Development and Validation of an Anthropometric Equation to Predict Fat Mass Percentage in Professional and Semi-Professional Male Futsal Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.2.1. Dual-Energy X-ray Absorptiometry
2.2.2. Surface Anthropometry
2.2.3. Validity of Published Anthropometric Equations
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbero-Alvarez, J.C.; Soto, V.M.; Barbero-Alvarez, V.; Granda-Vera, J. Match analysis and heart rate of futsal players during competition. J. Sports Sci. 2008, 26, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Naser, N.; Ali, A.; Macadam, P. Physical and physiological demands of futsal. J. Exerc. Sci. Fit. 2017, 15, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Spyrou, K.; Freitas, T.T.; Marín-Cascales, E.; Alcaraz, P.E. Physical and Physiological Match-Play Demands and Player Characteristics in Futsal: A Systematic Review. Front. Psychol. 2020, 11, 569897. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.S.d.; Nakamura, F.Y.; Papoti, M.; da Silva, A.S.; Dos-Santos, J.W. Relationship Between Heart Rate, Oxygen Consumption, and Energy Expenditure in Futsal. Front. Psychol. 2021, 12, 698622. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; George, K.; Marfell-Jones, M.; Scott, M.; Sutton, L.; Wallace, J.A. How well do skinfold equations predict percent body fat in elite soccer players? Int. J. Sports Med. 2009, 30, 607–613. [Google Scholar] [CrossRef]
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current Status of Body Composition Assessment in Sport. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Matias, C.N.; Campa, F.; Cerullo, G.; D’Antona, G.; Giro, R.; Faleiro, J.; Reis, J.F.; Monteiro, C.P.; Valamatos, M.J.; Teixeira, F.J. Bioelectrical Impedance Vector Analysis Discriminates Aerobic Power in Futsal Players: The Role of Body Composition. Biology 2022, 11, 505. [Google Scholar] [CrossRef]
- Gorostiaga, E.M.; Llodio, I.; Ibanez, J.; Granados, C.; Navarro, I.; Ruesta, M.; Bonnabau, H.; Izquierdo, M. Differences in physical fitness among indoor and outdoor elite male soccer players. Eur. J. Appl. Physiol. 2009, 106, 483–491. [Google Scholar] [CrossRef]
- Kasper, A.M.; Langan-Evans, C.; Hudson, J.F.; Brownlee, T.E.; Harper, L.D.; Naughton, R.J.; Morton, J.P.; Close, G.L. Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients 2021, 13, 1075. [Google Scholar] [CrossRef]
- Meyer, N.L.; Sundgot-Borgen, J.; Lohman, T.G.; Ackland, T.R.; Stewart, A.D.; Maughan, R.J.; Smith, S.; Müller, W. Body composition for health and performance: A survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. Br. J. Sports Med. 2013, 47, 1044–1053. [Google Scholar] [CrossRef]
- Kerr, A.; Slater, G.J.; Byrne, N. Impact of food and fluid intake on technical and biological measurement error in body composition assessment methods in athletes. Br. J. Nutr. 2017, 117, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campa, F.; Matias, C.N.; Teixeira, F.J.; Reis, J.F.; Valamatos, M.J.; Coratella, G.; Monteiro, C.P. Comparison of generalized and athletic bioimpedance-based predictive equations for estimating fat-free mass in resistance-trained exercisers. Nutrition 2022, 102, 111694. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. Jama 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, F.J.; Matias, C.N.; Faleiro, J.; Giro, R.; Pires, J.; Figueiredo, H.; Carvalhinho, R.; Monteiro, C.P.; Reis, J.F.; Valamatos, M.J.; et al. A Novel Plant-Based Protein Has Similar Effects Compared to Whey Protein on Body Composition, Strength, Power, and Aerobic Performance in Professional and Semi-Professional Futsal Players. Front. Nutr. 2022, 9, 934438. [Google Scholar] [CrossRef] [PubMed]
