Intuitive Eating Behavior, Diet Quality and Metabolic Health in the Postpartum in Women with Gestational Diabetes
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patient Population
2.2. GDM Management and Patient Follow-Up
2.3. Measures
2.3.1. Baseline Demographic and Health Characteristics
2.3.2. Intuitive Eating Assessment
2.3.3. Dietary Intake, Diet Quality (AHEI) and Dietary Adherence
2.3.4. Metabolic Health Outcomes
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics of Participants
3.2. Cross-Sectional Associations between IE, Diet Quality and Metabolic Health
3.3. Prospective Associations between IE, Diet Quality, Metabolic Health and Dietary Adherence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tylka, T.L. Development and psychometric evaluation of a measure of intuitive eating. J. Couns. Psychol. 2006, 53, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Tylka, T.L.; Calogero, R.M.; Daníelsdóttir, S. Intuitive eating is connected to self-reported weight stability in community women and men. Eat. Disord. 2020, 28, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Tylka, T.L.; Kroon Van Diest, A.M. The Intuitive Eating Scale-2: Item refinement and psychometric evaluation with college women and men. J. Couns. Psychol. 2013, 60, 137–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirt, A.; Collins, C.E. Diet quality—What is it and does it matter? Public Health Nutr. 2009, 12, 2473–2492. [Google Scholar] [CrossRef] [Green Version]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2018, 118, 74–100.e11. [Google Scholar] [CrossRef] [Green Version]
- Patel, Y.R.; Robbins, J.M.; Gaziano, J.M.; Djoussé, L. Mediterranean, dash, and alternate healthy eating index dietary patterns and risk of death in the physicians’ health study. Nutrients 2021, 13, 1893. [Google Scholar] [CrossRef]
- Jackson, A.; Sano, Y.; Parker, L.; Cox, A.E.; Lanigan, J. Intuitive eating and dietary intake. Eat Behav. 2022, 45, 101606. [Google Scholar] [CrossRef]
- Lopez, T.D.; Hernandez, D.; Bode, S.; Ledoux, T. A complex relationship between intuitive eating and diet quality among university students. J. Am. Coll. Health 2021, 1–7. [Google Scholar] [CrossRef]
- Carbonneau, E.; Bégin, C.; Lemieux, S.; Mongeau, L.; Paquette, M.C.; Turcotte, M.; Labonté, M.-È.; Provencher, V. A Health at Every Size intervention improves intuitive eating and diet quality in Canadian women. Clin. Nutr. 2017, 36, 747–754. [Google Scholar] [CrossRef]
- Plante, A.S.; Savard, C.; Lemieux, S.; Carbonneau, É.; Robitaille, J.; Provencher, V.; Morisset, A.S. Trimester-Specific Intuitive Eating in Association With Gestational Weight Gain and Diet Quality. J. Nutr. Educ. Behav. 2019, 51, 677–683. [Google Scholar] [CrossRef]
- Camilleri, G.M.; Méjean, C.; Bellisle, F.; Andreeva, V.A.; Kesse-Guyot, E.; Hercberg, S.; Péneau, S. Intuitive eating dimensions were differently associated with food intake in the general population-based nutrinet-santé study. J. Nutr. 2017, 147, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Paterson, H.; Treharne, G.J.; Horwath, C.; Haszard, J.J.; Herbison, P.; Hay-Smith, E.J.C. Intuitive eating and gestational weight gain. Eat. Behav. 2019, 34, 101311. [Google Scholar] [CrossRef]
- Leahy, K.; Berlin, K.S.; Banks, G.G.; Bachman, J. The Relationship Between Intuitive Eating and Postpartum Weight Loss. Matern. Child Health J. 2017, 21, 1591–1597. [Google Scholar] [CrossRef]
- Quansah, D.Y.; Gilbert, L.; Gross, J.; Horsch, A.; Puder, J.J. Intuitive eating is associated with improved health indicators at 1-year postpartum in women with gestational diabetes mellitus (GDM). J. Health Psychol. 2019, 26, 1168–1184. [Google Scholar] [CrossRef] [Green Version]
- Quansah, D.Y.; Gross, J.; Gilbert, L.; Helbling, C.; Horsch, A.; Puder, J.J. Intuitive eating is associated with weight and glucose control during pregnancy and in the early postpartum period in women with gestational diabetes mellitus (GDM): A clinical cohort study. Eat. Behav. 2019, 34, 101304. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1471015319300558 (accessed on 25 May 2019). [CrossRef]
