Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update
Abstract
:1. Introduction
2. Coffee and Enzymatic Salivary Secretion
3. Coffee Stimulates Gastric Secretion but Does Not Accelerate Gastric Emptying
4. Risk of Gastro-Esophageal Pathology
4.1. Functional Dyspepsia
4.2. Gastro-Esophageal Reflux (GERD)
4.3. Risk of Peptic Ulcers
5. Bile and Pancreas Secretions Are Stimulated by Coffee
6. Coffee Consumption Reduces Gallbladder Stone Formation
7. Increase in Colic Motility and Anti-Inflammatory Action
7.1. Effects of Coffee on Colon Motility in Physiological Conditions
7.2. Effects of Coffee after Abdominal Surgery
7.3. Effects of Coffee on Inflammatory Bowel Disease
8. Coffee Influences the Composition of the Intestinal Microbiota
9. Coffee and Cancer of the Gastrointestinal Tract
9.1. Cancer of the Oral Cavity and Esophagus
9.2. Cancer of the Stomach and Pancreas
9.3. Cancer of the Gallbladder
9.4. Colorectal Cancer
9.5. Cancer of the Liver
10. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romualdo, G.R.; Rocha, A.B.; Vinken, M.; Cogliati, B.; Moreno, F.S.; Chaves, M.A.G.; Barbisan, L.F. Drinking for protection? Epidemiological and experimental evidence on the beneficial effects of coffee or major coffee compounds against gastrointestinal and liver carcinogenesis. Food Res. Int. 2019, 123, 567–589. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Uranga, J.A.; Del Castillo, M.D.; Abalo, R. Effects of Coffee and Its Components on the Gastrointestinal Tract and the Brain-Gut Axis. Nutrients 2020, 13, 88. [Google Scholar] [CrossRef]
- Takai, N.; Yamaguchi, M.; Aragaki, T.; Eto, K.; Uchihashi, K.; Nishikawa, Y. Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch. Oral Biol. 2004, 49, 963–968. [Google Scholar] [CrossRef]
- Nater, U.M.; Rohleder, N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology 2009, 34, 486–496. [Google Scholar] [CrossRef]
- Klein, L.C.; Bennett, J.M.; Whetzel, C.A.; Granger, D.A.; Ritter, F.E. Caffeine and stress alter salivary alpha-amylase activity in young men. Hum. Psychopharmacol. 2010, 25, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Klein, L.C.; Whetzel, C.A.; Bennett, J.M.; Ritter, F.E.; Nater, U.M.; Schoelles, M. Caffeine administration does not alter salivary alpha-amylase activity in young male daily caffeine consumers. BMC Res. Notes 2014, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, E.; Kechribari, I.; Sotirakoglou, Κ.; Tarantilis, P.; Gourdomichali, T.; Michas, G.; Kravvariti, V.; Voumvourakis, K.; Zampelas, A. Acute effects of coffee consumption on self-reported gastrointestinal symptoms, blood pressure and stress indices in healthy individuals. Nutr. J. 2016, 15, 26. [Google Scholar] [CrossRef] [Green Version]
- Kidd, M.; Hauso, Ø.; Drozdov, I.; Gustafsson, B.I.; Modlin, I.M. Delineation of the chemomechanosensory regulation of gastrin secretion using pure rodent G cells. Gastroenterology 2009, 137, 231–241.e10. [Google Scholar] [CrossRef]
- Schubert, M.L. Functional anatomy and physiology of gastric secretion. Curr. Opin. Gastroenterol. 2015, 31, 479–485. [Google Scholar] [CrossRef]
- Van Deventer, G.; Kamemoto, E.; Kuznicki, J.T.; Heckert, D.C.; Schulte, M.C. Lower esophageal sphincter pressure, acid secretion, and blood gastrin after coffee consumption. Dig. Dis. Sci. 1992, 37, 558–569. [Google Scholar] [CrossRef]
- Wright, L.F.; Gibson, R.G.; Hirschowitz, R.I. Lack of caffeine stimulation of gastrin release in man. Proc. Soc. Exp. Biol. Med. 1977, 154, 538–539. [Google Scholar] [CrossRef]
- Börger, H.W.; Schafmayer, A.; Arnold, R.; Becker, H.D.; Creutzfeldt, W. Der Einfluss von Kaffee und Coffein auf den Serumgastrinspiegel und die Süresekretion beim Menschen. Dtsch. Med. Wochenschr. 1976, 101, 455–457. [Google Scholar]
- Acquaviva, F.; DeFrancesco, A.; Andriulli, A.; Piantino, P.; Arrigoni, A.; Massarenti, P.; Balzola, F. Effect of regular and decaffeinated coffee on serum gastrin levels. J. Clin. Gastroenterol. 1986, 8, 150–153. [Google Scholar] [CrossRef]
- Yip, L.; Kwok, Y.N. Role of adenosine A2A receptor in the regulation of gastric somatostatin release. J. Pharmacol. Exp. Ther. 2004, 309, 804–815. [Google Scholar] [CrossRef] [Green Version]
- Rubach, M.; Lang, R.; Hofmann, T.; Somoza, V. Time-dependent component-specific regulation of gastric acid secretion-related proteins by roasted coffee constituents. Ann. N. Y. Acad. Sci. 2008, 1126, 310–314. [Google Scholar] [CrossRef]
- Rubach, M.; Lang, R.; Seebach, E.; Somoza, M.M.; Hofmann, T.; Somoza, V. Multi-parametric approach to identify coffee components that regulate mechanisms of gastric acid secretion. Mol. Nutr. Food Res. 2012, 56, 325–335. [Google Scholar] [CrossRef]
- Rubach, M.; Lang, R.; Bytof, G.; Stiebitz, H.; Lantz, I.; Hofmann, T.; Somoza, V. A dark brown roast coffee blend is less effective at stimulating gastric acid secretion in healthy volunteers compared to a medium roast market blend. Mol. Nutr. Food Res. 2014, 58, 1370–1373. [Google Scholar] [CrossRef]
- Lien, H.C.; Chen, G.H.; Chang, C.S.; Kao, C.H.; Wang, S.J. The effect of coffee on gastric emptying. Nucl. Med. Commun. 1995, 16, 923–926. [Google Scholar] [CrossRef]
- Boekema, P.J.; Samsom, M.; van Berge Henegouwen, G.P.; Smout, A.J. Coffee and gastrointestinal function: Facts and fiction. Scand. J. Gastroenterol. 1999, 99, 35–39. [Google Scholar] [CrossRef]
- Boekema, P.J.; Lo, B.; Samsom, M.; Akkermans, L.M.; Smout, A.J. The effect of coffee on gastric emptying and oro-caecal transit time. Eur. J. Clin. Investig. 2000, 30, 129–134. [Google Scholar] [CrossRef]
- Franke, A.; Harder, H.; Orth, A.K.; Zitzmann, S.; Singer, M.V. Postprandial walking but not consumption of alcoholic digestifs or espresso accelerates gastric emptying in healthy volunteers. J. Gastrointestin. Liver Dis. 2008, 17, 27–31. [Google Scholar]
- Schubert, M.M.; Grant, G.; Horner, K.; King, N.; Leveritt, M.; Sabapathy, S.; Desbrow, B. Coffee for morning hunger pangs. An examination of coffee and caffeine on appetite, gastric emptying, and energy intake. Appetite 2014, 83, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.M.; Irwin, C.; Seay, R.F.; Clarke, H.E.; Allegro, D.; Desbrow, B. Caffeine, coffee, and appetite control: A review. Int. J. Food Sci. Nutr. 2017, 68, 901–912. [Google Scholar] [CrossRef] [Green Version]
- Akimoto, K.; Inamori, M.; Iida, H.; Endo, H.; Akiyama, T.; Ikeda, T.; Fujita, K.; Takahashi, H.; Yoneda, M.; Goto, A.; et al. Does postprandial coffee intake enhance gastric emptying?: A crossover study using continuous real time 13C breath test [BreathID system). Hepatogastroenterology 2009, 56, 918–920. [Google Scholar] [PubMed]
- Sidhu, A.S.; Triadafilopoulos, G. Neuro-regulation of lower esophageal sphincter function as treatment for gastroesophageal reflux disease. World J. Gastroenterol. 2008, 14, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Talley, N.J.; McNeil, D.; Piper, D.W. Environmental factors and chronic unexplained dyspepsia. Association with acetaminophen but not other analgesics, alcohol, coffee, tea, or smoking. Dig. Dis. Sci. 1988, 33, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Elta, G.H.; Behler, E.M.; Colturi, T.J. Comparison of coffee intake and coffee-induced symptoms in patients with duodenal ulcer, nonulcer dyspepsia, and normal controls. Am. J. Gastroenterol. 1990, 85, 1339–1342. [Google Scholar] [PubMed]
- Nandurkar, S.; Talley, N.J.; Xia, H.; Mitchell, H.; Hazel, S.; Jones, M. Dyspepsia in the community is linked to smoking and aspirin use but not to Helicobacter pylori infection. Arch. Intern. Med. 1998, 158, 1427–1433. [Google Scholar] [CrossRef] [Green Version]
- Moayyedi, P.; Forman, D.; Braunholtz, D.; Feltbower, R.; Crocombe, W.; Liptrott, M.; Axon, A. The proportion of upper gastrointestinal symptoms in the community associated with Helicobacter pylori, lifestyle factors, and nonsteroidal anti-inflammatory drugs. Leeds HELP Study Group. Am. J. Gastroenterol. 2000, 5, 1448–1455. [Google Scholar] [CrossRef]
- Boekema, P.J.; van Dam van Isselt, E.F.; Bots, M.L.; Smout, A.J. Functional bowel symptoms in a general Dutch population and associations with common stimulants. Neth. J. Med. 2001, 59, 23–30. [Google Scholar] [CrossRef]
- DiBaise, J.K. A randomized, double-blind comparison of two different coffee-roasting processes on development of heartburn and dyspepsia in coffee-sensitive individuals. Dig. Dis. Sci. 2003, 48, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Akhondi-Meybodi, M.; Aghaei, M.A.; Hashemian, Z. The role of diet in the management of non-ulcer dyspepsia. Middle East J. Dig. Dis. 2015, 7, 19–24. [Google Scholar] [PubMed]
- Xu, J.H.; Lai, Y.; Zhuang, L.P.; Huang, C.Z.; Li, C.Q.; Chen, Q.K.; Yu, T. Certain Dietary Habits Contribute to the Functional Dyspepsia in South China Rural Area. Med. Sci. Monit. 2017, 23, 3942–3951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncanson, K.R.; Talley, N.J.; Walker, M.M.; Burrows, T.L. Food and functional dyspepsia: A systematic review. J. Hum. Nutr. Diet. 2018, 31, 390–407. [Google Scholar] [CrossRef] [PubMed]
