Apelin-13 and Asprosin in Adolescents with Anorexia Nervosa and Their Association with Psychometric and Metabolic Variables
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochemical Analysis
2.2. Statistics
3. Results
3.1. Demographic Data and Clinical Assessments
3.2. Asprosin and Apelin-13 Levels
3.3. Correlations between Asprosin and Apelin-13 and Metabolic Variables in AN Patients
3.4. Relationships between Asprosin and Apelin-13 and Psychometric Variables in AN Patients
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AN | anorexia nervosa |
AN1 | adolescents with anorexia nervosa in extremely low body weight |
AN2 | adolescents after partial normalization of body weight |
APE | apelin |
APE-13 | apelin-13 |
ASP | asprosin |
BDI | The Beck Depression Inventory |
CG | healthy control group |
CNS | Central Nervous System |
CYBOCS | Children’s Yale–Brown Obsessive Compulsive Scale |
EAT-26 | the Eating Attitude Test |
HAMD | the Hamilton Depression Rating Scale |
OCD | Obsessive compulsive disorder |
References
- Watson, H.J.; Yilmaz, Z.; Thornton, L.M.; Hübel, C.; Coleman, J.R.I.; Gaspar, H.A.; Bryois, J.; Hinney, A.; Leppä, V.M.; Mattheisen, M.; et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 2019, 51, 1207–1214. [Google Scholar] [CrossRef] [PubMed]
- Van Eeden, A.E.; Van Hoeken, D.; Hoek, H.W. Incidence, prevalence and mortality of anorexia nervosa and bulimia nervosa. Curr. Opin. Psychiatry 2021, 34, 515–524. [Google Scholar] [CrossRef]
- Martínez-González, L.; Fernández-Villa, T.; Molina, A.J.; Delgado-Rodríguez, M.; Martín, V. Incidence of Anorexia Nervosa in Women: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 3824. [Google Scholar] [CrossRef]
- Monteleone, P.; Maj, M. Dysfunctions of leptin, ghrelin, BDNF and endocannabinoids in eating disorders: Beyond the homeostatic control of food intake. Psychoneuroendocrinology 2013, 38, 312–330. [Google Scholar] [CrossRef] [PubMed]
- Bulik, C.M.; Flatt, R.; Abbaspour, A.; Carroll, I. Reconceptualizing anorexia nervosa. Psychiatry Clin. Neurosci. 2019, 73, 518–525. [Google Scholar] [CrossRef]
- Liu, C.M.; Kanoski, S.E. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems. Physiol. Behav. 2018, 193, 223–231. [Google Scholar] [CrossRef]
- Grau, A.; Magallón-Neri, E.; Faus, G.; Feixas, G. Cognitive impairment in eating disorder patients of short and long-term duration: A case–control study. Neuropsychiatr. Dis. Treat. 2019, 15, 1329–1341. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.W.; Kim, H.C.; Kim, H.U.; Park, T.; Park, J.; Kim, U.; Kim, M.K.; Jeong, J.H. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J. Cell. Physiol. 2019, 234, 20888–20899. [Google Scholar] [CrossRef]
- Duerrschmid, C.; He, Y.; Wang, C.; Li, C.; Bournat, J.C.; Romere, C.; Saha, P.K.; Lee, M.E.; Phillips, K.J.; Jain, M.; et al. Asprosin is a centrally acting orexigenic hormone. Nat. Med. 2017, 23, 1444–1453. [Google Scholar] [CrossRef]
- Romere, C.; Duerrschmid, C.; Bournat, J.; Constable, P.; Jain, M.; Xia, F.; Saha, P.K.; Del Solar, M.; Zhu, B.; York, B.; et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell 2016, 165, 566–579. [Google Scholar] [CrossRef]