- Marfell-Jones, M.J.; Stewart, A.; De Ridder, J. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012. [Google Scholar]
- Martinez-Ferran, M.; Rafei, E.; Romero-Morales, C.; Pérez-Ruiz, M.; Lam-Meléndez, A.; Munguia-Izquierdo, D.; Pareja-Galeano, H. Optimizing Field Body Fat Percentage Assessment in Professional Soccer Players. Appl. Sci. 2022, 12, 727. [Google Scholar] [CrossRef]
- López-Taylor, J.R.; González-Mendoza, R.G.; Gaytán-González, A.; Jiménez-Alvarado, J.A.; Villegas-Balcázar, M.; Jáuregui-Ulloa, E.E.; Torres-Naranjo, F. Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. J. Sports Med. 2018, 2018, 6843792. [Google Scholar] [CrossRef] [Green Version]
- Zemski, A.J.; Broad, E.M.; Slater, G.J. Skinfold Prediction Equations Fail to Provide an Accurate Estimate of Body Composition in Elite Rugby Union Athletes of Caucasian and Polynesian Ethnicity. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 90–99. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Petri, C.; Maldonado, R.A.; Torreno, N.; Munguía-Izquierdo, D.; Di Salvo, V.; Méndez-Villanueva, A. Body fat assessment in elite soccer players: Cross-validation of different field methods. Sci. Med. Footb. 2018, 2, 203–208. [Google Scholar] [CrossRef]
- Siri, W.E. Body Composition from Fluid Spaces and Density: Analysis of Methods. In Techniques for Measuring Body Composition; Brozek, J., Henschel, A., Eds.; National Academy of Sciences: Washington, DC, USA, 1961; pp. 223–244. [Google Scholar]
- Cohen, L.; Holliday, M. Statistics for Social Scientists: An Introductory Text with Computer Programs in Basic; Harper and Row: New York, NY, USA, 1982. [Google Scholar]
- Guo, S.S.; Chumlea, W.C.; Cockram, D.B. Use of statistical methods to estimate body composition. Am. J. Clin. Nutr. 1996, 64, 428S–435S. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Holiday, D.B.; Ballard, J.E.; McKeown, B.C. PRESS-related statistics: Regression tools for cross-validation and case diagnostics. Med. Sci. Sports Exerc. 1995, 27, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.A.; Silva, A.M.; Matias, C.N.; Magalhães, J.P.; Minderico, C.S.; Thomas, D.M.; Sardinha, L.B. Utility of novel body indices in predicting fat mass in elite athletes. Nutrition 2015, 31, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.M.; Rowe, D.A.; Misic, M.M.; Prior, B.M.; Arngrímsson, S.A. Skinfold prediction equation for athletes developed using a four-component model. Med. Sci. Sports Exerc. 2005, 37, 2006–2011. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.D.; Hannan, W.J. Prediction of fat and fat-free mass in male athletes using dual X-ray absorptiometry as the reference method. J. Sports Sci. 2000, 18, 263–274. [Google Scholar] [CrossRef]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative body fat and anthropometric prediction of body density of male athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef]
- Lohman, T.G. Skinfolds and body density and their relation to body fatness: A review. Hum. Biol. 1981, 53, 181–225. [Google Scholar] [PubMed]
- Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Durnin, J.V.; Rahaman, M.M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br. J. Nutr. 1967, 21, 681–689. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Chtourou, H.; Torres-Luque, G.; Rosemann, T.; Knechtle, B. The Relationship of Age and BMI with Physical Fitness in Futsal Players. Sports 2019, 7, 87. [Google Scholar] [CrossRef]
- Ramos-Campo, D.; Sánchez, F.; Garcia, P.; Rubio-Arias, J.; Bores Cerezal, A.; Clemente-Suárez, V.; Jimenez, F. Body Composition Features in Different Playing Position of Professional Team Indoor Players: Basketball, Handball and Futsal. Int. J. Morphol. 2014, 32, 1316–1324. [Google Scholar] [CrossRef] [Green Version]
