Mendelian Randomization Analysis of the Association of SOCS3 Methylation with Abdominal Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Laboratory Measurements
2.3. Abdominal Obesity Assessment
2.4. DNA Methylation and Genotyping of SOCS3
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Association of SOCS3 Methylation Levels with Abdominal Obesity
3.3. Effect Estimates between SNP of SOCS3 and Abdominal Obesity
3.4. Causal Estimates of SOCS3 Methylation Level on Abdominal Obesity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Berg, E.; Cheng, X.; Shen, W. How to best assess abdominal obesity. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef]
- Aranceta-Bartrina, J.; Pérez-Rodrigo, C.; Alberdi-Aresti, G.; Ramos-Carrera, N.; Lázaro-Masedo, S. Prevalence of General Obesity and Abdominal Obesity in the Spanish Adult Population (Aged 25–64 Years) 2014–2015: The ENPE Study. Rev. Esp. Cardiol. 2016, 69, 579–587. [Google Scholar] [CrossRef]
- Aranceta-Bartrina, J.; Gianzo-Citores, M.; Pérez-Rodrigo, C. Prevalence of overweight, obesity and abdominal obesity in the Spanish population aged 3 to 24 years. The ENPE study. Rev. Esp. Cardiol. 2020, 73, 290–299. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Wang, X.; Chen, Z.; Shao, L.; Tian, Y.; Dong, Y.; Zheng, C.; Li, S.; Zhu, M.; et al. China Hypertension Survey investigators. Prevalence of Abdominal Obesity in China: Results from a Cross-Sectional Study of Nearly Half a Million Participants. Obesity 2019, 27, 1898–1905. [Google Scholar] [CrossRef]
- Bjørbæk, C.; El-Haschimi, K.; Frantz, J.D.; Flier, J.S. The role of SOCS-3 in leptin signaling and leptin resistance. J. Biol. Chem. 1999, 274, 30059–30065. [Google Scholar] [CrossRef]
- Howard, J.K.; Flier, J.S. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol. Metab. 2006, 17, 365–371. [Google Scholar] [CrossRef]
- Ali, O.; Cerjak, D.; Kent, J.W., Jr.; James, R.; Blangero, J.; Carless, M.A.; Zhang, Y. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics 2016, 11, 699–707. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, X.; Wang, Z.; Hu, Y.; Sinha, R. Epigenome-wide association analysis revealed that SOCS3 methylation influences the effect of cumulative stress on obesity. Biol. Psychol. 2018, 131, 63–71. [Google Scholar] [CrossRef]
- Wilson, L.E.; Harlid, S.; Xu, Z.; Sandler, D.P.; Taylor, J.A. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort. Int. J. Obes. 2017, 41, 194–199. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, R.; Ding, L.; Meng, Z.; Zhang, Q.; Shen, Y.; Hu, G.; Liu, M. Waist Circumference and its Changes Are More Strongly Associated with the Risk of Type 2 Diabetes than Body Mass Index and Changes in Body Weight in Chinese Adults. J. Nutr. 2020, 150, 1259–1265. [Google Scholar] [CrossRef]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Waist circumference and not body mass index explains obesity-related health risk. Am. J. Clin. Nutr. 2004, 79, 379–384. [Google Scholar] [CrossRef]
- Liu, X.; Mao, Z.; Li, Y.; Wu, W.; Zhang, X.; Huo, W.; Yu, S.; Shen, L.; Li, L.; Tu, R.; et al. Cohort Profile: The Henan Rural Cohort: A prospective study of chronic non-communicable diseases. Int. J. Epidemiol. 2019, 48, 1756–1756j. [Google Scholar] [CrossRef]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome. Available online: https://www.idf.org/our-activities/advocacy-awareness/resources-and-tools/60:idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html (accessed on 15 September 2022).