- Walker, L.O.; Sterling, B.S.; Timmerman, G.M. Retention of pregnancy-related weight in the early postpartum period: Implications for women’s health services. J. Obstet. Gynecol. Neonatal Nurs. 2005, 34, 418–427. [Google Scholar] [CrossRef]
- Nicklas, J.M.; Zera, C.A.; Seely, E.W. Predictors of very early postpartum weight loss in women with recent gestational diabetes mellitus. J. Matern. Neonatal Med. 2018, 33, 120–126. [Google Scholar] [CrossRef]
- Bao, W.; Yeung, E.; Tobias, D.K.; Hu, F.B.; Vaag, A.A.; Chavarro, J.E.; Mills, J.L.; Grunnet, L.G.; Bowers, K.; Ley, S.H.; et al. Long-term risk of type 2 diabetes mellitus in relation to BMI and weight change among women with a history of gestational diabetes mellitus: A prospective cohort study. Diabetologia 2015, 58, 1212–1219. [Google Scholar] [CrossRef] [Green Version]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: A systematic review and meta-analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef]
- Gunderson, E.P.; Sun, B.; Catov, J.M.; Carnethon, M.; Lewis, C.E.; Allen, N.B.; Sidney, S.; Wellons, M.; Rana, J.S.; Hou, L.; et al. Gestational Diabetes History and Glucose Tolerance after Pregnancy Associated with Coronary Artery Calcium in Women during Midlife: The CARDIA Study. Circulation 2021, 143, 974–987. [Google Scholar] [CrossRef]
- Horsch, A.; Gilbert, L.; Lanzi, S.; Gross, J.; Kayser, B.; Vial, Y.; Simeoni, U.; Hans, D.; Berney, A.; Scholz, U.; et al. Improving cardiometabolic and mental health in women with gestational diabetes mellitus and their offspring: Study protocol for MySweetHeart Trial, a randomised controlled trial. BMJ Open 2018, 8, e020462. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association (ADA). Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef]
- Metzger, B.E. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy: Response to Weinert. Diabetes Care 2010, 33, e98. [Google Scholar] [CrossRef] [Green Version]
- Blumer, I.; Hadar, E.; Hadden, D.R.; Jovanovic, L.; Mestman, J.H.; Murad, M.H.; Yogev, Y. Diabetes and pregnancy: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab Erratum in: J. Clin. Endocrinol. Metab. 2022, 107, e3972. 2013, 98, 4227–4249. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (IOM). Weight Gain During Pregnancy: Reexamining the Guidelines; Committee to Reexamine IOM Pregnancy Weight Guidelines: Washington, DC, USA, 2009. [Google Scholar]
- Office fédéral de la Santé Publique OFSP. Alimentation Durant la Grossesse et la Période d’Allaitement. Berne. Available online: www.bag.admin.ch (accessed on 20 July 2022).
- Arditi, C.; Puder, J.; Vial, Y.; Hagon-Traub, I.; Burnand, B. Pied diabétique Prise en charge multidisciplinaire du diabète: Recommandations pour la pratique clinique. Rev. Med. Suisse 2019, 15, 929. [Google Scholar] [CrossRef]
- Camilleri, G.M.; Méjean, C.; Bellisle, F.; Andreeva, V.A.; Sautron, V.; Hercberg, S.; Péneau, S. Cross-cultural validity of the Intuitive Eating Scale-Psychometric evaluation in a sample of the general French population. Appetite 2015, 84, 34–42. [Google Scholar] [CrossRef]
- Marques-Vidal, P.; Ross, A.; Wynn, E.; Rezzi, S.; Paccaud, F.; Decarli, B. Reproducibility and relative validity of a food-frequency questionnaire for French-speaking Swiss adults. Food Nutr. Res. 2011, 55, 5905. [Google Scholar] [CrossRef]
- De Abreu, D.; Guessous, I.; Vaucher, J.; Preisig, M.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P. Low compliance with dietary recommendations for food intake among adults. Clin. Nutr. 2013, 32, 783–788. [Google Scholar] [CrossRef]
- Swiss Society of Nutrition. Substances Nutritives. 2011. Available online: www.sge-ssn.ch/media/sge_pyramid_E_basic_20161.pdf (accessed on 20 July 2022).
