Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = glucosylceramide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 625 KiB  
Case Report
Increased Lyso-Gb1 Levels in an Obese Splenectomized Gaucher Disease Type 1 Patient Treated with Eliglustat: Unacknowledged Poor Compliance or Underlying Factors
by Evelina Maines, Roberto Franceschi, Giacomo Luppi, Giacomo Marchi, Giovanni Piccoli, Nicola Vitturi, Massimo Soffiati, Annalisa Campomori and Silvana Anna Maria Urru
Metabolites 2025, 15(7), 427; https://doi.org/10.3390/metabo15070427 - 23 Jun 2025
Viewed by 402
Abstract
Eliglustat (Cerdelga®) is a potent and specific inhibitor of the enzyme glucosylceramide synthase and serves as a substrate reduction therapy for adult patients with Gaucher disease type 1 (GD1). It prevents the accumulation of several lipids, including glucosylsphingosine (also known as [...] Read more.
Eliglustat (Cerdelga®) is a potent and specific inhibitor of the enzyme glucosylceramide synthase and serves as a substrate reduction therapy for adult patients with Gaucher disease type 1 (GD1). It prevents the accumulation of several lipids, including glucosylsphingosine (also known as Lyso-Gb1). In addition to its role in diagnostics, Lyso-Gb1 has been proven to be a reliable biomarker for assessing disease severity and monitoring treatment efficacy. We present the case of an obese, splenectomized GD1 patient on long-term enzyme replacement therapy (ERT) who reported worsening fatigue and showed a progressive increase in Lyso-Gb1 levels after switching treatment from ERT to eliglustat. We provide a discussion of the potential clinical factors contributing to this outcome. As seen with ERT, Lyso-Gb1 levels during eliglustat treatment appear to respond earlier than other biochemical and clinical parameters. An increase in Lyso-Gb1 may signal early compromised clinical efficacy of the treatment. Data on biochemical and clinical outcomes in splenectomized or obese patients treated with eliglustat are limited, and the role of specific genotypes requires further clarification. The variability in responses to eliglustat highlights the complexity of GD and underscores the need for personalized approaches to treatment and monitoring. Full article
Show Figures

Figure 1

21 pages, 2768 KiB  
Article
Glucosylceramide Synthase, a Key Enzyme in Sphingolipid Metabolism, Regulates Expression of Genes Accounting for Cancer Drug Resistance
by Md Saqline Mostaq, Lin Kang, Gauri A. Patwardhan, Yunfeng Zhao, Runhua Shi and Yong-Yu Liu
Int. J. Mol. Sci. 2025, 26(11), 5112; https://doi.org/10.3390/ijms26115112 - 26 May 2025
Viewed by 709
Abstract
Emergent cancer drug resistance and further metastasis can mainly be attributed to altered expression levels and functional activities of multiple genes of cancer cells under chemotherapy. In response to challenge with anticancer drugs, enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) confers drug [...] Read more.
Emergent cancer drug resistance and further metastasis can mainly be attributed to altered expression levels and functional activities of multiple genes of cancer cells under chemotherapy. In response to challenge with anticancer drugs, enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) confers drug resistance and enrichment with cancer stem cells. p53 mutations, which gain function in tumor progression, are prevalently extant in ovarian cancers. Via integrated gene expression assessments, we characterized GCS-responsive genes in ovarian cancer cells treated with dactinomycin. NCI/ADR-RES cells dominantly expressed a p53 mutant (7 aa deleted in exon-5) and displayed anti-apoptosis; however, silencing GCS expression rendered these cells sensitive to dactinomycin-induced apoptosis. Microarray analyses of NCI/ADR-RES and its GCS transfected sublines found that elevated GCS expression or ceramide glycosylation was associated with altered expression of 41 genes, notably coding for ABCB1, FGF2, ALDH1A3, apolipoprotein E, laminin 2, chemokine ligands, and IL6, with cellular resistance to induced apoptosis and enrichment with cancer stem cells, promoting cancer progression. These findings were further corroborated through integrated genomic analyses of ovarian cancer from The Cancer Genome Atlas (TCGA) and cancer resistance to platinum-based chemotherapy. Altogether, our present study indicates that altered ceramide glycosylation can modulate expression of these GCS-responsive genes and alter cancer cell attributes under chemotherapy. Full article
(This article belongs to the Special Issue Ceramides and Ceramide Kinase)
Show Figures