- Eston, R.G.; Rowlands, A.V.; Charlesworth, S.; Davies, A.; Hoppitt, T. Prediction of DXA-determined whole body fat from skinfolds: Importance of including skinfolds from the thigh and calf in young, healthy men and women. Eur. J. Clin. Nutr. 2005, 59, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaquero-Cristóbal, R.; Albaladejo-Saura, M.; Luna-Badachi, A.E.; Esparza-Ros, F. Differences in Fat Mass Estimation Formulas in Physically Active Adult Population and Relationship with Sums of Skinfolds. Int. J. Environ. Res. Public Health 2020, 17, 7777. [Google Scholar] [CrossRef] [PubMed]
- Galy, O.; Zongo, P.; Chamari, K.; Chaouachi, A.; Michalak, E.; Dellal, A.; Castagna, C.; Hue, O. Anthropometric and physiological characteristics of Melanesian futsal players: A first approach to talent identification in Oceania. Biol. Sport 2015, 32, 135–141. [Google Scholar] [CrossRef]
- Avelar, A.; Santos, K.; Cyrino, E.; Carvalho, F.; Ritti-Dias, R.; Altimari, L.; Gobbo, L. Anthropometric and motor performance profile of elite futsal athletes. Rev. Bras. Cineantropometria Desempenho Hum. 2008, 10, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Matias, C.N.; Campa, F.; Santos, D.A.; Lukaski, H.C.; Sardinha, L.B.; Silva, A.M. Fat-free Mass BIA Predictive Equation for Athletes Using a 4-Compartment Model. Int. J. Sports Med. 2021, 42, 27–32. [Google Scholar] [CrossRef]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference values for body composition and anthropometric measurements in athletes. PLoS ONE 2014, 9, e97846. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
Variables | Total Sample | Range |
---|---|---|
Anthropometry: | ||
Age | 23 [20–30] | 18–37 |
Body mass (kg) | 72.8 ± 1.0 | 55.7–99.1 |
Stature (cm) | 176.0 ± 0.8 | 164.0–192.0 |
BMI (kg/m2) | 23.5 ± 0.2 | 19.1–29.5 |
Triceps (mm) | 8.2 ± 0.3 | 3.7–17.0 |
Subscapular (mm) | 9.8 ± 0.3 | 6.0–18.0 |
Bicipital (mm) | 4.0 ± 0.2 | 2.3–10.0 |
Iliac crest (mm) | 11.7 ± 0.6 | 4.0–27.5 |
Supraspinale (mm) | 9.1 ± 0.5 | 3.8–23.0 |
Abdominal (mm) | 13.1 ± 0.7 | 5.9–29.0 |
Front thigh (mm) | 11.3 ± 0.5 | 4.8–25.0 |
Medial calf (mm) | 5.8 ± 0.3 | 2.5–15.0 |
Sum of 3SKF (mm) | 32.6 ± 1.4 | 15.7–68.0 |
Sum of 4SKF (mm) | 44.3 ± 1.9 | 22.5–95.5 |
Sum of 8SKF (mm) | 73.0 ± 2.9 | 40.1–147.0 |
Arm-girth relaxed (cm) | 29.9 ± 0.2 | 25.0–35.0 |
Arm-girth flexed and tensed (cm) | 32.5 ± 0.2 | 28.5–37.1 |
Waist girth (cm) | 78.2 ± 0.5 | 67.4–92.3 |
Gluteal girth (cm) | 95.7 ± 0.5 | 84.5–109.3 |
Calf girth (cm) | 37.1 ± 0.3 | 32.1–44.4 |
DXA | ||
Bone Mineral Content (kg) | 3.2 ± 0.1 | 2.4–4.5 |
Fat-Free Mass (kg) | 60.0 ± 0.7 | 45.6–73.8 |
Lean Soft Tissue (kg) | 56.8 ± 0.7 | 43.2–70.1 |
Fat Mass (kg) | 11.4 ± 0.4 | 6.3–25.0 |
Fat Mass (%) | 15.8 ± 0.4 | 10.5–25.6 |
Visceral Adipose Tissue (cm2) | 54.5 ± 1.6 | 29.7–105.8 |
Author (Year) | Sample (Country) | FM% | Regression Analysis | CCC Analysis | Agreement Analysis | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | R2 | SEE (%) | CCC | ρ | Cb | Bias | 95% LoA | Trend | ||
Present study | 78 M, high-level futsal players (PT) | 15.8 ± 3.2 | - | - | - | - | - | - | - | - |
Athlete-specific equations | ||||||||||
Suarez-Arrones (2018) [19] | 18 M, international elite football players (IT) | 16.8 ± 3.5 * | 0.75 | 1.61 | 0.83 | 0.8672 | 0.9516 | 1.027 | −2.407; 4.461 | r = 0.164 (p = 0.153) |
Zemski, Caucasian (2018) [18] | 26 M, elite rugby union players (AUS) | 12.6 ± 2.7 * | 0.60 | 2.05 | 0.48 | 0.7754 | 0.6244 | −3.161 | −7.164; 0.843 | r = −0.278 (p = 0.014) |