- Kyle, U.G.; Genton, L.; Slosman, D.O.; Pichard, C. Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition 2001, 17, 534–541. [Google Scholar] [CrossRef]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- StataCorp LP. Stata Data Analysis and Statistical Software; StataCorp LP: College Station, TX, USA, 2017. [Google Scholar]
- Cole, R.E.; Horacek, T. Effectiveness of the “my body knows when” intuitive-eating pilot program. Am. J. Health Behav. 2010, 34, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Horwath, C.; Hagmann, D.; Hartmann, C. Intuitive eating and food intake in men and women: Results from the Swiss food panel study. Appetite 2019, 135, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Resch, E.; Tylka, T.L. Handbook of Positive Body Image and Embodiment: Constructs, Protective Factors, and Interventions; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Process to Update the Dietary Guidelines for Americans. Redesigning the Process for Establishing the Dietary Guidelines for Americans; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Borelli, J.; Pignotti, G.P.; Widaman, A. Examining the Relationship Between Intuitive Eating and Diet Quality Among College Students. Curr. Dev. Nutr. 2020, 4, 1290. [Google Scholar] [CrossRef]
- Gibson, A.A.; Sainsbury, A. Strategies to improve adherence to dietaryweight loss interventions in research and real-world settings. Behav. Sci. 2017, 7, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lauzon-Guillain, B.; Basdevant, A.; Romon, M.; Karlsson, J.; Borys, J.M.; Charles, M.A. Is restrained eating a risk factor for weight gain in a general population? Am. J. Clin. Nutr. 2006, 83, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Mattei, J.; Sotres-Alvarez, D.; Daviglus, M.L.; Gallo, L.C.; Gellman, M.; Hu, F.B.; Tucker, K.L.; Willett, W.C.; Siega-Riz, A.M.; Van Horn, L.; et al. Diet quality and its association with cardiometabolic risk factors vary by hispanic and latino ethnic background in the Hispanic community health study/study of Latinos. J. Nutr. 2016, 146, 2035–2044. [Google Scholar] [CrossRef] [Green Version]
- Hogling, D.E.; Rydén, M.; Bäckdahl, J.; Thorell, A.; Arner, P.; Andersson, D.P. Body fat mass and distribution as predictors of metabolic outcome and weight loss after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 2018, 14, 936–942. [Google Scholar] [CrossRef]
Variable | Mean ± SD |
---|---|
Age (year) | 33.6 ± 5.0 |
GA at the first GDM visit (weeks) | 28.9 ± 2.2 |
Pre-pregnancy weight (kg) | 69.0 ± 14.9 |
Pre-pregnancy BMI (kg/m2) | 25.59 ± 5.1 |
Weight at the first GDM visit (kg) | 79.32 ± 14.6 |
BMI at the first GDM visit (kg/m2) | 29.41 ± 4.9 |
HbA1c at the first GDM visit | 5.09 ± 0.3 |
Fasting glucose at GDM visit | 4.95 ± 0.5 |
Ethnicity/Nationality, n (%) | |
Switzerland | 52 (28.9) |
Rest of Europe and North America | 68 (38.3) |
Asia and Oceania | 13 (7.2) |
Africa | 21 (11.7) |
Latin America | 7 (3.9) |
Others | 18 (10.0) |
Education level a, n (%) | |
Compulsory school incomplete b | 2 (1.3) |
Compulsory school achieved | 21 (13.9) |
High school | 16 (10.6) |
General and vocational education | 32 (21.2) |
University | 80 (53.0) |
Employment status | |