Figure 1

27 pages, 6414 KiB  
Article
Allosteric Modulation of GCase Enhances Lysosomal Activity and Reduces ER Stress in GCase-Related Disorders
by Ilaria Fregno, Natalia Pérez-Carmona, Mikhail Rudinskiy, Tatiana Soldà, Timothy J. Bergmann, Ana Ruano, Aida Delgado, Elena Cubero, Manolo Bellotto, Ana María García-Collazo and Maurizio Molinari
Int. J. Mol. Sci. 2025, 26(9), 4392; https://doi.org/10.3390/ijms26094392 - 6 May 2025
Viewed by 1349
Abstract
Variants in the GBA1 gene, encoding the lysosomal enzyme glucosylceramidase beta 1 (GCase), are linked to Parkinson’s disease (PD) and Gaucher disease (GD). Heterozygous variants increase PD risk, while homozygous variants lead to GD, a lysosomal storage disorder. Some GBA1 variants impair GCase [...] Read more.
Variants in the GBA1 gene, encoding the lysosomal enzyme glucosylceramidase beta 1 (GCase), are linked to Parkinson’s disease (PD) and Gaucher disease (GD). Heterozygous variants increase PD risk, while homozygous variants lead to GD, a lysosomal storage disorder. Some GBA1 variants impair GCase maturation in the endoplasmic reticulum, blocking lysosomal transport and causing glucosylceramide accumulation, which disrupts lysosomal function. This study explores therapeutic strategies to address these dysfunctions. Using Site-directed Enzyme Enhancement Therapy (SEE-Tx®), two structurally targeted allosteric regulators (STARs), GT-02287 and GT-02329, were developed and tested in GD patient-derived fibroblasts with relevant GCase variants. Treatment with GT-02287 and GT-02329 improved the folding of mutant GCase, protected the GCaseLeu444Pro variant from degradation, and facilitated the delivery of active GCase to lysosomes. This enhanced lysosomal function and reduced cellular stress. These findings validate the STARs’ mechanism of action and highlight their therapeutic potential for GCase-related disorders, including GD, PD, and Dementia with Lewy Bodies. Full article
(This article belongs to the Special Issue Molecular Research of Dystonia and Parkinson’s Disease)
Show Figures

Figure 1

19 pages, 7223 KiB  
Article
Identification of Novel Mutations in Patients Affected by Gaucher Disease
by Monia Anania, Miriam Giacomarra, Annalisa D’Errico, Massimo Marano, Immacolata Tartaglione, Marco Spada, Veronica Pagliardini, Maria Rosaria De Paolis, Gaetano Giuffrida, Giulia Duro, Tiziana Di Chiara, Daniele Francofonte, Emanuela Maria Marsana, Paolo Colomba, Giovanni Duro and Carmela Zizzo
Int. J. Mol. Sci. 2025, 26(8), 3918; https://doi.org/10.3390/ijms26083918 - 21 Apr 2025
Viewed by 655
Abstract
Gaucher disease is an autosomal recessive disorder caused by dysfunction of the enzyme glucocerebrosidase. The enzyme deficiency is mainly due to mutations in the GBA1 gene, and it is responsible for the accumulation of glucosylceramide within the lysosomes of monocyte macrophage-derived cells; causing [...] Read more.
Gaucher disease is an autosomal recessive disorder caused by dysfunction of the enzyme glucocerebrosidase. The enzyme deficiency is mainly due to mutations in the GBA1 gene, and it is responsible for the accumulation of glucosylceramide within the lysosomes of monocyte macrophage-derived cells; causing the associated symptomatology. In this paper, we describe six new mutations identified in the GBA1 gene, which, in combination with other mutations already documented, lead to absent or reduced glucocerebrosidase activity, resulting in pathological accumulation of the specific substrate and the clinical manifestations associated with Gaucher disease. We have identified three mutations (c.1578_1581dup, c.1308dup, and Y492X) that determine the formation of a premature stop codon in the translation process and three missense mutations (C342F, M280L, and Q247R) that lead to amino acid changes in proteins, resulting in decreased glucocerebrosidase activity. These mutations were never observed in our group of healthy control subjects > 1500 individuals. The patients examined had several clinical manifestations, which included hepatosplenomegaly and bone and hematologic involvement; considering the absence of enzyme activity, this suggests that the new mutations described here are associated with type I Gaucher disease. The identification of new mutations in patients with symptoms referable to Gaucher disease increases the molecular knowledge related to the GBA1 gene and offers to clinicians significant support for the accurate diagnosis of the pathology. Full article
Show Figures