- Liu, X.; Qian, X.; Tu, R.; Mao, Z.; Huo, W.; Zhang, H.; Jiang, J.; Zhang, X.; Tian, Z.; Li, Y.; et al. SOCS3 methylation mediated the effect of sedentary time on type 2 diabetes mellitus: The Henan Rural Cohort study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 634–643. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Y.; Wang, L.; Zhang, Z.; Cai, B.; Liu, K.; Zhang, H.; Dai, M.; Sun, L.; Xu, X.; et al. CDKN2B methylation is associated with carotid artery calcification in ischemic stroke patients. J. Transl. Med. 2016, 14, 333. [Google Scholar] [CrossRef]
- Ledwina, T.; Gnot, S. Testing for Hardy-Weinberg equilibrium. Biometrics 1980, 36, 161–165. [Google Scholar] [CrossRef]
- Liu, X.T.; Tu, R.Q.; He, Y.L.; Dong, X.K.; Li, R.Y.; Hou, J.; Li, Y.Q.; Wang, C.J. Mendelian randomization analysis: The causal relationship between the DNA methylation levels of JAK2 and obesity. Chin. J. Epidemiol. 2022, 43, 1315–1320. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.C.; Lawlor, D.A.; Thompson, J.R. Re: Estimation of bias in nongenetic observational studies using “Mendelian triangulation” by Bautista et al. Ann. Epidemiol. 2007, 17, 511–513. [Google Scholar] [CrossRef]
- Jamieson, E.; Korologou-Linden, R.; Wootton, R.E.; Guyatt, A.L.; Battram, T.; Burrows, K.; Gaunt, T.R.; Tobin, M.D.; Munafò, M.; Smith, G.D.; et al. Smoking, DNA Methylation, and Lung Function: A Mendelian Randomization Analysis to Investigate Causal Pathways. Am. J. Hum. Genet. 2020, 106, 315–326. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Samblas, M.; Milagro, F.I.; Martínez, A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019, 14, 421–444. [Google Scholar] [CrossRef]
- Nikpay, M.; Ravati, S.; Dent, R.; McPherson, R. Epigenome-Wide Study Identified Methylation Sites Associated with the Risk of Obesity. Nutrients 2021, 13, 1984. [Google Scholar] [CrossRef]
- Westerman, K.; Sebastiani, P.; Jacques, P.; Liu, S.; DeMeo, D.; Ordovás, J.M. DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clin. Epigenet. 2019, 11, 142. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Wei, D.; Kang, N.; Nie, L.; Liu, P.; Fan, K.; Zhang, L.; Hou, J.; Li, X.; et al. The mediation role of SOCS3 methylation in the effect of serum testosterone on type 2 diabetes. J. Diabetes. 2021, 13, 701–712. [Google Scholar] [CrossRef]
- Chambers, J.C.; Loh, M.; Lehne, B.; Drong, A.; Kriebel, J.; Motta, V.; Wahl, S.; Elliott, H.R.; Rota, F.; Scott, W.R.; et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: A nested case-control study. Lancet Diabetes Endocrinol. 2015, 3, 526–534. [Google Scholar] [CrossRef]
- Kvaløy, K.; Page, C.M.; Holmen, T.L. Holmen, Epigenome-wide methylation differences in a group of lean and obese women—A HUNT Study. Sci. Rep. 2018, 8, 16330. [Google Scholar] [CrossRef]
- Al Muftah, W.A.; Al-Shafai, M.; Zaghlool, S.B.; Visconti, A.; Tsai, P.C.; Kumar, P.; Spector, T.; Bell, J.; Falchi, M.; Suhre, K. Epigenetic associations of type 2 diabetes and BMI in an Arab population. Clin. Epigenet. 2016, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Jurkowska, R.Z.; Jurkowski, T.P.; Jeltsch, A. Jeltsch, Structure and function of mammalian DNA methyltransferases. Chembiochem 2011, 12, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Xue, A.I.; Zhang, Y.F.; Liu, J.J.; Zhang, L.R. Analysis of DNA Methylation in Gene Functional Regions. J. Inn. Mong. Univ. 2016, 47, 290–298. [Google Scholar]
