 218 | 78 | 218 | 78 | ||
p_Bacteroidetes;c_Bacteroidia;o_Flavobacteriales;f_Flavobacteriaceae;g_Flavobacterium;s_Flavobacterium sp. | 2.180 | 1.144 | 0.011 (0.000–3.884) † | 0.002 (0.000–0.217) | 0.001 | 158 (72.5) ‡ | 44 (56.4) | 0.009 |
p_Proteobacteria;c_Deltaproteobacteria;o_Oligoflexales;f_0319–6G20;g_Unknown;s_Unknown | 0.665 | 0.595 | 0.000 (0.000–0.003) | 0.000 (0.000–0.005) | 0.176 | 70 (32.1) | 35 (44.9) ‡ | 0.043 |
p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae;g_Escherichia–Shigella;s_Multi–affiliation | 1.505 | 1.267 | 0.007 (0.002–2.353) † | 0.002 (0.000–0.367) | 0.023 | 169 (77.5) | 52 (66.7) | 0.059 |
p_Proteobacteria;c_Gammaproteobacteria;o_Legionellales;f_Legionellaceae;g_Legionella;s_Legionella sp. | 0.295 | 0.044 | 0.000 (0.000–0.000) † | 0.000 (0.000–0.000) | 0.015 | 45 (20.6) ‡ | 7 (9.0) | 0.020 |
Flavanones, n | 221 | 75 | 221 | 75 | 221 | 75 | ||
p_Bacteroidetes;c_Bacteroidia;o_Flavobacteriales;f_Flavobacteriaceae;g_Flavobacterium;s_Flavobacterium sp. | 2.192 | 0.164 | 0.010 (0.000–4.059) † | 0.002 (0.0–0.521) | 0.002 | 160 (72.4) ‡ | 42 (56) | 0.008 |
p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Staphylococcus;s_Multi–affiliation | 0.144 | 1.297 | 0.000 (0.000–0.000) † | 0.000 (0.000–0.000) | 0.017 | 16 (7.2) ‡ | 0 (0) | 0.017 |
p_Proteobacteria;c_Alphaproteobacteria;o_Caulobacterales;f_Caulobacteraceae;g_Brevundimonas;s_Multi–affiliation | 0.060 | 0.178 | 0.000 (0.000–0.000) | 0.000 (0.000–0.000) † | 0.013 | 21 (9.5) | 15 (20) ‡ | 0.016 |
p_Proteobacteria;c_Gammaproteobacteria;o_Betaproteobacteriales;f_Burkholderiaceae;g_Pelomonas;s_Multi–affiliation | 3.422 | 4.315 | 2.645 (0.018–4.966) | 3.676 (1.602–6.129) † | 0.013 | 206 (93.2) | 74 (98.7) | 0.071 |
p_Proteobacteria;c_Gammaproteobacteria;o_Diplorickettsiales;f_Diplorickettsiaceae;g_Unknown;s_Unknown | 0.262 | 0.222 | 0.000 (0.000–0.000) | 0.000 (0.000–0.000) | 0.072 | 46 (20.8) ‡ | 8 (10.7) | 0.049 |
p_Proteobacteria;c_Gammaproteobacteria;o_Legionellales;f_Legionellaceae;g_Legionella;s_Legionella sp. | 0.280 | 0.057 | 0.000 (0.000–0.000) † | 0.000 (0.000–0.000) | 0.011 | 46 (20.8) ‡ | 6 (8) | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speciani, M.C.; Cintolo, M.; Marino, M.; Oren, M.; Fiori, F.; Gargari, G.; Riso, P.; Ciafardini, C.; Mascaretti, F.; Parpinel, M.; et al. Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA. Nutrients 2022, 14, 4516. https://doi.org/10.3390/nu14214516
Speciani MC, Cintolo M, Marino M, Oren M, Fiori F, Gargari G, Riso P, Ciafardini C, Mascaretti F, Parpinel M, et al. Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA. Nutrients. 2022; 14(21):4516. https://doi.org/10.3390/nu14214516
Chicago/Turabian StyleSpeciani, Michela Carola, Marcello Cintolo, Mirko Marino, Maya Oren, Federica Fiori, Giorgio Gargari, Patrizia Riso, Clorinda Ciafardini, Federica Mascaretti, Maria Parpinel, and et al. 2022. "Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA" Nutrients 14, no. 21: 4516. https://doi.org/10.3390/nu14214516
APA StyleSpeciani, M. C., Cintolo, M., Marino, M., Oren, M., Fiori, F., Gargari, G., Riso, P., Ciafardini, C., Mascaretti, F., Parpinel, M., Airoldi, A., Vangeli, M., Leone, P., Cantù, P., Lagiou, P., Del Bo’, C., Vecchi, M., Carnevali, P., Oreggia, B., ... Rossi, M. (2022). Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA. Nutrients, 14(21), 4516. https://doi.org/10.3390/nu14214516