- Correia, H.; Peneiras, S.; Levchook, N.; Peneiras, E.; Levchook, T.; Nayyar, J. Effects of a non-caffeinated coffee substitute on functional dyspepsia. Clin. Nutr. ESPEN 2021, 41, 412–416. [Google Scholar] [CrossRef]
- Festi, D.; Scaioli, E.; Baldi, F.; Vestito, A.; Pasqui, F.; DiBaise, A.R.; Colecchia, A. Body weight, lifestyle, dietary habits and gastroesophageal reflux disease. World J. Gastroenterol. 2009, 15, 1690–1701. [Google Scholar] [CrossRef]
- Cohen, S. Pathogenesis of coffee-induced gastrointestinal symptoms. N. Engl. J. Med. 1980, 303, 122–124. [Google Scholar] [CrossRef]
- Gudjonsson, H.; McAuliffe, T.L.; Kaye, M.D. The effect of coffee and tea upon lower esophageal sphincteric function. Laeknabladid 1995, 81, 484–488. [Google Scholar]
- Thomas, F.B.; Steinbaugh, J.T.; Fromkes, J.J.; Mekhjian, H.S.; Caldwell, J.H. Inhibitory effect of coffee on lower esophageal sphincter pressure. Gastroenterology 1980, 79, 1262–1266. [Google Scholar] [CrossRef]
- Surdea-Blaga, T.; Negrutiu, D.E.; Palage, M.; Dumitrascu, D.L. Food and Gastroesophageal Reflux Disease. Curr. Med. Chem. 2019, 26, 3497–3511. [Google Scholar] [CrossRef]
- Wendl, B.; Pfeiffer, A.; Pehl, C.; Schmidt, T.; Kaess, H. Effect of decaffeination of coffee or tea on gastro-oesophageal reflux. Aliment. Pharmacol. Ther. 1994, 8, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.S.; Poon, S.K.; Lien, H.C.; Chen, G.H. The incidence of reflux esophagitis among the Chinese. Am. J. Gastroenterol. 1997, 92, 668–671. [Google Scholar] [PubMed]
- Arivan, R.; Deepanjali, S. Prevalence and risk factors of gastro-esophageal reflux disease among undergraduate medical students from a southern Indian medical school: A cross-sectional study. BMC Res. Notes 2018, 11, 448. [Google Scholar] [CrossRef]
- Bhatia, S.J.; Reddy, D.N.; Ghoshal, U.C.; Jayanthi, V.; Abraham, P.; Choudhuri, G.; Broor, S.L.; Ahuja, V.; Augustine, P.; Balakrishnan, V.; et al. Epidemiology and symptom profile of gastroesophageal reflux in the Indian population: Report of the Indian Society of Gastroenterology Task Force. Indian J. Gastroenterol. 2011, 30, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Lohsiriwat, S.; Puengna, N.; Leelakusolvong, S. Effect of caffeine on lower esophageal sphincter pressure in Thai healthy volunteers. Dis. Esophagus 2006, 19, 183–188. [Google Scholar] [CrossRef]
- Kaltenbach, T.; Crockett, S.; Gerson, L.B. Are lifestyle measures effective in patients with gastroesophageal reflux disease? An evidence-based approach. Arch. Intern. Med. 2006, 166, 965–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Oh, S.W.; Myung, S.K.; Kwon, H.; Lee, C.; Yun, J.M.; Lee, H.K.; Korean Meta-analysis [KORMA) Study Group. Association between coffee intake and gastroesophageal reflux disease: A meta-analysis. Dis. Esophagus 2014, 27, 311–317. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, C.; Ouyang, Z.; Duan, C.; Liu, J.; Hou, X.; Bai, T. Prevalence and beverage-related risk factors of gastroesophageal reflux disease: An original study in Chinese college freshmen, a systemic review and meta-analysis. Neurogastroenterol. Motil. 2021, e14266. [Google Scholar] [CrossRef]
- Boekema, P.J.; Samsom, M.; Smout, A.J. Effect of coffee on gastro-oesophageal reflux in patients with reflux disease and healthy controls. Eur. J. Gastroenterol. Hepatol. 1999, 11, 1271–1276. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, M.; Johnsen, R.; Ye, W.; Hveem, K.; Lagergren, J. Lifestyle related risk factors in the aetiology of gastro-oesophageal reflux. Gut 2004, 53, 1730–1735. [Google Scholar] [CrossRef] [Green Version]
- Dore, M.P.; Maragkoudakis, E.; Fraley, K.; Pedroni, A.; Tadeu, V.; Realdi, G.; Graham, D.Y.; Delitala, G.; Malaty, H.M. Diet, lifestyle and gender in gastro-esophageal reflux disease. Dig. Dis. Sci. 2008, 53, 2027–2032. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Richardson, P.; Pilgrim, P.; Gilger, M.A. Determinants of gastroesophageal reflux disease in adults with a history of childhood gastroesophageal reflux disease. Clin. Gastroenterol. Hepatol. 2007, 5, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Nordenstedt, H.; Pedersen, N.L.; Lagergren, J.; Ye, W. Lifestyle factors and risk for symptomatic gastroesophageal reflux in monozygotic twins. Gastroenterology 2007, 132, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Friedenberg, F.K.; Rai, J.; Vanar, V.; Bongiorno, C.; Nelson, D.B.; Parepally, M.; Poonia, A.; Sharma, A.; Gohel, S.; Richter, J.E. Prevalence and risk factors for gastroesophageal reflux disease in an impoverished minority population. Obes. Res. Clin. Pract. 2010, 4, e261–e269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandeya, N.; Green, A.C.; Whiteman, D.C.; Australian Cancer Study. Prevalence and determinants of frequent gastroesophageal reflux symptoms in the Australian community. Dis. Esophagus 2012, 25, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Shimamoto, T.; Yamamichi, N.; Kodashima, S.; Takahashi, Y.; Fujishiro, M.; Oka, M.; Mitsushima, T.; Koike, K. No association of coffee consumption with gastric ulcer, duodenal ulcer, reflux esophagitis, and non-erosive reflux disease: A cross-sectional study of 8013 healthy subjects in Japan. PLoS ONE 2013, 8, e65996. [Google Scholar] [CrossRef] [Green Version]
- Ercelep, O.B.; Caglar, E.; Dobrucali, A. The prevalence of gastroesophageal reflux disease among hospital employees. Dis. Esophagus 2014, 27, 403–408. [Google Scholar] [CrossRef]
- Kubo, A.; Block, G.; Quesenberry, C.P., Jr.; Buffler, P.; Corley, D.A. Dietary guideline adherence for gastroesophageal reflux disease. BMC Gastroenterol. 2014, 14, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filiberti, R.A.; Fontana, V.; De Ceglie, A.; Blanchi, S.; Grossi, E.; Della Casa, D.; Lacchin, T.; De Matthaeis, M.; Ignomirelli, O.; Cappiello, R.; et al. Association between coffee or tea drinking and Barrett’s esophagus or esophagitis: An Italian study. Eur. J. Clin. Nutr. 2017, 71, 980–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.Z.; Yi, P.; Wang, G.S.; Tan, S.Y.; Huang, G.M.; Qi, L.Z.; Jia, Y.; Wang, F. Lifestyle intervention for gastroesophageal reflux disease: A national multicenter survey of lifestyle factor effects on gastroesophageal reflux disease in China. Therap. Adv. Gastroenterol. 2019, 12, 1756284819877788. [Google Scholar] [CrossRef]
- Wei, T.Y.; Hsueh, P.H.; Wen, S.H.; Chen, C.L.; Wang, C.C. The role of tea and coffee in the development of gastroesophageal reflux disease. Tzu. Chi. Med. J. 2019, 31, 169–176. [Google Scholar] [CrossRef]
- Diaz-Rubio, M.; Moreno-Elola-Olaso, C.; Rey, E.; Locke, G.R., 3rd; Rodriguez-Artalejo, F. Symptoms of gastro-oesophageal reflux: Prevalence, severity, duration and associated factors in a Spanish population. Aliment. Pharmacol. Ther. 2004, 19, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Pehl, C.; Pfeiffer, A.; Wendl, B.; Kaess, H. The effect of decaffeination of coffee on gastro-oesophageal reflux in patients with reflux disease. Aliment. Pharmacol. Ther. 1997, 11, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Luo, J.Y.; Dong, L.; Gong, J.; Tong, M. Epidemiology of gastroesophageal reflux disease: A general population-based study in Xi’an of Northwest China. World J. Gastroenterol. 2004, 10, 1647–1651. [Google Scholar] [CrossRef]
- Martín-de-Argila, C.; Martínez-Jiménez, P. Epidemiological study on the incidence of gastroesophageal reflux disease symptoms in patients in acute treatment with NSAIDs. Expert. Rev. Gastroenterol. Hepatol. 2013, 7, 27–33. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, K.O.; Baek, I.H.; Choi, M.H.; Jang, H.J.; Kae, S.H.; Kim, J.B.; Baik, G.H.; Shin, W.G.; Kim, K.H.; et al. Differences in the risk factors of reflux esophagitis according to age in Korea. Dis. Esophagus 2014, 27, 116–121. [Google Scholar] [CrossRef]
- Alsulobi, A.M.; El-Fetoh, N.M.A.; Alenezi, S.G.E.; Alanazi, R.A.; Alenazy, R.H.S.; Alenzy, F.A.L.; Alenzi, A.A.; Al Hazmy, A.M.; Albathaly, K.O.; Alruwaili, R.J.F.; et al. Gastroesophageal reflux disease among population of Arar City, Northern Saudi Arabia. Electron. Physician 2017, 9, 5499–5505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.S.; Song, M.; Staller, K.; Chan, A.T. Association Between Beverage Intake and Incidence of Gastroesophageal Reflux Symptoms. Clin. Gastroenterol. Hepatol. 2020, 18, 2226–2233.e4. [Google Scholar] [CrossRef] [PubMed]
- Green, H.D.; Beaumont, R.N.; Wood, A.R.; Hamilton, B.; Jones, S.E.; Goodhand, J.R.; Kennedy, N.A.; Ahmad, T.; Yaghootkar, H.; Weedon, M.N.; et al. Genetic evidence that higher central adiposity causes gastro-oesophageal reflux disease: A Mendelian randomization study. Int. J. Epidemiol. 2020, 49, 1270–1281. [Google Scholar] [CrossRef]
