ATP-Binding Cassette Transporter Family C Protein 10 Participates in the Synthesis and Efflux of Hexosylceramides in Liver Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mice
2.3. Quantification of Lipids
2.4. Identification of Proteins Involved in HexCer Transport and Synthesis
2.5. Dose Response Effect of siABCC10 on HexCer Export and Synthesis
2.6. HexCer Egress and Synthesis
2.7. Cell-Free GCS Synthesis Assay
2.8. Statistics
3. Results
3.1. Identification of ABCC10 as a HexCer Transporter
3.2. Dose–Response Effect of siABCC10 on HexCer Efflux and Synthesis
3.3. siABCC10 Decreases HexCer Synthesis in Hepatoma Cells
3.4. ABCC10 Deletion Decreases Hepatic HexCer Levels without Affecting Glucosylceramide Synthase Activity in Liver Homogenates
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimabukuro, M.; Zhou, Y.T.; Levi, M.; Unger, R.H. Fatty acid-induced beta cell apoptosis: A link between obesity and diabetes. Proc. Natl. Acad. Sci. USA 1998, 95, 2498–2502. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Bielawski, J.; Samad, F.; Merrill, A.H., Jr.; Cowart, L.A. Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity. J. Lipid Res. 2009, 50, 1852–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Ross, J.; Geng, T.; Brice, S.E.; Cowart, L.A. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: Implications for insulin resistance. J. Biol. Chem. 2011, 286, 16596–16605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: From synthesis to breakdown. Adv. Exp. Med. Biol 2010, 688, 1–23. [Google Scholar] [PubMed] [Green Version]
- Lucki, N.C.; Sewer, M.B. Nuclear sphingolipid metabolism. Annu. Rev. Physiol. 2012, 74, 131–151. [Google Scholar] [CrossRef] [Green Version]
- Bikman, B.T.; Summers, S.A. Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Investig. 2011, 121, 4222–4230. [Google Scholar] [CrossRef] [Green Version]
- Morad, S.A.; Cabot, M.C. Ceramide-orchestrated signalling in cancer cells. Nat. Rev. Cancer 2013, 13, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Hla, T.; Dannenberg, A.J. Sphingolipid signaling in metabolic disorders. Cell Metab. 2012, 16, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Sandhoff, R.; Sandhoff, K. Emerging concepts of ganglioside metabolism. FEBS Lett. 2018, 592, 3835–3864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, Y.; Kohyama-Koganeya, A.; Hirabayashi, Y. New insights on glucosylated lipids: Metabolism and functions. Biochim. Biophys. Acta 2013, 1831, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Bedja, D.; Mishra, S.; Amuzie, C.; Avolio, A.; Kass, D.A.; Berkowitz, D.; Renehan, M. Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet. Circulation 2014, 129, 2403–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Futerman, A.H.; Stieger, B.; Hubbard, A.L.; Pagano, R.E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J. Biol. Chem. 1990, 265, 8650–8657. [Google Scholar] [CrossRef]
- Ichikawa, S.; Sakiyama, H.; Suzuki, G.; Hidari, K.I.; Hirabayashi, Y. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc. Natl. Acad. Sci. USA 1996, 93, 4638–4643. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, S.; Hirabayashi, Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 1998, 8, 198–202. [Google Scholar] [CrossRef]
- Abe, A.; Radin, N.S.; Shayman, J.A. Induction of glucosylceramide synthase by synthase inhibitors and ceramide. Biochim Biophys. Acta 1996, 1299, 333–341. [Google Scholar] [CrossRef]