Figure 1

16 pages, 1293 KiB  
Article
Comprehensive Characterization of Serum Lipids of Dairy Cows: Effects of Negative Energy Balance on Lipid Remodelling
by Zhiqian Liu, Wenjiao Wang, Joanne E. Hemsworth, Coralie M. Reich, Carolyn R. Bath, Monique J. Berkhout, Muhammad S. Tahir, Vilnis Ezernieks, Leah C. Marett, Amanda J. Chamberlain, Mike E. Goddard and Simone J. Rochfort
Metabolites 2025, 15(4), 274; https://doi.org/10.3390/metabo15040274 - 15 Apr 2025
Viewed by 617
Abstract
Background: The presence and concentration of lipids in serum of dairy cows have significant implications for both animal health and productivity and are potential biomarkers for several common diseases. However, information on serum lipid composition is rather fragmented, and lipid remodelling during the [...] Read more.
Background: The presence and concentration of lipids in serum of dairy cows have significant implications for both animal health and productivity and are potential biomarkers for several common diseases. However, information on serum lipid composition is rather fragmented, and lipid remodelling during the transition period is only partially understood. Methods: Using a combination of reversed-phase liquid chromatography-mass spectrometry (RP-LC-MS), hydrophilic interaction-mass spectrometry (HILIC-MS), and lipid annotation software, we performed a comprehensive identification and quantification of serum of dairy cows in pasture-based Holstein-Friesian cows. The lipid remodelling induced by negative energy balance was investigated by comparing the levels of all identified lipids between the fresh lactation (5–14 days in milk, DIM) and full lactation (65–80 DIM) stages. Results: We identified 535 lipid molecular species belonging to 19 classes. The most abundant lipid class was cholesteryl ester (CE), followed by phosphatidylcholine (PC), sphingomyelin (SM), and free fatty acid (FFA), whereas the least abundant lipids included phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylglycerol (PG), acylcarnitine (AcylCar), ceramide (Cer), glucosylceramide (GluCer), and lactosylceramide (LacCer). Conclusions: A remarkable increase in most lipids and a dramatic decrease in FFAs, AcylCar, and DHA-containing species were observed at the full lactation compared to fresh lactation stage. Several serum lipid biomarkers for detecting negative energy balance in cows were also identified. Full article
(This article belongs to the Special Issue Effects of Stress on Animal Metabolism)
Show Figures

Figure 1

16 pages, 1276 KiB  
Review
Drug Resistance: The Role of Sphingolipid Metabolism
by Assem Zhakupova, Adelina Zeinolla, Kamilya Kokabi, Shynggys Sergazy and Mohamad Aljofan
Int. J. Mol. Sci. 2025, 26(8), 3716; https://doi.org/10.3390/ijms26083716 - 15 Apr 2025
Cited by 1 | Viewed by 957
Abstract
A significant challenge in cancer treatment is the rising problem of drug resistance that reduces the effectiveness of therapeutic strategies. Current knowledge shows that multiple mechanisms play a role in cancer drug resistance. Another mechanism that has gained attention is the alteration in [...] Read more.
A significant challenge in cancer treatment is the rising problem of drug resistance that reduces the effectiveness of therapeutic strategies. Current knowledge shows that multiple mechanisms play a role in cancer drug resistance. Another mechanism that has gained attention is the alteration in sphingolipid trafficking and the dysregulation of its metabolism, which was reported to cause cancer-associated drug resistance. Sphingolipids are lipids containing sphingosine and have multiple roles, ranging from lipid raft formation, apoptosis, and cell signaling to immune cell trafficking. Recent studies show that in developing cancer cells, altered or dysregulated sphingolipids are associated with drug efflux and promote the survival of cancer cells by bypassing apoptosis. Upregulated levels of the glucosylceramide synthase (GCS), an enzyme that functions in sphingolipid metabolism, lead to the upregulated ABCB1 gene that induces drug efflux from the cancer cells. These bypass mechanisms make drugs that induce apoptosis in tumor cells ineffective. By highlighting the current findings, this review aims to provide a mechanism of drug resistance caused by the dysregulation of glucosylceramide synthase, sphingosine kinase, and acid ceramidase enzymes as possible therapeutic targets to enhance the effectiveness of the currently used chemotherapeutic agents. Full article
(This article belongs to the Special Issue Cancer: Molecular Research and Novel Inflammatory Targets)
Show Figures