- Sajja, K.C.; El-Serag, H.B.; Thrift, A.P. Coffee or Tea, Hot or Cold, Are Not Associated with Risk of Barrett’s Esophagus. Clin. Gastroenterol. Hepatol. 2016, 14, 769–772. [Google Scholar] [CrossRef] [Green Version]
- Eusebi, L.H.; Ratnakumaran, R.; Yuan, Y.; Solaymani-Dodaran, M.; Bazzoli, F.; Ford, A.C. Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: A meta-analysis. Gut 2018, 67, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Taraszewska, A. Risk factors for gastroesophageal reflux disease symptoms related to lifestyle and diet. Rocz. Panstw. Zakl. Hig. 2021, 72, 21–28. [Google Scholar] [CrossRef]
- Price, S.F.; Smithson, K.W.; Castell, D.O. Food sensitivity in reflux esophagitis. Gastroenterology. 1978, 75, 240–243. [Google Scholar] [CrossRef]
- Singh, M.; Lee, J.; Gupta, N.; Gaddam, S.; Smith, B.K.; Wani, S.B.; Sullivan, D.K.; Rastogi, A.; Bansal, A.; Donnelly, J.E.; et al. Weight loss can lead to resolution of gastroesophageal reflux disease symptoms: A prospective intervention trial. Obesity Silver Spring 2013, 21, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Ushijima, I.; Mizuki, Y.; Yamada, M. Development of stress-induced gastric lesions involves central adenosine A1-receptor stimulation. Brain Res. 1985, 339, 351–355. [Google Scholar] [CrossRef]
- Kurata, J.H.; Nogawa, A.N. Meta-analysis of risk factors for peptic ulcer. Nonsteroidal antiinflammatory drugs, Helicobacter pylori, and smoking. J. Clin. Gastroenterol. 1997, 24, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, S.; Jørgensen, T.; Bonnevie, O.; Andersen, L. Risk factors for peptic ulcer disease: A population based prospective cohort study comprising 2416 Danish adults. Gut 2003, 52, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Aldoori, W.H.; Giovannucci, E.L.; Stampfer, M.J.; Rimm, E.B.; Wing, A.L.; Willett, W.C. A prospective study of alcohol, smoking, caffeine, and the risk of duodenal ulcer in men. Epidemiology 1997, 8, 420–424. [Google Scholar] [CrossRef] [Green Version]
- Ryan-Harshman, M.; Aldoori, W. How diet and lifestyle affect duodenal ulcers. Review of the evidence. Can. Fam. Physician 2004, 50, 727–732. [Google Scholar]
- Schlemper, R.J.; van der Werf, S.D.; Vandenbroucke, J.P.; Biemond, I.; Lamers, C.B. Risk factors of peptic ulcer disease: Different impact of Helicobacter pylori in Dutch and Japanese populations? J. Gastroenterol. Hepatol. 1996, 11, 825–831. [Google Scholar] [CrossRef]
- Shimoyama, A.T.; Santin, J.R.; Machado, I.D.; de Oliveira e Silva, A.M.; Pereira de Melo, I.L.; Mancini-Filho, J.; Farsky, S.H.P. Antiulcerogenic activity of chlorogenic acid in different models of gastric ulcer. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Besednova, N.N.; Zaporozhets, T.S.; Somova, L.M.; Kuznetsova, T.A. Review: Prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter 2015, 20, 89–97. [Google Scholar] [CrossRef]
- Odashima, M.; Otaka, M.; Jin, M.; Komatsu, K.; Wada, I.; Matsuhashi, T.; Horikawa, Y.; Hatakeyama, N.; Oyake, J.; Ohba, R.; et al. Selective adenosine A receptor agonist, ATL-146e, attenuates stress-induced gastric lesions in rats. J. Gastroenterol. Hepatol. 2005, 20, 275–280. [Google Scholar] [CrossRef]
- Douglas, B.R.; Jansen, J.B.; Tham, R.T.; Lamers, C.B. Coffee stimulation of cholecystokinin release and gallbladder contraction in humans. Am. J. Clin. Nutr. 1990, 52, 553–556. [Google Scholar] [CrossRef] [Green Version]
- Morton, C.; Klatsky, A.L.; Udaltsova, N. Smoking, coffee, and pancreatitis. Am. J. Gastroenterol. 2004, 99, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Petersen, O.H.; Sutton, R. Ca2+ signalling and pancreatitis: Effects of alcohol, bile and coffee. Trends Pharmacol. Sci. 2006, 27, 113–120. [Google Scholar] [CrossRef]
- Aerts, R.; Penninckx, F. The burden of GD in Europe. Aliment. Pharmacol. Ther. 2003, 18, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Stinton, L.M.; Shaffer, E.A. Epidemiology of gallbladder disease: Cholelithiasis and cancer. Gut Liver 2012, 6, 172–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.P.; Li, W.Q.; Sun, Y.L.; Zhu, R.T.; Wang, W.J. Systematic review with meta-analysis: Coffee consumption and the risk of gallstone disease. Aliment. Pharmacol. Ther. 2015, 42, 637–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotrotsios, A.; Tasis, N.; Angelis, S.; Apostolopoulos, A.P.; Vlasis, K.; Papadopoulos, V.; Filippou, D.K. Dietary Intake and Cholelithiasis: A Review. J. Long Term Eff. Med. Implants 2019, 29, 317–326. [Google Scholar] [CrossRef]
- La Vecchia, C.; Negri, E.; D’Avanzo, B.; Franceschi, S.; Boyle, P. Risk factors for gallstone disease requiring surgery. Int. J. Epidemiol. 1991, 20, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Misciagna, G.; Leoci, C.; Guerra, V.; Chiloiro, M.; Elba, S.; Petruzzi, J.; Mossa, A.; Noviello, M.R.; Coviello, A.; Minutolo, M.C.; et al. Epidemiology of cholelithiasis in southern Italy. Part II: Risk factors. Eur. J. Gastroenterol. Hepatol. 1996, 8, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, W.; Kächele, V.; Mason, R.A.; Muche, R.; Hay, B.; Wiesneth, M.; Hill, V.; Beckh, K.; Adler, G. Gallstone prevalence in relation to smoking, alcohol, coffee consumption, and nutrition. The Ulm Gallstone Study. Scand. J. Gastroenterol. 1997, 32, 953–958. [Google Scholar] [CrossRef]
- Sahi, T.; Paffenbarger, R.S., Jr.; Hsieh, C.C.; Lee, I.M. Body mass index, cigarette smoking, and other characteristics as predictors of self-reported, physician-diagnosed gallbladder disease in male college alumni. Am. J. Epidemiol. 1998, 147, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Leitzmann, M.F.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J.; Spiegelman, D.; Colditz, G.A.; Giovannucci, E. A prospective study of coffee consumption and the risk of symptomatic gallstone disease in men. JAMA 1999, 281, 2106–2112. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, C.E.; Everhart, J.E. Association of coffee consumption with gallbladder disease. Am. J. Epidemiol. 2000, 152, 1034–1038. [Google Scholar] [CrossRef]
- Leitzmann, M.F.; Stampfer, M.J.; Willett, W.C.; Spiegelman, D.; Colditz, G.A.; Giovannucci, E. Coffee intake is associated with lower risk of symptomatic gallstone disease in women. Gastroenterology 2002, 123, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, H.; Eguchi, H.; Oda, T.; Ogawa, S.; Nakagawa, K.; Honjo, S.; Kono, S. Relation of coffee, green tea, and caffeine intake to gallstone disease in middle-aged Japanese men. Eur. J. Epidemiol. 2003, 18, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Walcher, T.; Haenle, M.M.; Mason, R.A.; Koenig, W.; Imhof, A.; Kratzer, W.; EMIL Study Group. The effect of alcohol, tobacco and caffeine consumption and vegetarian diet on gallstone prevalence. Eur. J. Gastroenterol. Hepatol. 2010, 22, 1345–1351. [Google Scholar] [CrossRef]
- Nordenvall, C.; Oskarsson, V.; Wolk, A. Inverse association between coffee consumption and risk of cholecystectomy in women but not in men. Clin. Gastroenterol. Hepatol. 2015, 13, 1096–1102.e1. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, A.T.; Stender, S.; Nordestgaard, B.G.; Tybjaerg-Hansen, A. Coffee intake protects against symptomatic gallstone disease in the general population: A Mendelian randomization study. J. Intern. Med. 2020, 287, 42–53. [Google Scholar] [CrossRef]
- Riksen, N.P.; Smits, P.; Rongen, G.A. The cardiovascular effects of methylxanthines. Handb. Exp. Pharmacol. 2011, 200, 413–437. [Google Scholar] [CrossRef]
- Lillemoe, K.D.; Magnuson, T.H.; High, R.C.; Peoples, G.E.; Pitt, H.A. Caffeine prevents cholesterol gallstone formation. Surgery 1989, 106, 400–406. [Google Scholar]
- Magnuson, T.H.; Zarkin, B.A.; Lillemoe, K.D.; May, C.A.; Bastidas, J.A.; Pitt, H.A. Caffeine inhibits gallbladder absorption. Curr. Surg. 1989, 46, 477–479. [Google Scholar] [PubMed]
- Reymann, A.; Braun, W.; Drobik, C.; Woermann, C. Stimulation of bile acid active transport related to increased mucosal cyclic AMP content in rat ileum in vitro. Biochim. Biophys. Acta 1989, 1011, 158–164. [Google Scholar] [CrossRef]
- Botham, K.M.; Suckling, K.E. The effect of dibutyryl cyclic AMP on the excretion of taurocholic acid from isolated rat liver cells. Biochim. Biophys. Acta 1986, 889, 382–385. [Google Scholar] [CrossRef]
- Brown, S.R.; Cann, P.A.; Read, N.W. Effect of coffee on distal colon function. Gut 1990, 31, 450–453. [Google Scholar] [CrossRef] [Green Version]
- Scheperjans, F.; Pekkonen, E.; Kaakkola, S.; Auvinen, P. Linking Smoking, Coffee, Urate, and Parkinson’s Disease—A Role for Gut Microbiota? J. Parkinsons Dis. 2015, 5, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.S.; Welcher, K.; Zimmerman, B.; Stumbo, P. Is coffee a colonic stimulant? Eur. J. Gastroenterol. Hepatol. 1998, 10, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Sloots, C.E.; Felt-Bersma, R.J.; West, R.L.; Kuipers, E.J. Stimulation of defecation: Effects of coffee use and nicotine on rectal tone and visceral sensitivity. Scand. J. Gastroenterol. 2005, 40, 808–813. [Google Scholar] [CrossRef]