- Lannert, H.; Bünning, G.; Jeckel, D.; Wieland, F.T. Lactosylceramide is synthesized in the lumen of the Golgi apparatus. FEBS Lett. 1994, 342, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Burger, K.N.; van der Bijl, P.; van Meer, G. Topology of sphingolipid galactosyltransferases in ER and Golgi: Transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J. Cell Biol. 1996, 133, 15–28. [Google Scholar] [CrossRef]
- Budani, M.; Auray-Blais, C.; Lingwood, C. ATP-binding cassette transporters mediate differential biosynthesis of glycosphingolipid species. J. Lipid Res. 2021, 62, 100128. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Qu, F.; Zheng, S.J.; Ren, F.; Wu, H.L.; Liu, M.; Ren, J.Y.; Chen, Y.; Duan, Z.P.; Zhang, J.L. Plasma sphingolipids: Potential biomarkers for severe hepatic fibrosis in chronic hepatitis C. Mol. Med. Rep. 2015, 12, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Checa, A.; Khademi, M.; Sar, D.G.; Haeggstrom, J.Z.; Lundberg, J.O.; Piehl, F.; Olsson, T.; Wheelock, C.E. Hexosylceramides as intrathecal markers of worsening disability in multiple sclerosis. Mult. Scler. 2015, 21, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Maekawa, K.; Ishikawa, M.; Senoo, Y.; Urata, M.; Murayama, M.; Nakatsu, N.; Yamada, H.; Saito, Y. Glucosylceramide and lysophosphatidylcholines as potential blood biomarkers for drug-induced hepatic phospholipidosis. Toxicol. Sci. 2014, 141, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dassa, E.; Bouige, P. The ABC of ABCS: A phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol. 2001, 152, 211–229. [Google Scholar] [CrossRef]
- Kimura, Y.; Morita, S.Y.; Matsuo, M.; Ueda, K. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci. 2007, 98, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Sharom, F.J. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics 2008, 9, 105–127. [Google Scholar] [CrossRef] [PubMed]
- Raggers, R.J.; van Helvoort, A.; Evers, R.; van Meer, G. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J. Cell Sci. 1999, 112, 415–422. [Google Scholar] [CrossRef]
- Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Cuchel, M.; Tarugi, P.; Hegele, R.A.; Davidson, N.O.; Rader, D.J.; Klein, R.L.; Hussain, M.M. Microsomal Triglyceride Transfer Protein Transfers and Determines Plasma Concentrations of Ceramide and Sphingomyelin but Not Glycosylceramide. J. Biol. Chem. 2015, 290, 25863–25875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopper-Borge, E.; Chen, Z.S.; Shchaveleva, I.; Belinsky, M.G.; Kruh, G.D. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): Resistance to docetaxel. Cancer Res. 2004, 64, 4927–4930. [Google Scholar] [CrossRef] [Green Version]
- Hopper-Borge, E.A.; Churchill, T.; Paulose, C.; Nicolas, E.; Jacobs, J.D.; Ngo, O.; Kuang, Y.; Grinberg, A.; Westphal, H.; Chen, Z.S.; et al. Contribution of Abcc10 (Mrp7) to in vivo paclitaxel resistance as assessed in Abcc10(-/-) mice. Cancer Res. 2011, 71, 3649–3657. [Google Scholar] [CrossRef]
- Chen, Z.S.; Hopper-Borge, E.; Belinsky, M.G.; Shchaveleva, I.; Kotova, E.; Kruh, G.D. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol. Pharmacol. 2003, 63, 351–358. [Google Scholar] [CrossRef]
- Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Cuchel, M.; Rader, D.J.; Hussain, M.M. ATP binding cassette family A protein 1 determines hexosylceramide and sphingomyelin levels in human and mouse plasma. J. Lipid Res. 2018, 59, 2084–2097. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Suarez, M.D.; Yadav, P.K.; Walsh, M.T.; Li, Y.; Wu, Y.; Huang, Z.; James, A.W.; Escobar, V.; Mokbe, A.; et al. ATP-binding cassette protein ABCA7 deficiency impairs sphingomyelin synthesis, cognitive discrimination, and synaptic plasticity in the entorhinal cortex. J. Biol. Chem. 2022, 298, 102411. [Google Scholar] [CrossRef]
- BLIGH, E.G.; DYER, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Jeckel, D.; Karrenbauer, A.; Burger, K.N.; van Meer, G.; Wieland, F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J. Cell Biol. 1992, 117, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futerman, A.H.; Pagano, R.E. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem. J. 1991, 280, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruh, G.D.; Guo, Y.; Hopper-Borge, E.; Belinsky, M.G.; Chen, Z.S. ABCC10, ABCC11, and ABCC12. Pflügers Arch. Eur. J. Physiol. 2007, 453, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayanagi, S.; Kataoka, T.; Ohara, O.; Oishi, M.; Kuo, M.T.; Ishikawa, T. Human ATP-binding cassette transporter ABCC10: Expression profile and p53-dependent upregulation. J. Exp. Ther. Oncol. 2004, 4, 239–246. [Google Scholar]
- Bleasby, K.; Castle, J.C.; Roberts, C.J.; Cheng, C.; Bailey, W.J.; Sina, J.F.; Kulkarni, A.V.; Hafey, M.J.; Evers, R.; Johnson, J.M.; et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: A resource for investigations into drug disposition. Xenobiotica 2006, 36, 963–988. [Google Scholar] [CrossRef]
- Zhang, H.; Kathawala, R.J.; Wang, Y.J.; Zhang, Y.K.; Patel, A.; Shukla, S.; Robey, R.W.; Talele, T.T.; Ashby, C.R., Jr.; Ambudkar, S.V.; et al. Linsitinib (OSI-906) antagonizes ATP-binding cassette subfamily G member 2 and subfamily C member 10-mediated drug resistance. Int. J. Biochem. Cell Biol. 2014, 51, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Q.; Wang, B.; Teng, Q.X.; Lei, Z.N.; Li, Y.D.; Shi, Z.; Ma, L.Y.; Liu, H.M.; Liu, Z.; Chen, Z.S. CMP25, a synthetic new agent, targets multidrug resistance-associated protein 7 (MRP7/ABCC10). Biochem. Pharmacol. 2021, 190, 114652. [Google Scholar] [CrossRef] [PubMed]
- Borel, F.; Han, R.; Visser, A.; Petry, H.; van Deventer, S.J.; Jansen, P.L.; Konstantinova, P.; Reseau Centre de Ressources Biologiques; Foie, F. Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs. Hepatology 2012, 55, 821–832. [Google Scholar] [CrossRef]
- Oerlemans, R.; Blits, M.; Dijkmans, B.A.; van der Heijden, J.W.; Lems, W.F.; Scheffer, G.L.; van de Ven, R.; Peters, G.J.; Assaraf, Y.G.; Scheper, R.J.; et al. Expression profiling of ABC transporters in peripheral blood lymphocytes and monocyte-derived macrophages of rheumatoid arthritis patients. J. Mol. Clin. Med. 2020, 3, 47–60. [Google Scholar] [CrossRef]
- Kotlyarov, S.; Kotlyarova, A. Analysis of ABC Transporter Gene Expression in Atherosclerosis. Cardiogenetics 2021, 11, 204–218. [Google Scholar] [CrossRef]
- Malofeeva, E.V.; Domanitskaya, N.; Gudima, M.; Hopper-Borge, E.A. Modulation of the ATPase and transport activities of broad-acting multidrug resistance factor ABCC10 (MRP7). Cancer Res. 2012, 72, 6457–6467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, G.; Langmann, T. Structure, function and regulation of the ABC1 gene product. Curr. Opin. Lipidol. 2001, 12, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.A.; Knopp, R.H.; Oram, J.F. Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease. J. Clin. Investig. 1995, 96, 78–87. [Google Scholar] [CrossRef] [PubMed]
Species | Plasma (nmol/dL) | Liver (pmol/mg Protein) | ||||
---|---|---|---|---|---|---|
Abcc10+/+ | Abcc10−/− | p Value | Abcc10+/+ | Abcc10−/− | p Value | |
Sphingomyelin | ||||||
C14-SM | 15.4 ± 1.7 | 16.4 ± 1.3 | 0.386 | 0.87 ± 0.43 | 0.63 ± 0.36 | 0.425 |
C16-SM | 2799 ± 253 | 2579 ± 362 | 0.358 | 1120 ± 143 | 1015 ± 156 | 0.359 |
C18_1-SM | 76.9 ± 9.5 | 61.4 ± 12.3 | 0.093 | 6.42 ± 0.77 | 6.12 ± 0.55 | 0.549 |
C18-SM | 174 ± 23 | 148 ± 13 | 0.097 | 157 ± 21 | 130 ± 17 | 0.093 |
C20_1-SM | 22.4 ± 0.7 | 23.3 ± 6.0 | 0.776 | 4.97 ± 1.06 | 7.13 ± 0.85 | 0.019 * |
C20-SM | 76.6 ± 9.4 | 83.9 ± 13.0 | 0.398 | 153 ± 11 | 168 ± 18 | 0.205 |
C22_1-SM | 238 ± 24 | 266 ± 59 | 0.413 | 109 ± 22 | 163 ± 20 | 0.011 * |
C22-SM | 769 ± 148 | 842 ± 156 | 0.523 | 1406 ± 178 | 1620 ± 208 | 0.169 |
C24_1-SM | 1881 ± 281 | 1388 ± 189 | 0.027 * | 1112 ± 189 | 1284 ± 152 | 0.206 |
C24-SM | 664 ± 78 | 575 ± 88 | 0.181 | 1124 ± 156 | 1088 ± 123 | 0.730 |
C26_1-SM | 2.30 ± 0.12 | 1.93 ± 0.45 | 0.163 | 2.72 ± 0.46 | 3.21 ± 0.25 | 0.110 |
C26-SM | 2.72 ± 0.33 | 2.50 ± 0.15 | 0.270 | 3.43 ± 0.40 | 3.67 ± 0.38 | 0.418 |
Hexosylceramides | ||||||
C14-HexCer | 0.36 ± 0.11 | 0.28 ± 0.04 | 0.221 | 0.17 ± 0.03 | 0.13 ± 0.01 | 0.045 * |
C16-HexCer | 127 ± 29 | 105 ± 17 | 0.239 | 90.1 ± 5.9 | 57.9 ± 7.8 | 0.001 ** |
C18_1-HexCer | 0.37 ± 0.09 | 0.24 ± 0.01 | 0.028 * | BQL | 0.10 ± 0.07 | BQL |
C18-HexCer | 1.59 ± 0.22 | 1.30 ± 0.06 | 0.044 * | 0.85 ± 0.09 | 0.60 ± 0.04 | 0.002 ** |
C20_1-HexCer | BQL | BQL | BQL | BQL | BQL | BQL |
C20-HexCer | 4.26 ± 0.21 | 4.77 ± 0.34 | 0.043 * | 3.33 ± 0.27 | 2.64 ± 0.12 | 0.003 ** |
C22_1-HexCer | 3.40 ± 0.58 | 3.32 ± 0.21 | 0.804 | 1.88 ± 0.32 | 1.51 ± 0.12 | 0.074 |
C22-HexCer | 134 ± 15 | 141 ± 22 | 0.618 | 165 ± 45 | 113 ± 7 | 0.063 |
C24_1-HexCer | 192 ± 29 | 170 ± 26 | 0.302 | 130 ± 35 | 67 ± 3 | 0.012 * |
C24-HexCer | 133 ± 62 | 110 ± 21 | 0.509 | 128 ± 36 | 74 ± 5 | 0.025 * |
C26_1-HexCer | 2.00 ± 1.09 | 1.95 ± 0.34 | 0.933 | 1.33 ± 0.32 | 0.97 ± 0.01 | 0.066 |
C26-HexCer | 2.11 ± 0.35 | 2.42 ± 0.51 | 0.355 | 1.08 ± 0.15 | 0.83 ± 0.09 | 0.029 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, J.; Walsh, M.T.; Hussain, M.M. ATP-Binding Cassette Transporter Family C Protein 10 Participates in the Synthesis and Efflux of Hexosylceramides in Liver Cells. Nutrients 2022, 14, 4401. https://doi.org/10.3390/nu14204401
Iqbal J, Walsh MT, Hussain MM. ATP-Binding Cassette Transporter Family C Protein 10 Participates in the Synthesis and Efflux of Hexosylceramides in Liver Cells. Nutrients. 2022; 14(20):4401. https://doi.org/10.3390/nu14204401
Chicago/Turabian StyleIqbal, Jahangir, Meghan T. Walsh, and M. Mahmood Hussain. 2022. "ATP-Binding Cassette Transporter Family C Protein 10 Participates in the Synthesis and Efflux of Hexosylceramides in Liver Cells" Nutrients 14, no. 20: 4401. https://doi.org/10.3390/nu14204401
APA StyleIqbal, J., Walsh, M. T., & Hussain, M. M. (2022). ATP-Binding Cassette Transporter Family C Protein 10 Participates in the Synthesis and Efflux of Hexosylceramides in Liver Cells. Nutrients, 14(20), 4401. https://doi.org/10.3390/nu14204401