Student | 5 (2.8) |
Professional worker | 118 (65.9) |
Housewife/unemployed | 56 (31.3) |
Glucose-lowering treatment in pregnancy, n (%) | |
None | 99 (55.6) |
Insulin | 70 (38.9) |
Metformin | 10 (5.6) |
Parity, n (%) | |
0 | 102 (57.2) |
1 | 49 (27.2) |
2 | 14 (7.8) |
≥3 | 14 (7.8) |
Gravida, n (%) | |
1 | 78 (43.3) |
2 | 40 (22.8) |
≥3 | 61 (33.9) |
GDM in previous pregnancy c, yes, n (%) | 19 (10.6) |
Family history of diabetes, yes, n (%) | 109 (61.1) |
Social support during pregnancy, yes, n (%) | 12 (6.7) |
Variable | n | First GDM Visit Mean ± SD | At 1-Year pp Mean ± SD | Mean Difference Mean ± SD | p-Value |
---|---|---|---|---|---|
Intuitive eating behaviors | |||||
EPR subscale | 179 | 3.8 ± 0.8 | 3.8 ± 0.9 | 0.01 ± 0.8 | 0.846 |
RHSC subscale | 179 | 3.5 ± 0.8 | 3.6 ± 0.8 | 0.13 ± 0.9 | 0.041 |
Diet quality | |||||
AHEI | 100 | 31.7 ± 9.7 | 30.6 ± 9.5 | −1.07 ± 11.0 | 0.395 |
Metabolic health variables | |||||
BMI (kg/m2) | 179 | 29.4 ± 4.9 | 26.8 ± 5.6 | −2.52 ± 2.1 | <0.001 |
Weight (kg) | 179 | 79.3 ± 14.5 | 72.4 ± 16.1 | −6.85 ± 5.7 | <0.001 |
Total fat mass (BIA) (kg) | 179 | 31.5 ± 9.2 | 26.6 ± 10.6 | −4.91 ± 4.2 | <0.001 |
HOMA-IR | 162 | 3.6 ± 2.0 | 3.2 ± 2.3 | −0.34 ± 1.5 | 0.007 |
Variable | Effect Estimate | ||
---|---|---|---|
EPR Subscale at 1-year pp | Standardized Beta Coefficient | β (95% CI) | p Value |
Diet quality at 1-year pp | |||
AHEI | 0.04 | 0.56 (−1.38, 2.50) | 0.548 |
Metabolic health at 1-year pp | |||
Weight (kg) | −0.15 | −2.82 (−5.59, −0.04) | 0.040 |
BMI (kg/m2) | −0.18 | −1.17 (−2.13, −0.21) | 0.013 |
Fat mass (BIA) (kg) | −0.16 | −2.01 (−3.85, −0.177) | 0.027 |
Fat mass (DXA) (kg) | −0.32 | −4.44 (−7.08, −1.80) | 0.001 |
Visceral adipose tissue (DXA) (kg) | −0.23 | −0.12 (−0.23, −0.02) | 0.028 |
HOMA-IR | −0.09 | −0.25 (−0.68, 0.16) | 0.184 |
MATSUDA | 0.03 | 0.11 (−0.48, 0.71) | 0.595 |
RHSC Subscale at 1-year pp | |||
Diet quality at 1-year pp | |||
AHEI | 0.009 | 0.11 (−1.94, 2.17) | 0.337 |
Metabolic health at 1-year pp | |||
Weight (kg) | −0.11 | −2.30 (−5.26, 0.66) | 0.109 |
BMI (kg/m2) | −0.09 | −1.20 (−2.14, −0.22) | 0.023 |
Fat mass (BIA) (kg) | −0.15 | −2.02 (−3.97, −0.08) | 0.034 |
Fat mass (DXA) (kg) | −0.16 | −2.34 (−5.16, 0.47) | 0.101 |
Visceral adipose tissue (DXA) (kg) | −0.12 | −0.06 (−0.17, 0.04) | 0.319 |
HOMA-IR | −0.10 | −0.30 (−0.75, 0.14) | 0.142 |
MATSUDA | 0.18 | 0.64 (−0.006, 1.28) | 0.034 |
Variable | Effect Estimate | ||
---|---|---|---|
EPR Subscale the First GDM Visit | Standardized Beta Coefficient | β (95% CI) | p Value |
Diet quality at 1-year pp | |||
AHEI | 0.14 | 1.96 (−1.70, 5.63) | 0.279 |
Metabolic health during pregnancy | |||
Total GWG during pregnancy (kg) | 0.10 | 0.79 (−0.26, 1.86) | 0.157 |
Metabolic health at 1-year pp | |||
Weight (kg) | −0.10 | −2.17 (−5.12, 0.76) | 0.146 |
BMI (kg/m2) | −0.11 | −1.42 (−4.21, −0.03) | 0.016 |
Fat mass (BIA) (kg) | −0.09 | −1.30 (−3.27, 0.66) | 0.193 |
Fat mass (DXA) (kg) | −0.18 | −2.95 (−5.95, −0.02) | 0.043 |
Visceral adipose tissue (DXA) (kg) | −0.13 | −0.08 (−0.20, 0.03) | 0.172 |
HOMA-IR | −0.20 | −1.61 (−3.21, −0.09) | 0.032 |
MATSUDA | 0.04 | 0.16 (−0.49, 0.81) | 0.640 |
RHSC Subscale the First GDM Visit | |||