Figure 1

22 pages, 6244 KiB  
Article
Targeting Glucosylceramide Synthase: Innovative Drug Repurposing Strategies for Lysosomal Diseases
by Giorgia Canini, Elena Mazzinelli, Giuseppina Nocca, Wanda Lattanzi and Alessandro Arcovito
Int. J. Mol. Sci. 2025, 26(5), 2195; https://doi.org/10.3390/ijms26052195 - 28 Feb 2025
Cited by 1 | Viewed by 685
Abstract
Sphingolipidoses, a subgroup of lysosomal storage diseases (LSDs), are rare and debilitating disorders caused by defects in sphingolipid metabolism. Despite advancements in treatment, therapeutic options remain limited. Miglustat, a glucosylceramide synthase EC 2.4.1.80 (GCS) inhibitor, is one of the few available pharmacological treatments; [...] Read more.
Sphingolipidoses, a subgroup of lysosomal storage diseases (LSDs), are rare and debilitating disorders caused by defects in sphingolipid metabolism. Despite advancements in treatment, therapeutic options remain limited. Miglustat, a glucosylceramide synthase EC 2.4.1.80 (GCS) inhibitor, is one of the few available pharmacological treatments; however, it is associated with significant adverse effects that impact patients’ quality of life. Drug repurposing offers a promising strategy to identify new therapeutic agents from approved drugs, expanding treatment options for rare diseases with limited therapeutic alternatives. This study aims to identify potential alternative inhibitors of GCS through a drug-repurposing approach, using computational and experimental methods to assess their therapeutic potential for sphingolipidoses. A library of approved drugs was screened using advanced computational techniques, including molecular docking, molecular dynamics simulations, and metadynamics, to identify potential GCS inhibitors. Promising candidates were selected for further in vitro validation to evaluate their inhibitory activity and potential as therapeutic alternatives to Miglustat. Computational screening identified several potential GCS inhibitors, with Dapagliflozin emerging as the most promising candidate. Experimental validation confirmed its efficacy, revealing a complementary mechanism of action to Miglustat while potentially offering a more favorable side effect profile. This study underscores the utility of computational and experimental methodologies in drug repurposing for rare diseases. The identification of Dapagliflozin as a potential GCS inhibitor provides a foundation for further preclinical and clinical evaluation, supporting its potential application in the treatment of sphingolipidoses. Full article
Show Figures

Graphical abstract

21 pages, 5178 KiB  
Article
The Disruptions of Sphingolipid and Sterol Metabolism in the Short Fiber of Ligon-Lintless-1 Mutant Revealed Obesity Impeded Cotton Fiber Elongation and Secondary Cell Wall Deposition
by Huidan Tian, Qiaoling Wang, Xingying Yan, Hongju Zhang, Zheng Chen, Caixia Ma, Qian Meng, Fan Xu and Ming Luo
Int. J. Mol. Sci. 2025, 26(3), 1375; https://doi.org/10.3390/ijms26031375 - 6 Feb 2025
Cited by 1 | Viewed by 903
Abstract
Boosting evidence indicated lipids play important roles in plants. To explore lipid function in cotton fiber development, the lipid composition and content were detected by untargeted and targeted lipidomics. Compared with rapid elongation fibers, the lipid intensity of 16 sub-classes and 56 molecular [...] Read more.
Boosting evidence indicated lipids play important roles in plants. To explore lipid function in cotton fiber development, the lipid composition and content were detected by untargeted and targeted lipidomics. Compared with rapid elongation fibers, the lipid intensity of 16 sub-classes and 56 molecular species decreased, while only 7 sub-classes and 26 molecular species increased in the fibers at the stage of secondary cell wall deposition. Unexpectedly, at the rapid elongation stage, 20 sub-classes and 60 molecular species increased significantly, while only 5 sub-classes and 8 molecular species decreased in the ligon lintless-1 (li-1) mutant compared with its wild-type Texas Maker-1 (TM-1). Particularly, campesteryl, sitosteryl, and total steryl ester increased by 21.8-, 48.7-, and 45.5-fold in the li-1 fibers, respectively. All the molecular species of sphingosine-1-P, phytoceramide-OHFA, and glucosylceramide increased while all sphingosine, phytosphingosine, and glycosyl inositol phospho ceramides decreased in the li-1 fibers. Similarly, the different expression genes between the mutant and wild type were enriched in many pathways involved in the lipid metabolism. Furthermore, the number of lipid droplets also increased in the li-1 leaf and fiber cells when compared with the wild type. These results illuminated that fiber cell elongation being blocked in the li-1 mutant was not due to a lack of lipids, but rather lipid over-accumulation (obesity), which may result from the disruption of sphingolipid and sterol metabolism. This study provides a new perspective for further studying the regulatory mechanisms of fiber development. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