- Chang, J.Y.; Locke, G.R.; Schleck, C.D.; Zinsmeister, A.R.; Talley, N.J. Risk factors for chronic constipation and a possible role of analgesics. Neurogastroenterol. Motil. 2007, 19, 905–911. [Google Scholar] [CrossRef]
- Murakami, K.; Okubo, H.; Sasaki, S. Dietary intake in relation to self-reported constipation among Japanese women aged 18–20 years. Eur. J. Clin. Nutr. 2006, 60, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Eamudomkarn, N.; Kietpeerakool, C.; Kaewrudee, S.; Jampathong, N.; Ngamjarus, C.; Lumbiganon, P. Effect of postoperative coffee consumption on gastrointestinal function after abdominal surgery: A systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 2018, 8, 17349. [Google Scholar] [CrossRef] [PubMed]
- Cornwall, H.L.; Edwards, B.A.; Curran, J.F.; Boyce, S. Coffee to go? The effect of coffee on resolution of ileus following abdominal surgery: A systematic review and meta-analysis of randomised controlled trials. Clin. Nutr. 2020, 39, 1385–1394. [Google Scholar] [CrossRef]
- Gkegkes, I.D.; Minis, E.E.; Iavazzo, C. Effect of Caffeine Intake on Postoperative Ileus: A Systematic Review and Meta-Analysis. Dig. Surg. 2020, 37, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Kane, T.D.; Tubog, T.D.; Schmidt, J.R. The Use of Coffee to Decrease the Incidence of Postoperative Ileus: A Systematic Review and Meta-Analysis. J. Perianesth. Nurs. 2020, 35, 171–177.e1. [Google Scholar] [CrossRef]
- Watanabe, J.; Miki, A.; Koizumi, M.; Kotani, K.; Sata, N. Effect of Postoperative Coffee Consumption on Postoperative Ileus after Abdominal Surgery: An Updated Systematic Review and Meta-Analysis. Nutrients 2021, 13, 4394. [Google Scholar] [CrossRef]
- Müller, S.A.; Rahbari, N.N.; Schneider, F.; Warschkow, R.; Simon, T.; von Frankenberg, M.; Bork, U.; Weitz, J.; Schmied, B.M.; Büchler, M.W. Randomized clinical trial on the effect of coffee on postoperative ileus following elective colectomy. Br. J. Surg. 2012, 99, 1530–1538. [Google Scholar] [CrossRef]
- Müller, S.A.; Rahbari, N.N.; Schmied, B.M.; Büchler, M.W. Can postoperative coffee perk up recovery time after colon surgery? Expert Rev. Gastroenterol. Hepatol. 2013, 7, 91–93. [Google Scholar] [CrossRef]
- Dulskas, A.; Klimovskij, M.; Vitkauskiene, M.; Samalavicius, N.E. Effect of coffee on the length of postoperative ileus after elective laparoscopic left-sided colectomy: A randomized, prospective single-center study. Dis. Colon Rectum 2015, 58, 1064–1069. [Google Scholar] [CrossRef]
- Güngördük, K.; Özdemir, İ.A.; Güngördük, Ö.; Gülseren, V.; Gokçü, M.; Sanci, M. Effects of coffee consumption on gut recovery after surgery of gynecological cancer patients: A randomized controlled trial. Am. J. Obstet. Gynecol. 2017, 216, 145 e1–154 e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piric, M.; Pasic, F.; Rifatbegovic, Z.; Konjic, F. The effects of drinking coffee while recovering from colon and rectal resection surgery. Med. Arch. 2015, 69, 357–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabiepoor, S.; Yas, A.; Navaei, J.; Khalkhali, H.R. Does coffee affect the bowel function after caesarean section? Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 220, 96–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güngördük, K.; Paskal, E.K.; Demirayak, G.; Köseoğlu, S.B.; Akbaba, E.; Ozdemir, I.A. Coffee consumption for recovery of intestinal function after laparoscopic gynecological surgery: A randomized controlled trial. Int. J. Surg. 2020, 82, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Köseoğlu, S.B.; Toker, M.K.; Gokbel, I.; Celikkol, O.; Güngördük, K. Can coffee consumption be used to accelerate the recovery of bowel function after cesarean section? Randomized prospective trial. Ginekol. Polska 2020, 91, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parnasa, S.Y.; Marom, G.; Bdolah-Abram, T.; Gefen, R.; Luques, L.; Michael, S.; Mizrahi, I.; Abu-Gazala, M.; Rivkind, A.I.; Mintz, Y.; et al. Does caffeine enhance bowel recovery after elective colorectal resection? A prospective double-blinded randomized clinical trial. Tech. Coloproctol. 2021, 25, 831–839. [Google Scholar] [CrossRef]
- Barthel, C.; Wiegand, S.; Scharl, S.; Scharl, M.; Frei, P.; Vavricka, S.R.; Fried, M.; Sulz, M.C.; Wiegand, N.; Rogler, G.; et al. Patients’ perceptions on the impact of coffee consumption in inflammatory bowel disease: Friend or foe?—A patient survey. Nutr. J. 2015, 14, 78. [Google Scholar] [CrossRef] [Green Version]
- Peters, V.; Tigchelaar-Feenstra, E.F.; Imhann, F.; Dekens, J.A.M.; Swertz, M.A.; Franke, L.H.; Wijmenga, C.; Weersma, R.K.; Alizadeh, B.Z.; Dijkstra, G.; et al. Habitual dietary intake of IBD patients differs from population controls: A case-control study. Eur. J. Nutr. 2021, 60, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Simrén, M.; Månsson, A.; Langkilde, A.M.; Svedlund, J.; Abrahamsson, H.; Bengtsson, U.; Björnsson, E.S. Food-related gastrointestinal symptoms in the irritable bowel syndrome. Digestion 2001, 63, 108–115. [Google Scholar] [CrossRef]
- Bardisi, B.M.; Halawani, A.K.H.; Halawani, H.K.H.; Alharbi, A.H.; Turkostany, N.S.; Alrehaili, T.S.; Radin, A.A.; Alkhuzea, N.M. Efficiency of diet change in irritable bowel syndrome. J. Fam. Med. Prim. Care 2018, 7, 946–951. [Google Scholar] [CrossRef]
- Koochakpoor, G.; Salari-Moghaddam, A.; Keshteli, A.H.; Esmaillzadeh, A.; Adibi, P. Association of Coffee and Caffeine Intake With Irritable Bowel Syndrome in Adults. Front. Nutr. 2021, 8, 632469. [Google Scholar] [CrossRef]
- Wani, F.A.; Almaeen, A.H.; Bandy, A.H.; Thirunavukkarsu, A.; Al-Sayer, T.A.; Flah, A.; Fayed, K.; Albalawi, M.M. Prevalence and risk factors of IBS among medical and nonmedical students in the Jouf University. Niger. J. Clin. Pract. 2020, 23, 555–560. [Google Scholar] [CrossRef]
- Karaman, N.; Türkay, C.; Yönem, O. Irritable bowel syndrome prevalence in city center of Sivas. Turk. J. Gastroenterol. 2003, 14, 128–131. [Google Scholar] [PubMed]
- Ng, S.C.; Tang, W.; Leong, R.W.; Chen, M.; Ko, Y.; Studd, C.; Niewiadomski, O.; Bell, S.; Kamm, M.A.; de Silva, H.J.; et al. Asia-Pacific Crohn’s and Colitis Epidemiology Study ACCESS Group. Environmental risk factors in inflammatory bowel disease: A population-based case-control study in Asia-Pacific. Gut 2015, 64, 1063–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiou, A.N.; Ntritsos, G.; Papadimitriou, N.; Dimou, N.; Evangelou, E. Cigarette Smoking, Coffee Consumption, Alcohol Intake, and Risk of Crohn’s Disease and Ulcerative Colitis: A Mendelian Randomization Study. Inflamm. Bowel Dis. 2021, 27, 162–168. [Google Scholar] [CrossRef]
- Yang, Y.; Xiang, L.; He, J. Beverage intake and risk of Crohn disease: A meta-analysis of 16 epidemiological studies. Med. Baltim. 2019, 98, e15795. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Gniechwitz, D.; Reichardt, N.; Blaut, M.; Steinhart, H.; Bunzel, M. Dietary fiber from coffee beverage: Degradation by human fecal microbiota. J. Agric. Food Chem. 2007, 55, 6989–6996. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, N.; Gniechwitz, D.; Steinhart, H.; Bunzel, M.; Blaut, M. Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota. Mol. Nutr. Food Res. 2009, 53, 287–299. [Google Scholar] [CrossRef]
- Jaquet, M.; Rochat, I.; Moulin, J.; Cavin, C.; Bibiloni, R. Impact of coffee consumption on the gut microbiota: A human volunteer study. Int. J. Food Microbiol. 2009, 130, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.E.; Tzounis, X.; Oruna-Concha, M.J.; Mottram, D.S.; Gibson, G.R.; Spencer, J.P. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br. J. Nutr. 2015, 113, 1220–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moco, S.; Martin, F.P.; Rezzi, S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J. Proteome Res. 2012, 11, 4781–4790. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.; Mohajeri-Tehrani, M.R.; Karimi, S.; Sanginabadi, M.; Poustchi, H.; Enayati, S.; Asgarbeik, S.; Nasrollahzadeh, J.; Hekmatdoost, A. Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: A pilot randomized placebo-controlled, clinical trial. EXCLI J. 2020, 19, 241–250. [Google Scholar] [CrossRef]
- Jung, E.; Park, J.I.; Park, H.; Holzapfel, W.; Hwang, J.S.; Lee, C.H. Seven-day Green Tea Supplementation Revamps Gut Microbiome and Caecum/Skin Metabolome in Mice from Stress. Sci. Rep. 2019, 9, 18418. [Google Scholar] [CrossRef] [Green Version]
- Sales, A.L.; dePaula, J.; Mellinger Silva, C.; Cruz, A.; Lemos Miguel, M.A.; Farah, A. Effects of regular and decaffeinated roasted coffee (Coffea arabica and Coffea canephora) extracts and bioactive compounds on in vitro probiotic bacterial growth. Food Funct. 2020, 112, 1410–1424. [Google Scholar] [CrossRef]