- Li, E.; Shan, H.; Chen, L.; Long, A.; Zhang, Y.; Liu, Y.; Jia, L.; Wei, F.; Han, J.; Li, T.; et al. OLFR734 Mediates Glucose Metabolism as a Receptor of Asprosin. Cell Metab. 2019, 30, 319–328.e8. [Google Scholar] [CrossRef] [PubMed]
- Beutler, L.R.; Knight, Z.A. A Spotlight on Appetite. Neuron 2018, 97, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J. Regulation of energy intake and the body weight: The glucostatic theory and the lipostatic hypothesis. Ann. N. Y. Acad. Sci. 1955, 63, 15–43. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, V.; King, N.; Hetherington, M.; Doucet, E.; Blundell, J.; Tremblay, A. Appetite sensations and satiety quotient: Predictors of energy intake and weight loss. Appetite 2007, 48, 159–166. [Google Scholar] [CrossRef]
- Du, C.; Wang, C.; Guan, X.; Li, J.; Du, X.; Xu, Z.; Li, B.; Liu, Y.; Fu, F.; Huo, H.; et al. Asprosin is associated with anorexia and body fat mass in cancer patients. Support. Care Cancer 2021, 29, 1369–1375. [Google Scholar] [CrossRef]
- Benini, L.; Todesco, T.; Dalle Grave, R.; Deiorio, F.; Salandini, L.; Vantini, I. Gastric emptying in patients with restricting and binge/purging subtypes of anorexia nervosa. Am. J. Gastroenterol. 2004, 99, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Heruc, G.A.; Little, T.J.; Kohn, M.R.; Madden, S.; Clarke, S.D.; Horowitz, M.; Feinle-Bisset, C. Effects of starvation and short-term refeeding on gastric emptying and postprandial blood glucose regulation in adolescent girls with anorexia nervosa. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E565–E573. [Google Scholar] [CrossRef]
- O’Carroll, A.M.; Selby, T.L.; Palkovits, M.; Lolait, S.J. Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim. Biophys. Acta 2000, 1492, 72–80. [Google Scholar] [CrossRef]
- Li, L.; Yang, G.; Li, Q.; Tang, Y.; Yang, M.; Yang, H.; Li, K. Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp. Clin. Endocrinol. Diabetes 2006, 114, 544–548. [Google Scholar] [CrossRef]
- El Wakeel, M.A.; El-Kassas, G.M.; Kamhawy, A.H.; Galal, E.M.; Nassar, M.S.; Hammad, E.M.; El-Zayat, S.R. Serum Apelin and Obesity-Related Complications in Egyptian Children. Open Access Maced. J. Med. Sci. 2018, 6, 1354–1358. [Google Scholar] [CrossRef]
- Boucher, J.; Masri, B.; Daviaud, D.; Gesta, S.; Guigné, C.; Mazzucotelli, A.; Castan-Laurell, I.; Tack, I.; Knibiehler, B.; Carpéné, C.; et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 2005, 146, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, M.V.; Purhonen, A.K.; Miettinen, P.; Pääkkönen, M.; Pirinen, E.; Alhava, E.; Åkerman, K.; Herzig, K.H. Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul. Pept. 2005, 130, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Ba, H.J.; Chen, H.S.; Su, Z.; Du, M.L.; Chen, Q.L.; Li, Y.H.; Ma, H.M. Associations between Serum Apelin-12 Levels and Obesity-Related Markers in Chinese Children. PLoS ONE 2014, 9, e86577. [Google Scholar] [CrossRef]
- Suriyaprom, K.; Pheungruang, B.; Tungtrongchitr, R.; Sroijit, O.U.Y. Relationships of apelin concentration and APLN T-1860C polymorphism with obesity in Thai children. BMC Pediatr. 2020, 20, 455. [Google Scholar] [CrossRef]