Diet quality at 1-year pp | |||
AHEI | 0.16 | 2.03 (0.09, 3.97) | 0.043 |
Metabolic health during pregnancy | |||
Total GWG during pregnancy (kg) | −0.12 | −1.42 (−4.20, −0.03) | 0.041 |
Metabolic health at 1-year pp | |||
Weight (kg) | −0.14 | −2.90 (−5.81, −0.04) | 0.025 |
BMI (kg/m2) | −0.11 | −0.81 (−1.84, 0.20) | 0.124 |
Fat mass (BIA) (kg) | −0.14 | −1.82 (−3.75, 0.10) | 0.067 |
Fat mass (DXA) (kg) | −0.12 | −1.63 (−4.20, 0.92) | 0.206 |
Visceral adipose tissue (DXA) (kg) | −0.05 | −0.02 (−0.12, 0.07) | 0.538 |
HOMA-IR | −0.10 | −0.30 (−0.74, 0.14) | 0.203 |
MATSUDA | 0.06 | 0.22 (−0.43, 0.87) | 0.537 |
Variable | Mean ± SD | β (95% CI) | p Value |
---|---|---|---|
EPR Subscale the First GDM Visit | |||
Fruits intake | |||
Below | 3.75 ± 0.98 | Ref | |
Adhere | 3.84 ± 0.78 | 0.09 (−0.39, 0.59) | 0.699 |
Vegetable intake | |||
Below | 3.75 ± 0.96 | Ref | |
Adhere | 3.83 ± 0.76 | −0.08 (−0.47, 0.32) | 0.700 |
Dairy intake | |||
Above | 3.79 ± 0.77 | Ref | |
Adhere | 4.83 ± 0.28 | 1.03 (0.14, 1.93) | 0.023 |
Protein (non-fried fish) intake | |||
Below | 3.80 ± 0.75 | Ref | |
Adhere | 3.96 ± 0.85 | −0.14 (−0.39, 0.12) | 0.288 |
Fiber intake | |||
Below | 3.83 ± 0.79 | Ref | |
Adhere | 4.25 ± 0.85 | 1.42 (1.07, 3.23) | 0.024 |
RHSC Subscale the First GDM Visit | |||
Fruits intake | |||
Below | 3.20 ± 0.68 | Ref | |
Adhere | 3.58 ± 0.77 | 1.37 (0.42, 2.10) | 0.031 |
Vegetable intake | |||
Below | 3.53 ± 0.80 | Ref | |
Adhere | 3.67 ± 0.91 | 0.14 (−0.27, 0.55) | 0.505 |
Dairy intake | |||
Above | 3.51 ± 0.81 | Ref | |
Adhere | 4.24 ± 0.81 | 1.87 (0.56, 2.73) | 0.003 |
Protein (non-fried fish) intake | |||
Below | 3.56 ± 0.82 | Ref | |
Adhere | 3.57 ± 0.78 | 0.17 (−0.25, 0.58) | 0.901 |
Fiber intake | |||
Below | 3.25 ± 0.60 | Ref | |
Adhere | 3.56 ± 0.81 | 2.31 (1.98, 3.35) | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quansah, D.Y.; Schenk, S.; Gilbert, L.; Arhab, A.; Gross, J.; Marques-Vidal, P.-M.; Gonzalez Rodriguez, E.; Hans, D.; Horsch, A.; Puder, J.J. Intuitive Eating Behavior, Diet Quality and Metabolic Health in the Postpartum in Women with Gestational Diabetes. Nutrients 2022, 14, 4272. https://doi.org/10.3390/nu14204272
Quansah DY, Schenk S, Gilbert L, Arhab A, Gross J, Marques-Vidal P-M, Gonzalez Rodriguez E, Hans D, Horsch A, Puder JJ. Intuitive Eating Behavior, Diet Quality and Metabolic Health in the Postpartum in Women with Gestational Diabetes. Nutrients. 2022; 14(20):4272. https://doi.org/10.3390/nu14204272
Chicago/Turabian StyleQuansah, Dan Yedu, Sybille Schenk, Leah Gilbert, Amar Arhab, Justine Gross, Pedro-Manuel Marques-Vidal, Elena Gonzalez Rodriguez, Didier Hans, Antje Horsch, and Jardena J. Puder. 2022. "Intuitive Eating Behavior, Diet Quality and Metabolic Health in the Postpartum in Women with Gestational Diabetes" Nutrients 14, no. 20: 4272. https://doi.org/10.3390/nu14204272
APA StyleQuansah, D. Y., Schenk, S., Gilbert, L., Arhab, A., Gross, J., Marques-Vidal, P. -M., Gonzalez Rodriguez, E., Hans, D., Horsch, A., & Puder, J. J. (2022). Intuitive Eating Behavior, Diet Quality and Metabolic Health in the Postpartum in Women with Gestational Diabetes. Nutrients, 14(20), 4272. https://doi.org/10.3390/nu14204272