Reilly (2009) [5] | 45 M, professional football players (UK) | 10.9 ± 2.1 * | 0.76 | 1.59 | 0.30 | 0.8718 | 0.3444 | −4.930 | −8.311; −1.549 | r = −0.665 (p < 0.001) |
Evans, 3SKF (2005) [27] | 78 M, collegiate athletes (US) | 10.2 ± 3.2 * | 0.70 | 1.78 | 0.33 | 0.8349 | 0.3980 | −5.560 | −9.186; −1.935 | r = −0.003 (p = 0.980) |
Stewart (2000) [28] | 82 M, local and international-level athletes (UK) | 10.0 ± 4.5 * | 0.75 | 1.63 | 0.39 | 0.8635 | 0.4465 | −5.835 | −10.520; −1.149 | r = 0.569 (p < 0.001) |
Withers (1987) 1 [29] | 207 M, elite athletes from 18 sports (AUS) | 10.8 ± 3.8 * | 0.72 | 1.70 | 0.42 | 0.8508 | 0.4882 | −4.991 | −8.888; −1.094 | r = 0.294 (p = 0.009) |
Generalised equations | ||||||||||
Lohman (1981) 1 [30] | 149 M, adults from a combination of studies (US) | 7.5 ± 1.1 * | 0.63 | 1.96 | 0.07 | 0.7964 | 0.0877 | −8.249 | −13.030; −3.467 | r = −0.907 (p < 0.001) |
Durnin & W. (1974) 1 [31] | 92 M, 20–29 years old, various BMI (UK) | 13.6 ± 3.6 * | 0.71 | 1.74 | 0.69 | 0.8447 | 0.8219 | −2.201 | −6.031; 1.629 | r = 0.224 (p = 0.049) |
Durnin & R. (1967) 1 [32] | 60 M, young adults (UK) | 14.5 ± 3.7 * | 0.71 | 1.74 | 0.78 | 0.8447 | 0.9265 | −1.287 | −5.131; 2.557 | r = 0.231 (p = 0.042) |
Skinfolds | DXA-Derived FM% | |
---|---|---|
r | p-Value (2-Tailed) | |
Triceps (mm) | 0.729 | <0.001 |
Subscapular (mm) | 0.655 | <0.001 |
Bicipital (mm) | 0.600 | <0.001 |
Iliac crest (mm) | 0.847 | <0.001 |
Supraspinale (mm) | 0.729 | <0.001 |
Abdominal (mm) | 0.895 | <0.001 |
Front thigh (mm) | 0.708 | <0.001 |
Medial calf (mm) | 0.630 | <0.001 |
Prediction Models | Unstandardised β | p-Value | R2 | SEE | PRESS R2 | PRESS SEE |
---|---|---|---|---|---|---|
Σ3SKF Equation | ||||||
(Intercept) | −5.007 | 0.157 | 0.81 | 1.46 | 0.81 | 1.74 |
Σ3SKF | 0.195 | <0.001 | ||||
Waist girth | 0.185 | <0.001 | ||||
Σ4SKF Equation 1 | ||||||
(Intercept) | −0.620 | 0.851 | 0.85 | 1.32 | 0.84 | 1.62 |
Σ4SKF | 0.159 | <0.001 | ||||
Waist girth | 0.120 | 0.011 | ||||
Σ8SKF Equation | ||||||
(Intercept) | −4.486 | 0.225 | 0.80 | 1.51 | 0.80 | 1.80 |
Σ8SKF | 0.092 | <0.001 | ||||
Waist girth | 0.174 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giro, R.; Matias, C.N.; Campa, F.; Santos, D.A.; Cavaca, M.L.; Duque, P.; Oliveira, M.; Matos, N.; Vicente, F.; Pereira, P.; et al. Development and Validation of an Anthropometric Equation to Predict Fat Mass Percentage in Professional and Semi-Professional Male Futsal Players. Nutrients 2022, 14, 4514. https://doi.org/10.3390/nu14214514
Giro R, Matias CN, Campa F, Santos DA, Cavaca ML, Duque P, Oliveira M, Matos N, Vicente F, Pereira P, et al. Development and Validation of an Anthropometric Equation to Predict Fat Mass Percentage in Professional and Semi-Professional Male Futsal Players. Nutrients. 2022; 14(21):4514. https://doi.org/10.3390/nu14214514
Chicago/Turabian StyleGiro, Rita, Catarina N. Matias, Francesco Campa, Diana A. Santos, Margarida L. Cavaca, Pedro Duque, Marco Oliveira, Nuno Matos, Filipa Vicente, Paula Pereira, and et al. 2022. "Development and Validation of an Anthropometric Equation to Predict Fat Mass Percentage in Professional and Semi-Professional Male Futsal Players" Nutrients 14, no. 21: 4514. https://doi.org/10.3390/nu14214514
APA StyleGiro, R., Matias, C. N., Campa, F., Santos, D. A., Cavaca, M. L., Duque, P., Oliveira, M., Matos, N., Vicente, F., Pereira, P., Santos, H. O., Tinsley, G. M., & Teixeira, F. J. (2022). Development and Validation of an Anthropometric Equation to Predict Fat Mass Percentage in Professional and Semi-Professional Male Futsal Players. Nutrients, 14(21), 4514. https://doi.org/10.3390/nu14214514