- Kotanidou, E.P.; Kalinderi, K.; Kyrgios, I.; Efraimidou, S.; Fidani, L.; Papadopoulou-Alataki, E.; Eboriadou-Petikopoulou, M.; Galli-Tsinopoulou, A. Apelin and G212A apelin receptor gene polymorphism in obese and diabese youth. Pediatr. Obes. 2015, 10, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Tapan, S.; Tascilar, E.; Abaci, A.; Sonmez, A.; Kilic, S.; Erbil, M.K.; Ozcan, O. Decreased plasma apelin levels in pubertal obese children. J. Pediatr. Endocrinol. Metab. 2010, 23, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yan, J.; Pan, W.; Tang, M. Apelin/Elabela-APJ: A novel therapeutic target in the cardiovascular system. Ann. Transl. Med. 2020, 8, 243. [Google Scholar] [CrossRef]
- Mughal, A.; O’Rourke, S.T. Vascular effects of apelin: Mechanisms and therapeutic potential. Pharmacol. Ther. 2018, 190, 139–147. [Google Scholar] [CrossRef]
- Ostrowska, Z.; Ziora, K.; Oświȩcimska, J.; Świȩtochowska, E.; Marek, B.; Kajdaniuk, D.; Wołkowska-Pokrywa, K.; Kos-Kudła, B. Bone metabolism, osteoprotegerin, receptor activator of nuclear factor-kB ligand and selected adipose tissue hormones in girls with anorexia nervosa. Endokrynol. Pol. 2014, 65, 33–39. [Google Scholar] [CrossRef][Green Version]
- Aminyavari, S.; Zahmatkesh, M.; Farahmandfar, M.; Khodagholi, F.; Dargahi, L.; Zarrindast, M.R. Protective role of Apelin-13 on amyloid β25-35-induced memory deficit; Involvement of autophagy and apoptosis process. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 89, 322–334. [Google Scholar] [CrossRef]
- Ge, Y.; Li, Y.; Chen, Q.; Zhu, W.; Zuo, L.; Guo, Z.; Gong, J.; Cao, L.; Gu, L.; Li, J. Adipokine apelin ameliorates chronic colitis in Il-10 -/- mice by promoting intestinal lymphatic functions. Biochem. Pharmacol. 2018, 148, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Pałasz, A.; Tyszkiewicz-Nwafor, M.; Suszka-Świtek, A.; Bacopoulou, F.; Dmitrzak-Węglarz, M.; Dutkiewicz, A.; Słopień, A.; Janas-Kozik, M.; Wilczyński, K.M.; Filipczyk, Ł.; et al. Longitudinal study on novel neuropeptides phoenixin, spexin and kisspeptin in adolescent inpatients with anorexia nervosa - association with psychiatric symptoms. Nutr. Neurosci. 2021, 24, 896–906. [Google Scholar] [CrossRef]
- Tyszkiewicz-Nwafor, M.; Slopien, A.; Dmitrzak-Węglarz, M.; Rybakowski, F. Adiponectin and resistin in acutely ill and weight-recovered adolescent anorexia nervosa: Association with psychiatric symptoms. World J. Biol. Psychiatry 2019, 20, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Tyszkiewicz-Nwafor, M.; Rybakowski, F.; Dmitrzak-Weglarz, M.; Skibinska, M.; Paszynska, E.; Dutkiewicz, A.; Słopien, A. Brain-Derived Neurotrophic Factor and Oxytocin Signaling in Association With Clinical Symptoms in Adolescent Inpatients With Anorexia Nervosa—A Longitudinal Study. Front. Psychiatry 2020, 10, 1032. [Google Scholar] [CrossRef] [PubMed]
- Pleplé, A.; Lalanne, C.; Huas, C.; Mattar, L.; Hanachi, M.; Flament, M.F.; Carchon, I.; Jouen, F.; Berthoz, S.; Godart, N. Nutritional status and anxious and depressive symptoms in anorexia nervosa: A prospective study. Sci. Rep. 2021, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Sjögren, M.; Støving, R.K. Anorexia Nervosa: Reduction in Depression during Inpatient Treatment Is Closely Related to Reduction in Eating Disorder Psychopathology. J. Pers. Med. 2022, 12, 682. [Google Scholar] [CrossRef]
- Amianto, F.; Secci, I.; Arletti, L.; Davico, C.; Abbate Daga, G.; Vitiello, B. Obsessive-compulsive symptoms in young women affected with anorexia nervosa, and their relationship with personality, psychopathology, and attachment style. Eat. Weight Disord. 2022, 27, 1193–1207. [Google Scholar] [CrossRef]
- Levinson, C.A.; Zerwas, S.C.; Brosof, L.C.; Thornton, L.M.; Strober, M.; Pivarunas, B.; Crowley, J.J.; Yilmaz, Z.; Berrettini, W.H.; Brandt, H.; et al. Associations between dimensions of anorexia nervosa and obsessive-compulsive disorder: An examination of personality and psychological factors in patients with anorexia nervosa. Eur. Eat. Disord. Rev. 2019, 27, 161–172. [Google Scholar] [CrossRef]
- Kucharska, K.; Kulakowska, D.; Starzomska, M.; Rybakowski, F.; Biernacka, K. The improvement in neurocognitive functioning in anorexia nervosa adolescents throughout the integrative model of psychotherapy including cognitive remediation therapy. BMC Psychiatry 2019, 19, 15. [Google Scholar] [CrossRef]
- Dwyer, D.S.; Horton, R.Y.; Aamodt, E.J. Role of the evolutionarily conserved starvation response in anorexia nervosa. Mol. Psychiatry 2011, 16, 595–603. [Google Scholar] [CrossRef]
- Eckert, E.D.; Gottesman, I.I.; Swigart, S.E.; Casper, R.C. A 57-year follow-up investigation and review of the Minnesota study on human starvation and its relevance to eating disorders. Arch. Psychol. 2018, 2, 1–19. [Google Scholar]
- Rikani, A.A.; Choudhry, Z.; Choudhry, A.M.; Ikram, H.; Asghar, M.W.; Kajal, D.; Waheed, A.; Mobassarah, N.J. A critique of the literature on etiology of eating disorders. Ann. Neurosci. 2013, 20, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Keeler, J.L.; Robinson, L.; Keeler-Schäffeler, R.; Dalton, B.; Treasure, J.; Himmerich, H. Growth factors in anorexia nervosa: A systematic review and meta-analysis of cross-sectional and longitudinal data. World J. Biol. Psychiatry 2022, 1, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, L.; Lanfranco, F.; Ramunni, J.; Destefanis, S.; Ghigo, E.; Arvat, E. GH/IGF-I axis in anorexia nervosa. Eat. Weight Disord. 2002, 7, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Klibanski, A. Anorexia Nervosa and Its Associated Endocrinopathy in Young People. Horm. Res. Paediatr. 2016, 85, 147–157. [Google Scholar] [CrossRef]
- Mazur-Bialy, A.I. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients 2021, 13, 620. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, Y.; Zheng, Y.; Kang, Q.; Lou, Z.; Liu, Q.; Chen, H.; Ji, Y.; Guo, L.; Chen, C.; et al. Increased plasma asprosin levels in patients with drug-naive anorexia nervosa. Eat. Weight Disord. 2021, 26, 313–321. [Google Scholar] [CrossRef]
- Alan, M.; Gurlek, B.; Yilmaz, A.; Aksit, M.; Aslanipour, B.; Gulhan, I.; Mehmet, C.; Taner, C.E. Asprosin: A novel peptide hormone related to insulin resistance in women with polycystic ovary syndrome. Gynecol. Endocrinol. 2019, 35, 220–223. [Google Scholar] [CrossRef]
- Li, X.; Liao, M.; Shen, R.; Zhang, L.; Hu, H.; Wu, J.; Wang, X.; Qu, H.; Guo, S.; Long, M.; et al. Plasma Asprosin Levels Are Associated with Glucose Metabolism, Lipid, and Sex Hormone Profiles in Females with Metabolic-Related Diseases. Mediat. Inflamm. 2018, 2018, 7375294. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, C.; Zhou, N.; Fu, Y.; Cheng, X. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride. Clin. Chim. Acta 2019, 489, 183–188. [Google Scholar] [CrossRef]
- Wang, C.Y.; Lin, T.A.; Liu, K.H.; Liao, C.H.; Liu, Y.Y.; Wu, V.C.C.; Wen, M.S.; Yeh, T. Sen Serum asprosin levels and bariatric surgery outcomes in obese adults. Int. J. Obes. 2019, 43, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Xie, X.; Du, C.; Zhao, Y.; Zhang, C.; Zhan, D.; Li, Z.; Ning, Q.; Luo, X. Decreased Circulating Levels of Asprosin in Obese Children. Horm. Res. Paediatr. 2019, 91, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, M.B.; Pietraszek-Gremplewicz, K.; Nowak, D. The Role of Apelin in Cardiovascular Diseases, Obesity and Cancer. Front. Physiol. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Butruille, L.; Drougard, A.; Knauf, C.; Moitrot, E.; Valet, P.; Storme, L.; Deruelle, P.; Lesage, J. The apelinergic system: Sexual dimorphism and tissue-specific modulations by obesity and insulin resistance in female mice. Peptides 2013, 46, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Castan-Laurell, I.; Vítkova, M.; Daviaud, D.; Dray, C.; Kováčiková, M.; Kovacova, Z.; Hejnova, J.; Stich, V.; Valet, P. Effect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. Eur. J. Endocrinol. 2008, 158, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Ziora, K.; Oświȩcimska, J.; Świȩtochowska, E.; Ziora, D.; Ostrowska, Z.; Stojewska, M.; Klimacka-Nawrot, E.; Dyduch, A.; Błońska-Fajfrowska, B. Assessment of Serum Apelin Levels in Girls with Anorexia Nervosa. J. Clin. Endocrinol. Metab. 2010, 95, 2935–2941. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vehapoglu, A.; Ustabas, F.; Ozgen, T.I.; Terzioglu, S.; Cermik, B.B.; Ozen, O.F. Role of circulating adipocytokines vaspin, apelin, and visfatin in the loss of appetite in underweight children: A pilot trial. J. Pediatr. Endocrinol. Metab. 2015, 28, 1065–1071. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Sumino, A.; Shibagaki, F.; Yamamuro, A.; Yoshioka, Y.; Maeda, S. Endogenous Apelin Is Protective Against Age-Associated Loss of Retinal Ganglion Cells in Mice. Front. Aging Neurosci. 2020, 12, 58. [Google Scholar] [CrossRef]
- Wu, L.; Chen, L.; Li, L. Apelin/APJ system: A novel promising therapy target for pathological angiogenesis. Clin. Chim. Acta 2017, 466, 78–84. [Google Scholar] [CrossRef]
- Antushevich, H.; Wójcik, M. Review: Apelin in disease. Clin. Chim. Acta 2018, 483, 241–248. [Google Scholar] [CrossRef]
- O’Carroll, A.M.; Lolait, S.J.; Harris, L.E.; Pope, G.R. The apelin receptor APJ: Journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol. 2013, 219, R13–R35. [Google Scholar] [CrossRef] [PubMed]
- Kleinz, M.J.; Davenport, A.P. Emerging roles of apelin in biology and medicine. Pharmacol. Ther. 2005, 107, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Chen, J.; Bai, B.; Xin, Q. Neuroprotection of apelin and its signaling pathway. Peptides 2012, 37, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Sunter, D.; Hewson, A.K.; Dickson, S.L. Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci. Lett. 2003, 353, 1–4. [Google Scholar] [CrossRef]
- Christensen, L. The effect of food intake on mood. Clin. Nutr. 2001, 20, 161–166. [Google Scholar] [CrossRef]
- Licinio-Paixao, J. Hyperinsulinemia; A mediator of decreased food intake and weight loss in anorexia nervosa and major depression. Med. Hypotheses 1989, 28, 125–130. [Google Scholar] [CrossRef]
- Sahpolat, M.; Ari, M.; Kokacya, M.H. Plasma Apelin, Visfatin and Resistin Levels in Patients with First Episode Psychosis and Chronic Schizophrenia. Clin. Psychopharmacol. Neurosci. 2020, 18, 109–115. [Google Scholar] [CrossRef]
- Dede, S.; Sahpolat, M.; Kokacya, M.H.; Ari, M.; Sesliokuyucu, C.; Yonden, Z. Serum Apelin And Nesfatin-1 Levels in Depression Patients and Their Relationship with Treatment. Dusunen Adam J. Psychiatry Neurol. Sci. 2017, 30, 39. [Google Scholar] [CrossRef]
- Lv, S.Y.; Yang, Y.J.; Qin, Y.J.; Mo, J.R.; Wang, N.B.; Wang, Y.J.; Chen, Q. Central apelin-13 inhibits food intake via the CRF receptor in mice. Peptides 2012, 33, 132–138. [Google Scholar] [CrossRef]
Group M ± SD/Me (Q1; Q3) | AN1 vs. AN2 | AN1 vs. CG | AN2 vs. CG | ||||||
---|---|---|---|---|---|---|---|---|---|
An1 n = 44 | An2 n = 44 | Control n = 29 | MD (95% CI) | p | MD (95% CI) | p | MD (95% CI) | p | |
Age | 15.50 (14.00; 17.00) | 15.00 (14.00; 17.00) | - | - | MD (95% CI) = 0.50 (−1.00; 1.00); p = 0.995 | ||||
Height (m) | 1.61 ± 0.08 | 1.65 ± 0.05 | - | - | MD (95% CI) = −0.04 (−0.06; <0.01); p = 0.024 3 | ||||
Body weight (kg) | 37.00 (32.75; 40.00) 36.82 ± 4.96 | 45.00 (42.00; 48.25) 44.92 ± 5.81 | 53.70 (47.00; 56.70) | −8.10 (−10.35; −5.86) | <0.001 1 | −16.70 (−18.80; −12.10) | <0.001 | −8.70 (−11.00; −4.00) | <0.001 |
BMI | 14.13 (13.55; 15.00) 14.20 ± 1.28 | 17.08 (15.81; 18.80) 17.48 ± 2.78 | 18.91 (17.10; 20.98) | −3.28 (−4.23; −2.34) | <0.001 1 | −4.78 (−6.29; −3.67) | <0.001 | −1.83 (−3.34; −0.55) | 0.006 |
IBW | 55.41 ± 3.86 | 57.26 ± 2.37 | - | - | MD (95% CI) = −1.85 (−3.00; <0.01); p = 0.024 3 | ||||
%IBW | 66.39 (62.06; 70.44) 66.30 ± 6.32 | 78.97 (74.09; 87.80) 81.44 ± 11.77 | 90.76 (82.64; 98.43) | −15.14 (−19.43; −10.84) | <0.001 1 | −24.37 (−30.45; −18.85) | <0.001 | −11.79 (−16.88; −3.98) | 0.003 |
ASP [ng/mL] | 8.06 (2.98; 13.87) | 10.08 (5.64; 20.86) | 5.61 (3.23; 9.08) | −2.04 (−7.94; −0.92) | 0.008 2 | 2.45 (−2.83; 4.66) | 0.961 | 4.47 (−0.40; 7.75) | 0.075 |
APE-13 [pg/mL] | 113.56 (32.62; 253.56) | 50.93 (30.60; 202.18) | 68.08 (17.54; 96.94) | 30.99 (2.78; 126.76) | 0.037 2 | 45.48 (1.23; 133.96) | 0.046 | −17.15 (−25.51; 78.08) | 0.479 |
Insulin | 5.50 (4.30; 6.65) | 10.10 (7.50; 13.50) | 8.55 (5.73; 10.13) | −5.20 (−6.95; −2.85) | <0.001 2 | −3.05 (−3.90; −0.40) | 0.017 | 1.55 (−0.10; 4.60) | 0.069 |
Glucose | 78.00 (74.00; 83.25) 78.02 ± 7.77 | 79.00 (75.50; 86.50) | 77.00 (71.25; 82.00) 77.38 ± 7.53 | −1.00 (−9.00; 0.50) | 0.075 2 | −1.00 (−3.14; 4.42) | 0.736 3 | 2.00 (−1.00; 8.00) | 0.163 |
HOMA-IR | 1.08 (0.80; 1.31) | 2.23 (1.51; 2.81) | 1.52 (1.09; 2.07) | −1.18 (−1.52; −0.64) | <0.001 2 | −0.44 (−0.78; −0.09) | 0.013 | 0.71 (0.09; 1.02) | 0.026 |
Group M ± SD/Me (Q1; Q3) | AN1 vs. AN2 | AN1 vs. CG | AN2 vs. CG | ||||||
---|---|---|---|---|---|---|---|---|---|
TEST | An1 n = 44 | An2 n = 44 | Control n = 29 | MD (95% CI) | p | MD (95% CI) | p | MD (95% CI) | p |
BDI | 13.00 (7.25; 24.00) | 11.50 (4.00; 22.50) | 5.00 (1.00; 11.00) | 3.00 (0.50; 6.50) | 0.012 1 | 8.00 (3.00; 15.00) | 0.003 | 6.50 (<0.01; 10.00) | 0.042 |
HAMD | 12.00 (8.50; 17.00) | 8.00 (2.00; 16.00) | 0.00 (0.00; 3.00) | 4.50 (0.00; 7.50) | 0.050 1 | 12.00 (8.00; 13.00) | <0.001 | 8.00 (3.00; 11.00) | <0.001 |
CYBOCS | 8.00 (4.00; 14.00) | 2.00 (1.00; 6.00) | 2.00 (0.00; 5.00) | 6.00 (2.00; 6.00) | <0.001 1 | 6.00 (1.00; 8.00) | 0.006 | 0.00 (−1.00; 0.00) | 0.079 |
EAT-26 | 22.00 (15.00; 36.00) | 7.00 (3.00; 19.50) | 4.50 (2.75; 8.50) | 11.00 (6.00; 15.50) | <0.001 1 | 17.50 (10.00; 22.00) | <0.001 | 2.50 (<0.01; 10.00) | 0.079 |
AN1 | AN2 | CG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ASP | APE-13 | ASP | APE-13 | ASP | APE-13 | |||||||
rho | p | rho | p | rho | p | rho | P | rho | p | rho | p | |
Height | −0.32 | 0.0497 | 0.16 | 0.355 | −0.50 | 0.001 | 0.43 | 0.008 | 0.03 | 0.887 | −0.02 | 0.935 |
Body weight | −0.35 | 0.032 | 0.03 | 0.856 | 0.04 | 0.818 | 0.20 | 0.234 | 0.17 | 0.394 | −0.28 | 0.286 |
BMI | −0.26 | 0.113 | −0.06 | 0.722 | 0.34 | 0.028 | −0.07 | 0.660 | 0.14 | 0.496 | −0.21 | 0.441 |
IBW | −0.32 | 0.0497 | 0.16 | 0.355 | −0.50 | 0.001 | 0.43 | 0.008 | 0.03 | 0.887 | −0.02 | 0.935 |
%IBW | −0.30 | 0.070 | −0.05 | 0.779 | 0.22 | 0.160 | 0.04 | 0.824 | 0.15 | 0.470 | −0.23 | 0.389 |
Glucose | −0.23 | 0.175 | −0.03 | 0.858 | −0.33 | 0.037 | −0.09 | 0.616 | −0.12 | 0.588 | −0.21 | 0.458 |
Insulin | −0.11 | 0.533 | −0.19 | 0.279 | −0.43 | 0.005 | 0.31 | 0.068 | 0.25 | 0.229 | −0.28 | 0.314 |
HOMA-IR | −0.15 | 0.373 | −0.09 | 0.579 | −0.49 | 0.002 | 0.29 | 0.087 | 0.22 | 0.311 | 0.27 | 0.334 |
AN1 | AN2 | CG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ASP | APE-13 | ASP | APE-13 | ASP | APE-13 | |||||||
rho | p | rho | p | rho | p | rho | p | rho | p | rho | p | |
BDI | 0.23 | 0.298 | −0.46 | 0.034 | 0.06 | 0.771 | 0.28 | 0.181 | −0.26 | 0.201 | −0.09 | 0.736 |
HAMD | 0.10 | 0.661 | −0.42 | 0.051 | 0.06 | 0.751 | 0.11 | 0.579 | −0.25 | 0.214 | −0.31 | 0.242 |
CYBOCS | 0.23 | 0.291 | <0.01 | 0.998 | 0.04 | 0.832 | 0.15 | 0.461 | −0.21 | 0.315 | −0.16 | 0.542 |
EAT-26 | 0.51 | 0.025 | −0.50 | 0.028 | −0.13 | 0.588 | 0.53 | 0.030 | 0.19 | 0.420 | 0.34 | 0.237 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jowik, K.; Dmitrzak-Węglarz, M.; Pytlińska, N.; Jasińska-Mikołajczyk, A.; Słopień, A.; Tyszkiewicz-Nwafor, M. Apelin-13 and Asprosin in Adolescents with Anorexia Nervosa and Their Association with Psychometric and Metabolic Variables. Nutrients 2022, 14, 4022. https://doi.org/10.3390/nu14194022
Jowik K, Dmitrzak-Węglarz M, Pytlińska N, Jasińska-Mikołajczyk A, Słopień A, Tyszkiewicz-Nwafor M. Apelin-13 and Asprosin in Adolescents with Anorexia Nervosa and Their Association with Psychometric and Metabolic Variables. Nutrients. 2022; 14(19):4022. https://doi.org/10.3390/nu14194022
Chicago/Turabian StyleJowik, Katarzyna, Monika Dmitrzak-Węglarz, Natalia Pytlińska, Anna Jasińska-Mikołajczyk, Agnieszka Słopień, and Marta Tyszkiewicz-Nwafor. 2022. "Apelin-13 and Asprosin in Adolescents with Anorexia Nervosa and Their Association with Psychometric and Metabolic Variables" Nutrients 14, no. 19: 4022. https://doi.org/10.3390/nu14194022
APA StyleJowik, K., Dmitrzak-Węglarz, M., Pytlińska, N., Jasińska-Mikołajczyk, A., Słopień, A., & Tyszkiewicz-Nwafor, M. (2022). Apelin-13 and Asprosin in Adolescents with Anorexia Nervosa and Their Association with Psychometric and Metabolic Variables. Nutrients, 14(19), 4022. https://doi.org/10.3390/nu14194022