- González, S.; Salazar, N.; Ruiz-Saavedra, S.; Gómez-Martín, M.; de Los Reyes-Gavilán, C.G.; Gueimonde, M. Long-Term Coffee Consumption is Associated with Fecal Microbial Composition in Humans. Nutrients 2020, 12, 1287. [Google Scholar] [CrossRef]
- Harakeh, S.; Angelakis, E.; Karamitros, T.; Bachar, D.; Bahijri, S.; Ajabnoor, G.; Alfadul, S.M.; Farraj, S.A.; Al Amri, T.; Al-Hejin, A.; et al. Impact of smoking cessation, coffee and bread consumption on the intestinal microbial composition among Saudis: A cross-sectional study. PLoS ONE 2020, 15, e0230895. [Google Scholar] [CrossRef]
- Calderón-Pérez, L.; Llauradó, E.; Companys, J.; Pla-Pagà, L.; Pedret, A.; Rubió, L.; Gosalbes, M.J.; Yuste, S.; Solà, R.; Valls, R.M. Interplay between dietary phenolic compound intake and the human gut microbiome in hypertension: A cross-sectional study. Food Chem. 2021, 344, 128567. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, A.; Hevia, A.; López, P.; Suárez, A.; Diaz, C.; Sánchez, B.; Margolles, A.; González, S. Phenolic compounds from red wine and coffee are associated with specific intestinal microorganisms in allergic subjects. Food Funct. 2016, 7, 104–109. [Google Scholar] [CrossRef]
- Nakayama, T.; Oishi, K. Influence of coffee (Coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses. FEMS Microbiol. Lett. 2013, 343, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khokhlova, E.V.; Smeianov, V.V.; Efimov, B.A.; Kafarskaia, L.I.; Pavlova, S.I.; Shkoporov, A.N. Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiol. Immunol. 2012, 56, 27–39. [Google Scholar] [CrossRef]
- Forsyth, C.B.; Shannon, K.M.; Kordower, J.H.; Voigt, R.M.; Shaikh, M.; Jaglin, J.A.; Estes, J.D.; Dodiya, H.B.; Keshavarzian, A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 2011, 6, e28032. [Google Scholar] [CrossRef] [Green Version]
- Khalif, I.L.; Quigley, E.M.; Konovitch, E.A.; Maximova, I.D. Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig. Liver Dis. 2005, 37, 838–849. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, W.; Alkhouri, R.; Baker, R.D.; Bard, J.E.; Quigley, E.M.; Baker, S.S. Structural changes in the gut microbiome of constipated patients. Physiol. Genom. 2014, 46, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.E.; Choi, S.C.; Park, K.S.; Park, M.I.; Shin, J.E.; Lee, T.H.; Jung, K.W.; Koo, H.S.; Myung, S.J.; Constipation Research group of Korean Society of Neurogastroenterology and Motility. Change of Fecal Flora and Effectiveness of the Short-term VSL#3 Probiotic Treatment in Patients with Functional Constipation. J. Neurogastroenterol. Motil. 2015, 21, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barandouzi, Z.A.; Lee, J.; Maas, K.; Starkweather, A.R.; Cong, X.S. Altered Gut Microbiota in Irritable Bowel Syndrome and Its Association with Food Components. J. Pers. Med. 2021, 11, 35. [Google Scholar] [CrossRef]
- Nishitsuji, K.; Watanabe, S.; Xiao, J.; Nagatomo, R.; Ogawa, H.; Tsunematsu, T.; Umemoto, H.; Morimoto, Y.; Akatsu, H.; Inoue, K.; et al. Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Sci. Rep. 2018, 8, 16173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandarkar, N.S.; Mouatt, P.; Goncalves, P.; Thomas, T.; Brown, L.; Panchal, S.K. Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB J. 2020, 34, 4783–4797. [Google Scholar] [CrossRef] [Green Version]
- Cowan, T.E.; Palmnäs, M.S.; Yang, J.; Bomhof, M.R.; Ardell, K.L.; Reimer, R.A.; Vogel, H.J.; Shearer, J. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 2014, 25, 489–495. [Google Scholar] [CrossRef]
- Faust, K.; Sathirapongsasuti, J.F.; Izard, J.; Segata, N.; Gevers, D.; Raes, J.; Huttenhower, C. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 2012, 8, e1002606. [Google Scholar] [CrossRef]
- Peters, B.A.; McCullough, M.L.; Purdue, M.P.; Freedman, N.D.; Um, C.Y.; Gapstur, S.M.; Hayes, R.B.; Ahn, J. Association of Coffee and Tea Intake with the Oral Microbiome: Results from a Large Cross-Sectional Study. Cancer Epidemiol. Biomarkers Prev. 2018, 27, 814–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loomis, D.; Guyton, K.Z.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; et al. Carcinogenicity of drinking coffee, mate, and very hot beverages. Lancet Oncol. 2016, 17, 877–878. [Google Scholar] [CrossRef]
- ARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Drinking Coffee, Mate, and Very Hot Beverages; International Agency for Research on Cancer: Lyon, France, 2018; Volume 116. [Google Scholar]
- He, T.; Guo, X.; Li, X.; Liao, C.; Yin, W. Association between coffee intake and the risk of oral cavity cancer: A meta-analysis of observational studies. Eur. J. Cancer Prev. 2020, 29, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, B.; Hao, C. Coffee consumption and risk of esophageal cancer incidence: A meta-analysis of epidemiologic studies. Med. Baltim. 2018, 97, e0514. [Google Scholar] [CrossRef]
- Brown, F.; Diller, K.D. Calculating the optimum temperature for serving hot beverages. Burns 2008, 34, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Islami, F.; Boffetta, P.; Ren, J.S.; Pedoeim, L.; Khatib, D.; Kamangar, F. High-temperature beverages and foods and esophageal cancer risk--a systematic review. Int. J. Cancer 2009, 125, 491–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Huang, S.; He, T.; Su, Y. Coffee consumption and risk of gastric cancer: An updated meta-analysis. Asia Pac. J. Clin. Nutr. 2016, 25, 578–588. [Google Scholar] [CrossRef]
- Martimianaki, G.; Bertuccio, P.; Alicandro, G.; Pelucchi, C.; Bravi, F.; Carioli, G.; Bonzi, R.; Rabkin, C.S.; Liao, L.M.; Sinha, R.; et al. Coffee consumption and gastric cancer: A pooled analysis from the Stomach Cancer Pooling Project consortium. Eur. J. Cancer Prev. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Deng, W.; Yang, H.; Wang, J.; Cai, J.; Bai, Z.; Song, J.; Zhang, Z. Coffee consumption and the risk of incident gastric cancer--A meta-analysis of prospective cohort studies. Nutr. Cancer 2016, 68, 40–47. [Google Scholar] [CrossRef]
- Li, T.D.; Yang, H.W.; Wang, P.; Song, C.H.; Wang, K.J.; Dai, L.P.; Shi, J.X.; Zhang, J.Y.; Ye, H. Coffee consumption and risk of pancreatic cancer: A systematic review and dose-response meta-analysis. Int. J. Food Sci. Nutr. 2019, 70, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.D.; Kuan, A.S.; Reeves, G.K.; Green, J.; Floud, S.; Beral, V.; Yang, T.O.; Million Women Study Collaborators. Coffee and pancreatic cancer risk among never-smokers in the UK prospective Million Women Study. Int. J. Cancer 2019, 145, 1484–1492. [Google Scholar] [CrossRef] [Green Version]
- Ran, H.Q.; Wang, J.Z.; Sun, C.Q. Coffee Consumption and Pancreatic Cancer Risk: An Update Meta-analysis of Cohort Studies. Pak. J. Med. Sci. 2016, 32, 253–259. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Panjawatanan, P.; Mousa, O.Y.; Cheungpasitporn, W.; Pungpapong, S.; Ungprasert, P. Heavy Coffee Consumption and Risk of Pancreatitis: A Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2018, 63, 3134–3140. [Google Scholar] [CrossRef]
- Larsson, S.C.; Giovannucci, E.L.; Wolk, A. Coffee Consumption and Risk of Gallbladder Cancer in a Prospective Study. J. Natl. Cancer Inst. 2017, 109, djw237. [Google Scholar] [CrossRef]
- Sartini, M.; Bragazzi, N.L.; Spagnolo, A.M.; Schinca, E.; Ottria, G.; Dupont, C.; Cristina, M.L. Coffee Consumption and Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2019, 11, 694. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.M. Coffee Consumption and Colon Cancer Risk: A Meta- Epidemiological Study of Asian Cohort Studies. Asian Pac. J. Cancer Prev. 2020, 21, 1177–1179. [Google Scholar] [CrossRef]
- Um, C.Y.; McCullough, M.L.; Guinter, M.A.; Campbell, P.T.; Jacobs, E.J.; Gapstur, S.M. Coffee consumption and risk of colorectal cancer in the Cancer Prevention Study-II Nutrition Cohort. Cancer Epidemiol. 2020, 67, 101730. [Google Scholar] [CrossRef]
- Mackintosh, C.; Yuan, C.; Ou, F.S.; Zhang, S.; Niedzwiecki, D.; Chang, I.W.; O’Neil, B.H.; Mullen, B.C.; Lenz, H.J.; Blanke, C.D.; et al. Association of Coffee Intake with Survival in Patients with Advanced or Metastatic Colorectal Cancer. JAMA Oncol. 2020, 6, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Tavani, A.; Bosetti, C.; Boffetta, P.; La Vecchia, C. Coffee and the risk of hepatocellular carcinoma and chronic liver disease: A systematic review and meta-analysis of prospective studies. Eur. J. Cancer Prev. 2017, 26, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, O.J.; Roderick, P.; Buchanan, R.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee, including caffeinated and decaffeinated coffee, and the risk of hepatocellular carcinoma: A systematic review and dose-response meta-analysis. BMJ Open 2017, 7, e013739. [Google Scholar] [CrossRef] [PubMed]
- Bhurwal, A.; Rattan, P.; Yoshitake, S.; Pioppo, L.; Reja, D.; Dellatore, P.; Rustgi, V. Inverse Association of Coffee with Liver Cancer Development: An Updated Systematic Review and Meta-analysis. J. Gastrointestin. Liver Dis. 2020, 29, 421–428. [Google Scholar] [CrossRef]