49 pages, 11153 KiB  
Review
Don’t Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies
by Alfred H. Merrill
Int. J. Mol. Sci. 2025, 26(2), 650; https://doi.org/10.3390/ijms26020650 - 14 Jan 2025
Cited by 3 | Viewed by 2522
Abstract
Sphingolipidomic mass spectrometry has provided valuable information—and surprises—about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than [...] Read more.
Sphingolipidomic mass spectrometry has provided valuable information—and surprises—about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; “ceramides” other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as “monohexosylceramides”. These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them. Full article
Show Figures

Figure 1

22 pages, 10901 KiB  
Article
Glucosylceramide Synthase Inhibition in Combination with Aripiprazole Sensitizes Hepatocellular Cancer Cells to Sorafenib and Doxorubicin
by Richard Jennemann, Martina Volz, Roberto Carlos Frias-Soler, Almut Schulze, Karsten Richter, Sylvia Kaden and Roger Sandhoff
Int. J. Mol. Sci. 2025, 26(1), 304; https://doi.org/10.3390/ijms26010304 - 31 Dec 2024
Viewed by 1307
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated [...] Read more.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth. Single and combinatorial treatments with both drugs at 5 µM concentration led to efficient cell cycle arrest, reduced expression of cyclins A and E, increased lipid storage in lysosomal compartments, accompanied by increased uptake of lysotracker, and elevated expression of the autophagy marker Lc3 II. Both drugs affected mitochondrial function, indicated by altered mitotracker uptake and impaired mitochondrial respiration. Aripiprazole in monotherapy, or even more pronounced in combination with Genz, also potentiated the effect of the cytostatic drugs sorafenib and doxorubicin on tumor cell- and tumor spheroid-growth inhibition. Targeting GCS with Genz with the parallel application of cationic amphiphilic drugs such as aripiprazole in combination with cytostatic drugs may thus represent a potent therapeutic approach in the treatment of HCC and potentially other cancer types. Full article
(This article belongs to the Special Issue Bioactive Compounds and Enzyme Inhibitors in Cancer Therapy)
Show Figures