- Shayevitch, R.; Askayo, D.; Keydar, I.; Ast, G. The importance of DNA methylation of exons on alternative splicing. RNA 2018, 24, 1351–1362. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.P.; Li, J.B.; Gao, Y.; Lee, J.H.; LeProust, E.M.; Park, I.H.; Xie, B.; Daley, G.Q.; Church, G.M. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 2009, 27, 361–368. [Google Scholar] [CrossRef]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef]
- Mahony, R.; Ahmed, S.; Diskin, C.; Stevenson, N.J. SOCS3 revisited: A broad regulator of disease, now ready for therapeutic use? Cell. Mol. Life Sci. 2016, 73, 3323–3336. [Google Scholar] [CrossRef]
- Mandò, C.; Abati, S.; Anelli, G.M.; Favero, C.; Serati, A.; Dioni, L.; Zambon, M.; Albetti, B.; Bollati, V.; Cetin, I. Epigenetic Profiling in the Saliva of Obese Pregnant Women. Nutrients 2022, 14, 2122. [Google Scholar] [CrossRef]
- Gurzov, E.N.; Stanley, W.J.; Pappas, E.G.; Thomas, H.E.; Gough, D.J. The JAK/STAT pathway in obesity and diabetes. FEBS J. 2016, 283, 3002–3015. [Google Scholar] [CrossRef]
- Pedroso, J.A.B.; Ramos-Lobo, A.M.; Donato, J., Jr. SOCS3 as a future target to treat metabolic disorders. Hormones 2019, 18, 127–136. [Google Scholar] [CrossRef]
- Ueki, K.; Kondo, T.; Kahn, C.R. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell. Biol. 2004, 24, 5434–5446. [Google Scholar] [CrossRef]
- Smith, G.D.; Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Yao, H.; Larsson, S.C. Associations of cigarette smoking with psychiatric disorders: Evidence from a two-sample Mendelian randomization study. Sci. Rep. 2020, 10, 13807. [Google Scholar] [CrossRef]
Variables | Total (n = 1064) | Abdominal Obesity (n = 471) | Non-Abdominal Obesity (n = 593) | p-Value |
---|---|---|---|---|
Age (years, mean ± SD) | 59.52 ± 8.67 | 58.70 ± 8.46 | 60.17 ± 8.78 | 0.006 |
WC (cm, mean ± SD) | 83.23 ± 10.78 | 91.82 ± 7.92 | 76.40 ± 7.32 | <0.001 |
Gender, n (%) | <0.001 | |||
Men | 459 (43.14) | 138 (29.30) | 321 (54.13) | |
Women | 605(56.86) | 333 (70.70) | 272 (45.87) | |
Education levels, n (%) | 0.843 | |||
Elementary school or below | 586 (55.08) | 261 (55.41) | 325 (54.81) | |
Junior high school or above | 478 (44.92) | 210 (44.59) | 268 (45.19) | |
Marital status, n (%) | 0.819 | |||
Married/cohabiting | 953 (89.57) | 423 (89.81) | 530 (89.38) | |
Widowed/single/divorced/separation | 111 (10.43) | 48 (10.19) | 63 (10.62) | |
Average monthly income of family, n (%) | 0.510 | |||
CNY < 500 | 426 (40.04) | 194 (41.19) | 232 (39.12) | |
CNY 500 ~ | 336 (31.58) | 140 (29.72) | 196 (33.05) | |
CNY ≥ 1000 | 302 (28.38) | 137 (29.09) | 165 (27.83) | |
High-fat diet, n (%) | 0.055 | |||
Yes | 205 (19.27) | 103 (21.87) | 102 (17.20) | |
No | 859 (80.73) | 368 (78.13) | 491 (82.80) | |
More vegetable and fruit intake, n (%) | 0.482 | |||
Yes | 690 (64.85) | 300 (63.69) | 390 (65.77) | |