- Tamura, T.; Hishida, A.; Wakai, K. Coffee consumption and liver cancer risk in Japan: A meta-analysis of six prospective cohort studies. Nagoya J. Med. Sci. 2019, 81, 143–150. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wolk, A. Coffee consumption and risk of liver cancer: A meta-analysis. Gastroenterology 2007, 132, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Wiltberger, G.; Wu, Y.; Lange, U.; Hau, H.M.; Tapper, E.; Krenzien, F.; Atanasov, G.; Benzing, C.; Feldbrügge, L.; Csizmadia, E.; et al. Protective effects of coffee consumption following liver transplantation for hepatocellular carcinoma in cirrhosis. Aliment. Pharmacol. Ther. 2019, 49, 779–788. [Google Scholar] [CrossRef]
- Kennedy, O.J.; Fallowfield, J.A.; Poole, R.; Hayes, P.C.; Parkes, J.; Roderick, P.J. All coffee types decrease the risk of adverse clinical outcomes in chronic liver disease: A UK Biobank study. BMC Public Health 2021, 21, 970. [Google Scholar] [CrossRef]
- Yaya, I.; Marcellin, F.; Costa, M.; Morlat, P.; Protopopescu, C.; Pialoux, G.; Santos, M.E.; Wittkop, L.; Esterle, L.; Gervais, A.; et al. Impact of Alcohol and Coffee Intake on the Risk of Advanced Liver Fibrosis: A Longitudinal Analysis in HIV-HCV Coinfected Patients (ANRS HEPAVIH CO-13 Cohort). Nutrients 2018, 10, 705. [Google Scholar] [CrossRef] [Green Version]
- Hayat, U.; Siddiqui, A.A.; Okut, H.; Afroz, S.; Tasleem, S.; Haris, A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Ann. Hepatol. 2021, 20, 100254. [Google Scholar] [CrossRef]
- Sewter, R.; Heaney, S.; Patterson, A. Coffee Consumption and the Progression of NAFLD: A Systematic Review. Nutrients 2021, 13, 2381. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Yi Zhang, Y. Associations of Coffee Consumption with the Circulating Level of Alanine Aminotransferase and Aspartate Aminotransferase. A Meta-Analysis of Observational Studies. J. Am. Coll. Nutr. 2021, 40, 261–272. [Google Scholar] [CrossRef]
- Ruhl, C.E.; Everhart, J.E. Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2005, 128, 24–32. [Google Scholar] [CrossRef]
- Freedman, N.D.; Everhart, J.E.; Lindsay, K.L.; Ghany, M.G.; Curto, T.M.; Shiffman, M.L.; Lee, W.M.; Lok, A.S.; Di Bisceglie, A.M.; Bonkovsky, H.L.; et al. Coffee intake is associated with lower rates of liver disease progression in chronic hepatitis C. Hepatology 2009, 50, 1360–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijarnpreecha, K.; Thongprayoon, C.; Ungprasert, P. Impact of caffeine in hepatitis C virus infection: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2017, 29, 17–22. [Google Scholar] [CrossRef]
- Hodge, A.; Lim, S.; Goh, E.; Wong, O.; Marsh, P.; Knight, V.; Sievert, W.; de Courten, B. Coffee Intake Is Associated with a Lower Liver Stiffness in Patients with Non-Alcoholic Fatty Liver Disease, Hepatitis C, and Hepatitis B. Nutrients 2017, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelizzaro, F.; Cardin, R.; Sartori, A.; Imondi, A.; Penzo, B.; Farinati, F. Coffee and hepatocellular carcinoma: Epidemiologic evidence and biologic mechanisms. Hepatoma Res. 2021, 7, 29. [Google Scholar] [CrossRef]
Authors | Study Design | Country | Size of the Population | Age (Years) | Number of Cases and Controls | Outcome |
---|---|---|---|---|---|---|
Reviews and meta-analyses | ||||||
Kim et al., 2014 [47] | Meta-analysis of 15 case-control studies between 1999 and 2012 | Europe America Asia | 113 to 43,363 participants per study included | No association between coffee consumption and GERD: <4 cups/day: OR = 0.91 (95% CI = 0.81–1.01) >5 cups/day: OR = 1.14 (0.69–1.88) | ||
Chen et al., 2021 [48] | Meta-analysis of 21 retrospective, prospective, Asian, and high-quality studies | Europe America Africa Asia | 24,943 participants | 16,297 adults, 7299 adolescents | No significant association between coffee and GERD in all 21 studies pooled: (RR = 1.07; 0.96–1.19; p < 0.001) No significant association in
| |
Single studies: GERD | ||||||
No association between coffee and GERD | ||||||
Chang et al., 1997 [42] | Case-control study | China | 2044 endoscopy patients | 16–82 years | 102 patients with GERD, 1932 without GERD, 1266 males, 778 females | No association between coffee consumption and the risk of GERD |
Boekema et al., 1999 [49] | Randomized, controlled crossover study | The Nether-lands | 15 subjects | 20–61 years | 7 cases, 33–50 years 8 controls, 20–61 years | No effect of coffee on postprandial acid reflux time or number of reflux episodes, both in GERD patients and in healthy subjects. In the fasting period, coffee increased the percentage acid reflux time only in GERD patients [median 2.6, (0–19.3) vs. median 0 (0–8.3), p = 0.028], compared to healthy subjects |
Nilsson et al., 2004 [50] | Case-control study | Norway | 47,556 participants | 19–101 years | 3155 subjects with GERD or heartburn (1555 males and 1590 females) 40,120 controls (18,814 males and 21,396 females) | No association between coffee consumption and the risk of GERD compared to a daily consumption of less than one cup 1–3 cups/day: OR = 1.0 (0.8–1.1) 3 cups/day: OR = 1.1 (0.9–1.5) |
Dore et al., 2007 [51] | Single center case-control study | Italy | 500 subjects 169 males 331 females | 15–61 years | 300 cases 200 controls 390 coffee consumers | No association between coffee consumption and GERD diagnosed by endoscopy Age- and sex-adjusted OR for coffee vs. no consumption: OR = 1.0 (0.6–1.2) |
El Serag et al., 2007 [52] | Retrospective nested case-control study | USA | 113 subjects 48 males 65 females | 17–18 years | All were patients diagnosed with GERD in childhood (10–12 years) | No association between GERD and coffee in adults with history of childhood GERD |
Zheng et al., 2007 [53] | Swedish Twin Registry Survey with questionnaires and telephone interviews | Sweden | 23,634 subjects 10,950 males and 12,684 females | 57 (42–99) years for males 58 (42–104) years for females | Males: 1753 with GERD, 9197 controls Females: 2330 with GERD, 10,354 controls | No association between GERD and coffee in female subjects Adjusted ORs compared to no consumption: 1–3 cups/day: OR = 0.92 (0.76–1.12) 4–6 cups/day: OR = 1.01 (0.82–1.25) ≥7 cup/day: OR = 1.10 (0.85–1.43) |
Friedenberg et al., 2010 [54] | Cross-sectional survey | USA | 503 subjects 374 controls, 147 males and 227 females 129 with GERD, 129 with GERD | 42.3 ± 17.2 years for controls 44.9 ± 15.9 years for controls | 374 controls, 129 with GERD | No association between coffee consumption and GERD Association between body mass index (high BMI in this population (29.6 ± 9.1) and GERD |
Bhatia et al., 2011 [44] | Multicenter case-control study | India | 3224 participants | GERD patients: 38.4 (28–48;5) years Controls, 40 (30–52) years | 245 cases, 112 males and 133 females 2335 controls, 1534 males and 1444 females | No association between coffee consumption and GERD Multivariate OR = 0.66 (0.29–1.50; p = 0.309) compared to no coffee |
Pandeya et al., 2012 [55] | Cross-sectional survey | Australia | 1580 subjects 1040 males 540 females | 30–70 | 727 control subjects; 678 subjects with weekly GERD; 175 subjects with weekly GERD | No association between coffee consumption and GERD. Occasional GERD symptoms compared to no coffee consumption ≤3 cups/month: PR = 0.93 (0.73–1.18) 1–6 cups/week: PR = 1.04 (0.85–1.29) ≥1 cup/day: PR = 1.02 (0.82–1.26) Frequent GERD symptoms compared to no coffee consumption ≤3 cups/month: PR = 1.23 (0.69–2.19) 1–6 cups/week: PR = 1.08 (0.63–1.85) ≥1 cup/day: PR = 1.20 (0.70–2.05) |
Shimamoto et al., 2013 [56] | Cross-sectional study | Japan | 8013 subjects, 5451 coffee drinkers, 2562 non-drinkers | 49.8 ± 8.2 years in drinkers and 51.5 ± 9.7 years in non-drinkers | 4670 females (3194 drinkers and 1476 non-drinkers) 3343 males (2257 drinkers and 1086 non-drinkers) | No association between coffee consumption and risk of reflux esophagitis (compared to less than one cup of coffee/day) 1–2 cups/day, OR = 0.88 (0.74–1.04) ≥3 cups/day: OR = 0.84 (0.70–1.01) No association between coffee consumption and risk of non-erosive reflux disease (compared to less than one cup of coffee/day) 1–2 cups/day, OR = 0.93 (0.79–1.08) ≥3 cups/day: OR = 0.93 (0.79–1.10) |
Ercelep et al., 2014 [57] | Retrospective nested case-control study | Turkey | 2037 subjects 791 males 1246 females | 35.9 ± 9.7 (without GERD) 36.8 ± 9.6 (with GERD) | 1595 without GERD (636 males, 959 females) 442 with GERD (155 males, 287 females) | No association of coffee consumption with GERD symptoms, OR = 1.06 (0.66–1.70) for those drinking more than 3 cups versus non-drinking or drinking less |
Kubo et al., 2014 [58] | Case-control study | USA | 490 subjects 334 males, 136 females | 20–79 years | 181 controls (123 males, 68 females) 380 patients with GERD (211 males, 69 females) | No association between coffee consumption and GERD (compared to no coffee consumption) ≥2 cups/day: OR = 0.89 (0.52–1.51) |
Filiberti et al., 2017 [59] | Retrospective case-control study: patients with esophagitis (E) | Italy | 1420 subjects 766 males 654 females | 53.7 ± 14.1 years for controls 52.6 ± 14.7 years for E patients | 619 controls (252 males, 367 females) 462 E patients (285 males, 177 females) | No association between coffee and esophagitis in current drinkers, increased risk of E in light drinkers (<1 cup/day): OR = 1.85 (1.00–3.43) vs. controls |
Wei et al., 2019 [60] | Prospective study | Taiwan | 1837 subjects, 1197 coffee drinkers and 185 heavy consumers | Whole sample: 51.7 ± 10.2 years Males: 51.7 ± 10.4 years Females: 51.4 ± 10.0 years | 970 males and 867 females | No association between coffee consumption and GERD (compared to no coffee consumption) Coffee consumption, OR = 1.11 (0.86–1.43) Heavy coffee consumption (>2 cups/day): OR = 0.99 (0.69–1.43) No association between coffee consumption and erosive esophagitis on endoscopy (compared to no coffee consumption) Males Coffee consumption, OR = 0.86 (0.61–1.22) Heavy coffee consumption (>2 cups/day): OR = 0.86 (0.52–1.43) Females Coffee consumption, OR = 0.98 (0.63–1.52) Heavy coffee consumption (>2 cups/day): OR = 1.16 (0.60–2.26) |
Yuan et al., 2019 [61] | Multicenter case-control study | China | 1518 subjects, 832 GERD patients and 686 controls | GERD: 48.5 ± 13.2 years Non-GERD: 47.5 ± 14.86 years | GERD: 455 males, 377 females Non-GERD: 302 males, 384 females | No association between a preference for coffee drinking and GERD OR = 1.27 (0.78–2.05) |
Reduced risk of GERD in coffee consumers | ||||||
Diaz-Rubio et al., 2004 [62] | Random population sample based on telephone interviews | Spain | 2500 subjects, 1185 males and 1315 females | 40–79 years | 245 subjects with frequent GERD or dyspepsia, 546 subjects with occasional symptoms | Reduced risk of GERD symptoms and frequency in patients with frequent vs. occasional symptoms Symptoms vs. no-symptoms: OR = 0.85 (0.67–1.06) Frequent vs. occasional symptoms: OR = 0.66 (0.66–0.97) |
Zheng et al., 2007 [53] | Swedish Twin Registry Survey with questionnaires and telephone interviews | Sweden | 23,634 subjects 10,950 males and 12,684 females | 57 (42–99) years for males 58 (42–104) years for females | Males: 1753 with GERD, 9197 controls Females: 2330 with GERD, 10,354 controls | Inverse dose-dependent reduced risk of GERD associated to coffee consumption only in in male subjects Adjusted ORs compared to no consumption: 1–3 cups/day: OR = 0.91 (0.73–1.12) 4–6 cups/day: OR = 0.86 (0.69–1.08) ≥7 cup/day: OR = 0.75 (0.57–0.98) |
Increased risk of GERD in coffee consumers | ||||||
Wendl et al., 1994 [41] | Interventional double-blinded randomized study | Germany | 16 healthy volunteers | 25.9 (20–41) years | 7 men 9 women | Association between regular and GERD compared with tap water. No effects of decaffeinated coffee and tap water. GERD: 3.2% (1.3–14.4%) with regular coffee and 0.9% (0.1–3.6%) with decaffeinated coffee (p < 0.05) |
Pehl et al., 1997 [63] | Interventional double-blinded randomized study | Germany | 17 reflux patients 11 males, 6 females | 47–78 years | 9 with endoscopic esophagitis 8 controls | Association between by regular coffee and GERD in both patients with and without reflux oesophagitis Reduction of this effect by 83% with decaffeinated coffee Median values of fraction time esophageal pH: Caffeinated coffee = 17.9 (0.7–56.6) Decaffeinated coffee = 3.1 (0–49.9), p < 0.001 |
Diaz-Rubio et al., 2004 [62] | Random population sample based on telephone interviews | Spain | 2500 subjects, 1185 males and 1315 females | 40–79 years | 245 subjects with frequent GERD or dyspepsia, 546 subjects with occasional symptoms | Association between regular coffee, GERD symptoms frequency, and severity in patients with severe or long-lasting GERD Severe vs. non-severe symptoms: OR = 1.15 (0.58–2.30) ≥10 years vs. less: OR = 1.18 (0.79–1.76) |
Wang et al., 2004 [64] | Epidemiologic, based on questionnaires | China | 2789 residents | 18–70 years | 85 responders, 17 with GERD | Mild association between coffee and GERD OR = 1.23 (0.76–2.00) |
Martin-de-Argila & Martinez-Jiménez 2013 [65] | Multicenter, cross-sectional, retrospective and non-interventional study | Spain | 2246 patients with GERD | 18–70 years | 1002 males 1244 females | Coffee intake (>1 vs. <1 cup/day) significantly related to chest pain OR = 1.33 (1.01–1.75) |
Park et al., 2014 [66] | Prospective case-control study: patients monitored for upper GI cancer | Korea | 2226 subjects | 46.3 (19–87) years | 742 subjects with GERD (460 males, 282 females) and 1484 healthy controls (920 males, 564 females) | Association between regular coffee and GERD in patients with and without reflux oesophagitis (RE) for coffee vs. none RE risk in the whole sample: OR = 1.35 (1.13–1.43) RE symptoms: OR = 1.45 (1.07–1.96) Risk in young group (<40): OR = 1.13 (1.08–1.31) Mean age group (≥40–<65): OR = 1.30 (1.12–1.52) Elderly group (≤65): OR = 1.40 (1.09–2.10) |
Alsulobi et al., 2017 [67] | Cross-sectional study | Saudi Arabia | 302 subjects 207 females 95 males | 18–55 years | 186 with prior GERD symptoms | Coffee consumption increased risk of GERD in 144 subjects (77.4% of the sample) No significant effect of sex and age |
Arivan and Deepanjali, 2018 [43] | Cross-sectional survey using a validated symptom score | India | 358 subjects 188 males 170 females | 20.3 ± 1.5 (S.D.) years | 193 without symptoms; 115 with at least a weekly episode of regurgitation: Diagnosis of GERD in 18 subjects | GERD symptoms were more frequent in subjects frequently drinking tea and coffee: OR = 4.65 (1.2–17.96); p = 0.026 GERD symptoms were not affected by gender or body mass index. |
Mehta et al., 2019 [68] | Data collected from the Nurses’ Health Study, an ongoing prospective cohort study, started in 1989 | USA | 7961 women with GERD | 42–62 years | Only females | Coffee consumption and risk of GERD symptoms compared to no intake Total risk for any coffee Intake ≥6 cups/day, HR = 1.34 (1.13–1.59) Caffeinated coffee <1 cup/day = HR = 1.11 (1.03–1.19) 1–3 cups/day = HR = 1.08 (1.03–1.14) 4–5 cups/day = 1.14 (1.02–1.27) ≥6 cups/day = 1.23 (1.00–1.50) Decaffeinated coffee <1 cup/day = HR = 1.05 (0.99–1.11) 1–3 cups/day = HR = 1.19 (1.10–1.28) 4–5 cups/day = 1.02 (0.73–1.40) ≥6 cups/day = 1.48 (0.92–2.39) Replacing 2 servings of coffee/day by water No risk: HR = 0.96 (0.92–1.00) |
Correia et al., 2020 [35] | Qualitative intervention study | USA | 51 subjects 45 females 6 males | 29–83 years | All were patients with functional dyspepsia | Reduction of the pre-operative median value (interquartile range) for reflux from 4.00 (3.00) to 1.00 (1.00) p < 0.001 upon substitution of caffeinated or decaffeinated coffee by a non-caffeinated coffee substitute (roasted malt barley, roasted chicory, and roasted rye) for 1 month. |
Green et al., 2020 [69] | Observational study, data from European participants in the UK Biobank | UK | 379,713 subjects | Controls: 57.0 ± 8.0 years GERD cases: 59.3± 7.4 years | 355,744 controls 345,744 males 33,969 GERD cases 15,823 males | Limited association between coffee consumption and GERD (241016 drinkers, 2.6 ± 2.1 cups/day in both groups): OR = 1.18 (0.88–1.58) |
Single studies: Barrett’s esophageus | ||||||
Sajja et al., 2016 [70] | Cross-sectional study | USA | 2038 veterans 310 BE cases 1728 without BE | 60 ± 90.2 years for controls 61.6 ± 7.6 years for BE cases | 1869 males (1567 controls and 302 BE cases) 169 females (161 controls and 8 BE cases) | No association between coffee consumption and risk of BE when population adjusted for confounders (including sex and race) Adjusted OR = 1.04 (0.76–1.42) for coffee drinkers compared to non-coffee drinkers |
Filiberti et al., 2017 [59] | Retrospective case-control study: patients with Barrett’s esophageus (BE) | Italy | 1420 subjects 766 males 654 females | 53.7 ± 14.1 years for controls 56.2 ± 15.2 years for BE patients | 619 controls (252 males, 367 females) 339 BE patients (229 males, 110 females) | BE risk versus control: -higher in former coffee drinkers, irrespective of levels of exposure ≤1 cup/day: OR = 3.76 (1.33–10.6) >1 cup/day: OR = 3.79 (1.31–11.0); test for linear trend (TLT) p = 0.006) -higher with duration >30 years: OR = 4.18 (1.43–12.3) -higher for late quitters ≤3 years after stopping: OR = 5.95 (2.19–16.2). -higher in subjects who started drinking coffee at a later age > 18 years: OR = 6.10 (2.15–17.3) -no association in current drinkers |
Authors | Study Design | Country | Size of the Population | Age (Years) | Number of Cases and Controls | Outcome |
---|---|---|---|---|---|---|
Reviews and meta-analyses | ||||||
Zhang et al., 2015 [89] | Meta-analysis of one case-control study and 5 prospective cohort studies | Europe (Italy, Sweden, UK) America | 227,749 individuals | 216,272 controls 11,477 cases | Risk reduction of gallstone disease with coffee consumption:
| |
Kotrotsios et al., 2019 [90] | Review of epidemiological studies published between 1973 and 2018 | Europe Asia | Risk reduction of gallstone disease with coffee consumption | |||
Single studies | ||||||
La Vecchia et al., 1991 [91] | Case-control study | Italy | 1317 participants 762 men and 555 women | <45–74 years | 1122 controls (683 men and 436 women) and 195 cases (76 men and 119 women) | No association between coffee consumption and gallstones
|
Misciagna et al., 1996 [92] | Prospective cohort study | Italy | 1962 participants, 1162 men and 800 women | 30–69 years | 1858 controls 104 cases (55 men and 49 women in the 7-year follow-up | Risk reduction of gallstone disease with coffee consumption Coffee consumers vs. non-consumers: OR: 0.75 (95% CI = 0.47–1.19) |
Kratzer et al., 1997 [93] | Epidemiological study based on questionnaires | Germany | 1116 participants, 656 men and 460 women | 18–65 years | 1049 controls (618 men and 431 women) and 67 cases (38 men and 29 women) | No association between caffeine consumption and gallstones |
Sahi et al., 1998 [94] | Epidemiological study based on questionnaires | USA | 16,787 men | unknown | 15,786 controls 1019 cases | No association between coffee consumption and gallstones No measurement of the amount of coffee consumed |
Leitzman et al., 1999 [95] | Prospective cohort study Health Professional Follow-up study (HPSF) | USA | 46,008 men | 40–75 years | 44,927 controls 1081 cases | Risk reduction of gallstone disease with coffee consumption
|
Ruhl & Everhart 2000 [96] | Cohort study Third National Health and Nutrition Examination Survey (NHANES III) | USA | 13,983 participants 6675 men and 7263 women | 20–74 years | 1993 cases 578 men and 1415 women | No association between coffee consumption and gallstones vs. no coffee consumptionTotal risk in men:
|
Leitzman et al., 2002 [97] | Prospective cohort study (Nurses’ Health Study, NHS) | USA | 80,898 women | 34–59 years et entry, 20 years follow-up | 73,087 controls 7811 women with cholecystectomy | Risk reduction of gallstone disease with coffee consumption Caffeinated coffee consumption compared to none:
|
Ishizuka et al., 2003 [98] | Case-control study | Japan | 7063 men | unknown | 6887 controls 174 cases | No association between coffee consumption and gallstones Coffee and prevalent gallstones (compared to no coffee consumption):
|
Walcher et al., 2010 [99] | Epidemiological study based on questionnaires | Germany | 2147 participants 1036 men and 1111 women | 18–65 years | 1976 controls 171 cases | No association between coffee/caffeine consumption and gallstones
|
Nordenvall et al., 2014 [100] | Cohort study Swedish Mammography Cohort and Cohort of Swedish Men | Sweden | 71,925 participants 40,936 men and 30898 women | Born 1914–1948 | 69,906 controls, 2019 cases, 962 men and 1057 women | Inverse association between coffee consumption and gallstones in premenopausal women or HRT users but not in other women or men Coffee and gallstones in all men vs. coffee consumption < 2 cups/day:
Premenopausal
|
Nordestgaard et al., 2019 [101] | Prospective observational study | Denmark | 101,190 individuals, 47,001 men and 54,189 women | 58 (48–67) years | 98,957 controls and 2233 cases, 8 years follow-up | Risk reduction of gallstone disease with coffee consumption Compared to no coffee consumption 0.1–3 cups/day: HR = 0.86 (0.75–0.99) 3.1–6 cups/day: HR = 0.80 (0.69–0.93) >3 cups/day: HR = 0.83 (0.66–1.03) |
Authors | Study Design | Type of Surgery | Size of the Population | Outcome |
---|---|---|---|---|
Eamudomkarn et al., 2018 [113] | Systematic review and meta-analysis of 6 randomized control studies | 3 studies on cesarean deliveries 2 on colorectal cancers 1 on gynecologic cancer surgery | 601 cases | Reference: water or no intervention Time to first flatus: Decreased time to first flatus (MD, −7.14 h; 95% CI, −10.96 to −3.33 h). Time to first bowel sound (434 participants undergoing cesarean delivery or gynecologic cancer surgery): Shorter time to first audible bowel sound (MD, −4.17 h; 95% CI, −7.88 to −0.47 h). Time to first defecation: Reduced time to first defecation (MD, −9.98 h; 95% CI, −16.97 to −2.99 h) Time to tolerance of solid food (476 participants) Shorter time to tolerance of solid food (MD, −15.55 h; 95% CI, −22.83 to −8.27 h). Postoperative nausea (359 participants undergoing cesarean delivery and gynecologic cancer surgery) No significant difference in the risk of postoperative nausea (RR, 0.61; 95% CI, 0.27–1.36). Length of hospital stay (476 participants) Shorter length of hospital stay (MD, −0.74 days; 95% CI, −1.14 to −0.33 days), |
Cornwall et al., 2020 [114] | Systematic review and meta-analysis of 7 randomized control studies | 150 cesarean deliveries 114 gynecologic resections 342 colorectal resections | 606 cases: 317 patients and 289 controls | Reference: water or no intervention Time to first flatus: No significant effect of coffee on time to first flatus (MD = −3.6 h, 95% CI: 0.8, −7.96 h, p = 0.11). Time to first bowel sound (264 participants) Reduced time to first bowel sounds or sensation of bowel movement (MD = −3.3 h, 95% CI: −0.6, −6.0 h, p = 0.02). Time to first defecation: Reduced time to first defecation (MD = −11.8 h, 95% CI: −2.2, −18.5 h, p < 0.00001) Time to tolerance of solid food (280 participants) Reduced time to tolerance of solid food (MD = −17.1 h, 95% CI: −2.9 to −31.2 h, p = 0.02). Postoperative nausea: assessed in 359 patients undergoing cesarean delivery and gynecologic cancer surgery. No significant difference in the risk of postoperative nausea (RR, 0.61; 95% CI, 0.27–1.36). Length of hospital stay (556 participants) No significant association between coffee consumption and length of hospital stay (MD = −1.9 days, 95% CI: 1.7, −5.4 days, p = 0.30) |
Gkegkes et al., 2020 [115] | Systematic review and meta-analysis of 4 randomized control studies | 3 studies on colorectal surgery 1 on gynecological interventions | 341 patients, 156 cases and 185 controls | Reference: water or no intervention Time to first flatus: Reduced time to first flatus (MD = −10.02 h; 95% CI −15.54 to –4.50 h) Time to first bowel movement (264 participants) Reduced time to first bowel sensation of bowel movement (MD = −12.09 h; 95% CI: −15.26 to –8.92 h) Time to first defecation: Reduced time to first defecation (MD = −16.14 h; 95% CI: −18.59 to 13.70 h) Time to tolerance of solid food: Reduced time to tolerance of solid food (MD = −1.31 h, 95% CI: −1.83 to −0.79 h) Length of hospital stay: No significant association between coffee consumption and length of hospital stay (MD = −3.18 days; 95% CI: −8.25 to 1.89 days) |
Kane et al., 2020 [116] | Systematic review and meta-analysis of 4 randomized control studies published since 2012 | 3 studies on resection of colon/rectum 3 studies on gynecological interventions | Reference: water or no intervention Time to first flatus (403 patients): Reduced time to first flatus (MD = −6.96 h; 95% CI: −9.53 to –4.38 h) Time to first defecation (231 patients): Reduced time to first defecation (MD = −9.38 h; 95% CI: −17.60 to 1.16 h) Time to tolerance of solid food (253 patients): Reduced time to tolerance of solid food (MD = −9.52 h, 95% CI: −18.19 to −0.85 h) Length of hospital stay (311 patients): Reduced length of hospital stay (MD = −2.81 days; 95% CI: −7.14 to 1.51 days) | |
Watanabe et al., 2021 [117] | Systematic review and meta-analysis of 13 randomized control trials published since 2012 9 ongoing trials were included | 6 trials on colorectal surgery 5 trials on cesarean section 2 trials on gynecological surgery | 1246 patients | Reference: water or no intervention Time to first flatus: Reduced time to first flatus (MD = −4.3 h, 95% CI: −8.5 to −0.07 h, p = 0.11). Time to first bowel sound: Reduced time to first bowel sounds (MD = −4.3 h, 95% CI: −7.1 to −1.5 h). Time to first defecation: Reduced time to first defecation (MD =−10 h, 95% CI = −14 to −5.6 h) Time to tolerance of solid food: Reduced time to tolerance of solid food (MD = −9.9 h, 95% CI: −14 to −5.9 h). Length of hospital stay (556 participants) No significant association between coffee consumption and length of hospital stay (MD = −1.5 days, 95% CI: −2.7 to −0.3 days) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nehlig, A. Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients 2022, 14, 399. https://doi.org/10.3390/nu14020399
Nehlig A. Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients. 2022; 14(2):399. https://doi.org/10.3390/nu14020399
Chicago/Turabian StyleNehlig, Astrid. 2022. "Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update" Nutrients 14, no. 2: 399. https://doi.org/10.3390/nu14020399
APA StyleNehlig, A. (2022). Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients, 14(2), 399. https://doi.org/10.3390/nu14020399