Figure 1

9 pages, 1001 KiB  
Article
Effects of GBA1 Variants and Prenatal Exposition on the Glucosylsphingosine (Lyso-Gb1) Levels in Gaucher Disease Carriers
by Paulina Szymańska-Rożek, Patryk Lipiński, Grazina Kleinotiene, Paweł Dubiela and Anna Tylki-Szymańska
Int. J. Mol. Sci. 2024, 25(22), 12021; https://doi.org/10.3390/ijms252212021 - 8 Nov 2024
Viewed by 1456
Abstract
Gaucher disease (GD) is a lysosomal lipid storage disorder caused by β-glucocerebrosidase (encoded by GBA1 gene) activity deficiency, resulting in the accumulation of glucosylceramide (Gb1) and its deacylated metabolite glucosylsphingosine (lyso-Gb1). Lyso-Gb1 has been studied previously and proved to be a sensitive biomarker, [...] Read more.
Gaucher disease (GD) is a lysosomal lipid storage disorder caused by β-glucocerebrosidase (encoded by GBA1 gene) activity deficiency, resulting in the accumulation of glucosylceramide (Gb1) and its deacylated metabolite glucosylsphingosine (lyso-Gb1). Lyso-Gb1 has been studied previously and proved to be a sensitive biomarker, distinguishing patients with GD from carriers and healthy subjects. It was shown that its level corresponds with β-glucocerebrosidase activity, thus it remains unknown as to why carriers have slightly higher lyso-Gb1 level than healthy population. This is the first report on lyso-Gb1 levels describing representative cohort of GD carriers. Our data of 48 GD carriers, including three newborns, indicated that there are significant differences in lyso-Gb1 levels between carriers having a GD-affected mother and a healthy mother (11.53 and 8.45, respectively, p = 0.00077), and between carriers of the L483P GBA1 variant and carriers of other GBA1 pathogenic variants (9.85 and 7.03, respectively, p = 0.07). Through analysing our unique data of three newborns whose mothers are patients with GD, we also found that lyso-Gb1 is most probably transferred to the foetus via placenta. Full article
(This article belongs to the Special Issue Gaucher Disease: From Molecular Mechanisms to Treatments)
Show Figures

Figure 1

48 pages, 1853 KiB  
Review
Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target?
by Daniel Foran, Charalambos Antoniades and Ioannis Akoumianakis
Nutrients 2024, 16(19), 3296; https://doi.org/10.3390/nu16193296 - 28 Sep 2024
Cited by 5 | Viewed by 2879
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. [...] Read more.
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes. Full article
Show Figures

Figure 1

23 pages, 2667 KiB  
Article
Functional Analysis of Human GBA1 Missense Mutations in Drosophila: Insights into Gaucher Disease Pathogenesis and Phenotypic Consequences
by Aparna Kuppuramalingam, Or Cabasso and Mia Horowitz
Cells 2024, 13(19), 1619; https://doi.org/10.3390/cells13191619 - 27 Sep 2024
Cited by 2 | Viewed by 1963
Abstract
The human GBA1 gene encodes lysosomal acid β-glucocerebrosidase, whose activity is deficient in Gaucher disease (GD). In Drosophila, there are two GBA1 orthologs, Gba1a and Gba1b, and Gba1b is the bona fide GCase encoding gene. Several fly lines with different deletions [...] Read more.
The human GBA1 gene encodes lysosomal acid β-glucocerebrosidase, whose activity is deficient in Gaucher disease (GD). In Drosophila, there are two GBA1 orthologs, Gba1a and Gba1b, and Gba1b is the bona fide GCase encoding gene. Several fly lines with different deletions in the Gba1b were studied in the past. However, since most GD-associated GBA1 mutations are point mutations, we created missense mutations homologous to the two most common GD mutations: the mild N370S mutation (D415S in Drosophila) and the severe L444P mutation (L494P in Drosophila), using the CRISPR-Cas9 technology. Flies homozygous for the D415S mutation (dubbed D370S hereafter) presented low GCase activity and substrate accumulation, which led to lysosomal defects, activation of the Unfolded Protein Response (UPR), inflammation/neuroinflammation, and neurodegeneration along with earlier death compared to control flies. Surprisingly, the L494P (called L444P hereafter) flies presented higher GCase activity with fewer lysosomal defects and milder disease in comparison to that presented by the D370S homozygous flies. Treatment with ambroxol had a limited effect on all homozygous fly lines tested. Overall, our results underscore the differences between the fly and human GCase enzymes, as evidenced by the distinct phenotypic outcomes of mutations in flies compared to those observed in human GD patients. Full article
Show Figures