No | 374 (35.15) | 171 (36.31) | 203 (34.23) | |
Smoking status, n (%) | <0.001 | |||
Never | 762 (71.62) | 379 (80.47) | 383 (64.59) | |
Ever | 88 (8.27) | 39 (8.28) | 49 (8.26) | |
Current | 214 (20.11) | 53 (11.25) | 161 (27.15) | |
Drinking status, n (%) | 0.063 | |||
Never | 841 (79.04) | 386 (81.95) | 455 (76.73) | |
Ever | 62 (5.83) | 20 (4.25) | 42 (7.08) | |
Current | 161 (15.13) | 65 (13.80) | 96 (16.19) | |
Physical activity (n, %) | 0.001 | |||
Low | 282 (26.50) | 137 (29.09) | 145 (24.45) | |
Moderate | 478 (44.92) | 226 (47.98) | 252 (42.50) | |
High | 304 (28.57) | 108 (22.93) | 196 (33.05) | |
Family history of T2DM (n, %) | 0.395 | |||
Yes | 30 (2.82) | 11 (2.34) | 19 (3.20) | |
No | 1034 (97.18) | 460 (97.66) | 574 (96.80) |
CpG Sites | Location | Distance2TSS | Abdominal Obesity Median (IQR) | Non-Abdominal Obesity Median (IQR) | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|
Chr17:76356178 | Promoter | −18 | 0.005 (0.003, 0.007) | 0.005 (0.004, 0.007) | 0.795 (0.679, 0.930) | 0.004 |
Chr17:76356190 | Promoter | −30 | 0.008 (0.006, 0.012) | 0.009 (0.006, 0.014) | 0.841 (0.721, 0.983) | 0.029 |
Chr17:76356054 | Exon | 106 | 0.012 (0.009, 0.014) | 0.012 (0.010, 0.015) | 0.786 (0.672, 0.919) | 0.003 |
Chr17:76356084 | Exon | 76 | 0.025 (0.020, 0.030) | 0.026 (0.021, 0.031) | 0.851 (0.732, 0.988) | 0.034 |
Chr17:76356099 | Exon | 61 | 0.007 (0.005, 0.009) | 0.007 (0.005, 0.010) | 0.838 (0.719, 0.976) | 0.023 |
Chr17:76354927 | Exon | 1233 | 0.338 (0.282, 0.405) | 0.331 (0.269, 0.388) | 1.280 (1.064, 1.539) | 0.009 |
Chr17:76354934 | Exon | 1226 | 0.540 (0.476, 0.610) | 0.531 (0.459, 0.592) | 1.284 (1.067, 1.546) | 0.008 |
Chr17:76354947 | Exon | 1213 | 0.454 (0.388, 0.535) | 0.445 (0.373, 0.514) | 1.272 (1.050, 1.541) | 0.014 |
Chr17:76354955 | Exon | 1205 | 0.422 (0.354, 0.500) | 0.410 (0.340, 0.483) | 1.286 (1.064, 1.554) | 0.009 |
Chr17:76354963 | Exon | 1197 | 0.283 (0.224, 0.345) | 0.273 (0.217, 0.334) | 1.277 (1.059, 1.539) | 0.010 |
Chr17:76354965 | Exon | 1195 | 0.344 (0.286, 0.409) | 0.332 (0.272, 0.395) | 1.272 (1.056, 1.533) | 0.011 |
Chr17:76354984 | Exon | 1176 | 0.287 (0.232, 0.361) | 0.277 (0.223, 0.344) | 1.266 (1.053, 1.522) | 0.012 |
Chr17:76354990 | Exon | 1170 | 0.119 (0.088, 0.156) | 0.113 (0.084, 0.147) | 1.243 (1.044, 1.480) | 0.015 |
Chr17:76355009 | Exon | 1151 | 0.287 (0.225, 0.354) | 0.271 (0.214, 0.345) | 1.282 (1.065, 1.543) | 0.009 |
Chr17:76355014 | Exon | 1146 | 0.351 (0.284, 0.437) | 0.341 (0.271, 0.412) | 1.310 (1.084, 1.584) | 0.005 |
Chr17:76355017 | Exon | 1143 | 0.277 (0.226, 0.341) | 0.270 (0.214, 0.328) | 1.277 (1.061, 1.537) | 0.010 |
Chr17:76355020 | Exon | 1140 | 0.271 (0.216, 0.333) | 0.260 (0.207, 0.321) | 1.324 (1.102, 1.591) | 0.003 |
Chr17:76355029 | Exon | 1131 | 0.274 (0.216, 0.334) | 0.263 (0.207, 0.322) | 1.266 (1.051, 1.525) | 0.013 |
Chr17:76355044 | Exon | 1116 | 0.327 (0.258, 0.404) | 0.316 (0.249, 0.388) | 1.297 (1.073, 1.569) | 0.007 |
Chr17:76355061 | Exon | 1099 | 0.410 (0.334, 0.493) | 0.397 (0.323, 0.479) | 1.325 (1.092, 1.608) | 0.004 |
Chr17:76355068 | Exon | 1092 | 0.279 (0.213, 0.360) | 0.268 (0.201, 0.342) | 1.276 (1.056, 1.542) | 0.012 |
Chr17:76355089 | Exon | 1071 | 0.293 (0.225, 0.375) | 0.280 (0.210, 0.360) | 1.285 (1.060, 1.557) | 0.011 |
Chr17:76355115 | Exon | 1045 | 0.277 (0.210, 0.359) | 0.269 (0.200, 0.344) | 1.242 (1.026, 1.504) | 0.026 |
SNP | Total | Abdominal Obesity | Non-Abdominal Obesity | p-Value | OR (95% CI) | HWE p-Value |
---|---|---|---|---|---|---|
rs12953258 | 0.540 | 0.235 | ||||
GG | 473 (44.79) | 205 (43.80) | 268 (45.58) | 1.00 | ||
GT | 486 (46.02) | 215 (45.94) | 271 (46.09) | 0.985 (0.750, 1.295) | ||
TT | 97 (9.19) | 48 (10.26) | 49 (8.33) | 1.111 (0.700, 1.764) | ||
Each T increase | 1.027 (0.841, 1.255) | |||||
rs2280148 | 0.392 | 0.967 | ||||
GG | 661 (62.59) | 303 (64.88) | 358 (60.78) | 1.00 | ||
GT | 344 (32.58) | 143 (30.62) | 201 (34.13) | 0.869 (0.656, 1.151) | ||
TT | 51 (4.83) | 21 (4.50) | 30 (5.09) | 0.851 (0.461, 1.571) | ||
Each T increase | 0.892 (0.714, 1.115) | |||||
rs4969168 | 0.208 | 0.584 | ||||
GG | 209 (19.75) | 85 (18.12) | 124 (21.05) | 1.00 | ||
GA | 542 (51.23) | 236 (50.32) | 306 (51.95) | 0.938 (0.663, 1.328) | ||
AA | 307 (29.02) | 148 (31.56) | 159 (27.00) | 1.145 (0.783, 1.675) | ||
Each A increase | 1.087 (0.900, 1.311) | |||||
rs4969170 | 0.931 | 0.999 | ||||
GG | 850 (80.26) | 374 (79.74) | 476 (80.68) | 1.00 | ||
GA | 198 (18.70) | 90 (19.19) | 108 (18.30) | 1.059 (0.759, 1.476) | ||
AA | 11 (1.04) | 5 (1.07) | 6 (1.02) | 1.374 (0.385, 4.908) | ||
Each A increase | 1.080 (0.799, 1.461) | |||||
rs9892622 | 0.258 | 0.828 | ||||
GG | 215 (20.30) | 91 (19.40) | 124 (21.02) | 1.00 | ||
GA | 526 (49.67) | 225 (47.97) | 301 (51.02) | 0.950 (0.674, 1.338) | ||
AA | 318 (30.03) | 153 (32.63) | 165 (27.96) | 1.203 (0.829, 1.746) | ||
Each A increase | 1.113 (0.926, 1.339) | |||||
rs9914220 | 0.016 | 0.567 | ||||
CC | 390 (36.83) | 194 (41.36) | 196 (33.22) | 1.00 | ||
CT | 479 (45.23) | 202 (43.07) | 277 (46.95) | 0.753 (0.565, 1.003) | ||
TT | 190 (17.94) | 73 (15.57) | 117 (19.83) | 0.705 (0.484, 1.027) | ||
Each T increase | 0.823 (0.686, 0.988) |
Method | β (95%CI) | p-Value |
---|---|---|
Maximum-likelihood method | 5.342 (0.215, 10.469) | 0.041 |
MR-IVW | 4.911 (0.259, 9.564) | 0.039 |
MR-median | 5.117 (−1.356, 11.590) | 0.121 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, X.; Tu, R.; Hou, J.; Zhuang, G. Mendelian Randomization Analysis of the Association of SOCS3 Methylation with Abdominal Obesity. Nutrients 2022, 14, 3824. https://doi.org/10.3390/nu14183824
Li Y, Liu X, Tu R, Hou J, Zhuang G. Mendelian Randomization Analysis of the Association of SOCS3 Methylation with Abdominal Obesity. Nutrients. 2022; 14(18):3824. https://doi.org/10.3390/nu14183824
Chicago/Turabian StyleLi, Yuqian, Xiaotian Liu, Runqi Tu, Jian Hou, and Guihua Zhuang. 2022. "Mendelian Randomization Analysis of the Association of SOCS3 Methylation with Abdominal Obesity" Nutrients 14, no. 18: 3824. https://doi.org/10.3390/nu14183824
APA StyleLi, Y., Liu, X., Tu, R., Hou, J., & Zhuang, G. (2022). Mendelian Randomization Analysis of the Association of SOCS3 Methylation with Abdominal Obesity. Nutrients, 14(18), 3824. https://doi.org/10.3390/nu14183824