Figure 1

12 pages, 1282 KiB  
Article
Lipidomic Signature of Plasma and Synovial Fluid in Patients with Osteoarthritis: Putative Biomarkers Determined by UHPLC-QTOF-ESI+MS
by Stefan Iulian Stanciugelu, Jenel Marian Patrascu, Jenel Marian Patrascu, Carmen Socaciu, Andreea Iulia Socaciu, Diana Nitusca and Catalin Marian
Diagnostics 2024, 14(16), 1834; https://doi.org/10.3390/diagnostics14161834 - 22 Aug 2024
Cited by 1 | Viewed by 1322
Abstract
Background: Osteoarthritis (OA) is a prevalent joint condition causing pain and disability, especially in the elderly. Currently, OA diagnosis relies on clinical data and imaging, but recent interest in metabolomics suggests that early biochemical changes in biofluids, particularly synovial fluid (SF), could enable [...] Read more.
Background: Osteoarthritis (OA) is a prevalent joint condition causing pain and disability, especially in the elderly. Currently, OA diagnosis relies on clinical data and imaging, but recent interest in metabolomics suggests that early biochemical changes in biofluids, particularly synovial fluid (SF), could enable an earlier diagnosis and understanding of the disease. Methods: In this regard, we conducted a lipidomics study in 33 plasma and SF samples from OA patients and 20 OA-free controls to assess the diagnostic value of various lipid metabolites, using UHPLC-QTOF-ESI+MS. Results: In plasma samples, 25 metabolites had area-under-the-curve (AUC) values higher than 0.9, suggesting a very good diagnostic potential for phosphatidic acid PA (16:0/16:0), PA (34:0), phosphatidylethanolamine PE (34:2), glucosylceramide, phosphatidylcholine PC (32:1), and other metabolites while in SF 20, metabolites had AUC values higher than 0.8, the vast majority belonging to lipid metabolism as well. Conclusions: Although the results align with the previous literature, larger cohort studies are necessary to confirm the diagnostic value of the lipid metabolites. Full article
Show Figures

Figure 1

21 pages, 10664 KiB  
Article
Overexpression of the β-Subunit of Acid Ceramidase in the Epidermis of Mice Provokes Atopic Dermatitis-like Skin Symptoms
by Miho Sashikawa-Kimura, Mariko Takada, Md Razib Hossain, Hidetoshi Tsuda, Xiaonan Xie, Mayumi Komine, Mamitaro Ohtsuki and Genji Imokawa
Int. J. Mol. Sci. 2024, 25(16), 8737; https://doi.org/10.3390/ijms25168737 - 10 Aug 2024
Viewed by 1991
Abstract
We previously reported that a pathogenic abnormality in the barrier and water-holding functions of the stratum corneum (SC) in the skin of patients with atopic dermatitis (AD) is mainly attributable to significantly decreased levels of total ceramides in the SC. That decrease is [...] Read more.
We previously reported that a pathogenic abnormality in the barrier and water-holding functions of the stratum corneum (SC) in the skin of patients with atopic dermatitis (AD) is mainly attributable to significantly decreased levels of total ceramides in the SC. That decrease is mediated by the abnormal expression of a novel ceramide-reducing enzyme, sphingomyelin/glucosylceramide deacylase (SGDase), which is the β-subunit (ASAH1b) of acid ceramidase. In this study, we determined whether mice overexpressing ASAH1b in their epidermis develop AD-like skin symptoms. We generated transgenic (TG) mice overexpressing ASAH1b, regulated by the involucrin promoter, to localize its expression in the upper epidermis. After hair removal using a depilatory cream containing glycolic acid, the TG mice without any visible skin inflammation at 8 weeks of age had increased levels of ASAH1b and decreased levels of SC ceramide, with disrupted barrier functions measured by trans-epidermal water loss compared to the wild-type (WT) mice. Interestingly, enzymatic assays revealed that SGDase activity was not detectable in the skin of the TG mice compared to WT mice. Immunological staining revealed that there was an increased expression level of IL-33 in the epidermis and an accumulation of macrophages in the dermis of TG mice compared to WT mice, which are phenotypic characteristics of AD, that were exacerbated by tape-stripping of the skin. In the skin of the TG mice, the mRNA levels of IL-5, CCL11, IL-22, CXCL10, and IFNγ were significantly upregulated compared to the WT mice, and tape-stripping significantly increased the mRNA levels of IL-4, IL-33, CXCL1, CXCL12, TLR9, and CD163 compared to WT mice. These findings strongly indicate that the skin of the depilatory cream-treated TG mice exists in an atopic dry skin condition that is highly sensitive to various environmental stimuli. The sum of our results suggests that ASAH1b itself, even in the absence of its enzymatic activity, is a major etiologic factor for atopic dry skin symptoms via an unknown mechanism. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop