Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Overview
2.3. Exercise Protocols
2.4. Supplementation Procedures
2.5. Measurements
2.5.1. Blood Analysis
2.5.2. Mood
2.5.3. Muscle Oxygenation
2.5.4. Muscular Power, Velocity, and Endurance
2.5.5. Statistical Analyses
3. Results
3.1. Plasma [NO3–] and [NO2–]
3.2. Mood
3.3. Muscle Oxygenation
3.4. Muscular Power and Velocity
3.5. Muscular Endurance Performance
4. Discussion
4.1. Influence of Dietary Nitrate Supplementation on Resistance Exercise Performance
4.2. Acute vs. Multiday NO3− Supplementation
4.3. Influence of NO3− Supplementation on Muscle Oxygenation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamler, J.S.; Meissner, G. Physiology of Nitric Oxide in Skeletal Muscle. Physiol. Rev. 2001, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The Nitrate-Nitrite-Nitric Oxide Pathway in Physiology and Therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Hezel, M.P.; Weitzberg, E. The Oral Microbiome and Nitric Oxide Homoeostasis. Oral Dis. 2015, 21, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Shiva, S.; Huang, Z.; Grubina, R.; Sun, J.; Ringwood, L.A.; MacArthur, P.H.; Xu, X.; Murphy, E.; Darley-Usmar, V.M.; Gladwin, M.T. Deoxymyoglobin Is a Nitrite Reductase That Generates Nitric Oxide and Regulates Mitochondrial Respiration. Circ. Res. 2007, 100, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Castello, P.R.; David, P.S.; McClure, T.; Crook, Z.; Poyton, R.O. Mitochondrial Cytochrome Oxidase Produces Nitric Oxide under Hypoxic Conditions: Implications for Oxygen Sensing and Hypoxic Signaling in Eukaryotes. Cell Metab. 2006, 3, 277–287. [Google Scholar] [CrossRef]
- Modin, A.; Björne, H.; Herulf, M.; Alving, K.; Weitzberg, E.; Lundberg, J.O. Nitrite-Derived Nitric Oxide: A Possible Mediator of “acidic-Metabolic” Vasodilation. Acta Physiol. Scand. 2001, 171, 9–16. [Google Scholar] [CrossRef]
- Kadach, S.; Piknova, B.; Black, M.I.; Park, J.W.; Wylie, L.J.; Stoyanov, Z.; Thomas, S.M.; McMahon, N.F.; Vanhatalo, A.; Schechter, A.N.; et al. Time Course of Human Skeletal Muscle Nitrate and Nitrite Concentration Changes Following Dietary Nitrate Ingestion. Nitric Oxide 2022, 121, 1–10. [Google Scholar] [CrossRef]
- Nyakayiru, J.; Kouw, I.W.K.; Cermak, N.M.; Senden, J.M.; van Loon, L.J.C.; Verdijk, L.B. Sodium Nitrate Ingestion Increases Skeletal Muscle Nitrate Content in Humans. J. Appl. Physiol. 2017, 123, 637–644. [Google Scholar] [CrossRef]
- Wylie, L.J.; Park, J.W.; Vanhatalo, A.; Kadach, S.; Black, M.I.; Stoyanov, Z.; Schechter, A.N.; Jones, A.M.; Piknova, B. Human Skeletal Muscle Nitrate Store: Influence of Dietary Nitrate Supplementation and Exercise. J. Physiol. 2019, 597, 5565–5576. [Google Scholar] [CrossRef]
- Wylie, L.J.; Kelly, J.; Bailey, S.J.; Blackwell, J.R.; Skiba, P.F.; Winyard, P.G.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Beetroot Juice and Exercise: Pharmacodynamic and Dose-Response Relationships. J. Appl. Physiol. 2013, 115, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Coggan, A.R.; Broadstreet, S.R.; Mikhalkova, D.; Bole, I.; Leibowitz, J.L.; Kadkhodayan, A.; Park, S.; Thomas, D.P.; Thies, D.; Peterson, L.R. Dietary Nitrate-Induced Increases in Human Muscle Power: High versus Low Responders. Physiol. Rep. 2018, 6, e13575–e13582. [Google Scholar] [CrossRef]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651. [Google Scholar] [CrossRef]
- Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of Acute Dietary Nitrate Supplementation on 50 Mile Time Trial Performance in Well-Trained Cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [Google Scholar] [CrossRef]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Enhances Muscle Contractile Efficiency during Knee-Extensor Exercise in Humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Gandra, P.G.; Jones, A.M.; Hogan, M.C.; Nogueira, L. Incubation with Sodium Nitrite Attenuates Fatigue Development in Intact Single Mouse Fibres at Physiological PO2. J. Physiol. 2019, 597, 5429–5443. [Google Scholar] [CrossRef]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary Nitrate Increases Tetanic [Ca2+]i and Contractile Force in Mouse Fast-Twitch Muscle. J. Physiol. 2012, 590, 3575–3583. [Google Scholar] [CrossRef]
- Breese, B.C.; McNarry, M.A.; Marwood, S.; Blackwell, J.R.; Bailey, S.J.; Jones, A.M. Beetroot Juice Supplementation Speeds O2 Uptake Kinetics and Improves Exercise Tolerance during Severe-Intensity Exercise Initiated from an Elevated Metabolic Rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R1441–R1450. [Google Scholar] [CrossRef]
- Ferguson, S.K.; Hirai, D.M.; Copp, S.W.; Holdsworth, C.T.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Impact of Dietary Nitrate Supplementation via Beetroot Juice on Exercising Muscle Vascular Control in Rats. J. Physiol. 2013, 591, 547–557. [Google Scholar] [CrossRef]
- Petrick, H.L.; Brownell, S.; Vachon, B.; Brunetta, H.S.; Handy, R.M.; van Loon, L.J.C.; Murrant, C.L.; Holloway, G.P. Dietary Nitrate Increases Submaximal SERCA Activity and ADP-Transfer to Mitochondria in Slow-Twitch Muscle of Female Mice. Am. J. Physiol. Endocrinol. Metab. 2022, 323, E171–E184. [Google Scholar] [CrossRef]
- Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.J.; Jones, A.M. Inorganic Nitrate Supplementation Improves Muscle Oxygenation, O₂ Uptake Kinetics, and Exercise Tolerance at High but Not Low Pedal Rates. J. Appl. Physiol. 2015, 118, 1396–1405. [Google Scholar] [CrossRef]
- Coggan, A.R.; Leibowitz, J.L.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Spearie, C.A.; Waller, S.; Farmer, M.; Peterson, L.R. Effect of Acute Dietary Nitrate Intake on Maximal Knee Extensor Speed and Power in Healthy Men and Women. Nitric Oxide 2015, 48, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Ferguson, S.K.; Bailey, S.J.; Vanhatalo, A.; Poole, D.C. Fiber Type-Specific Effects of Dietary Nitrate. Exerc. Sport Sci. Rev. 2016, 44, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.L.; Andersen, J.L.; Zebis, M.K.; Aagaard, P. Early and Late Rate of Force Development: Differential Adaptive Responses to Resistance Training? Scand. J. Med. Sci. Sports 2010, 20, e162–e169. [Google Scholar] [CrossRef]
- Coggan, A.R.; Baranauskas, M.N.; Hinrichs, R.J.; Liu, Z.; Carter, S.J. Effect of Dietary Nitrate on Human Muscle Power: A Systematic Review and Individual Participant Data Meta-Analysis. J. Int. Soc. Sports Nutr. 2021, 18, 66. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; Van Dijk, J.W.; Maase, K.; Ballak, S.B.; Senden, J.M.G.; Van Loon, L.J.C.; Verdijk, L.B. Repeated-Sprint Performance and Plasma Responses Following Beetroot Juice Supplementation Do Not Differ between Recreational, Competitive and Elite Sprint Athletes. Eur. J. Sport Sci. 2018, 18, 524–533. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Hoogervorst, D.; Peelen, H.B.; de Niet, M.; Verdijk, L.B.; van Loon, L.J.C.; van Dijk, J.-W. The Impact of Beetroot Juice Supplementation on Muscular Endurance, Maximal Strength and Countermovement Jump Performance. Eur. J. Sport Sci. 2021, 21, 871–878. [Google Scholar] [CrossRef]
- Kokkinoplitis, K.; Chester, N. The Effect of Beetroot Juice on Repeated Sprint Performance and Muscle Force Production. JPES 2014, 14, 242–247. [Google Scholar] [CrossRef]
- Wylie, L.J.; Bailey, S.J.; Kelly, J.; Blackwell, J.R.; Vanhatalo, A.; Jones, A.M. Influence of Beetroot Juice Supplementation on Intermittent Exercise Performance. Eur. J. Appl. Physiol. 2016, 116, 415–425. [Google Scholar] [CrossRef]
- Coggan, A.R.; Hoffman, R.L.; Gray, D.A.; Moorthi, R.N.; Thomas, D.P.; Leibowitz, J.L.; Thies, D.; Peterson, L.R. A Single Dose of Dietary Nitrate Increases Maximal Knee Extensor Angular Velocity and Power in Healthy Older Men and Women. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1154–1160. [Google Scholar] [CrossRef]
- Gallardo, E.J.; Gray, D.A.; Hoffman, R.L.; Yates, B.A.; Moorthi, R.N.; Coggan, A.R. Dose—Response Effect of Dietary Nitrate on Muscle Contractility and Blood Pressure in Older Subjects: A Pilot Study. J. Gerontol. Ser. A 2021, 76, 591–598. [Google Scholar] [CrossRef]
- Cuenca, E.; Jodra, P.; Pérez-López, A.; González-Rodríguez, L.G.; Fernandes da Silva, S.; Veiga-Herreros, P.; Domínguez, R. Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomized, Double-Blind Cross-Over Study. Nutrients 2018, 10, 1222. [Google Scholar] [CrossRef]
- Domínguez, R.; Garnacho-Castaño, M.V.; Cuenca, E.; García-Fernández, P.; Muñoz-González, A.; de Jesús, F.; Lozano-Estevan, M.D.C.; Fernandes da Silva, S.; Veiga-Herreros, P.; Maté-Muñoz, J.L. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test. Nutrients 2017, 9, 1360. [Google Scholar] [CrossRef] [PubMed]
- Jodra, P.; Domínguez, R.; Sánchez-Oliver, A.J.; Veiga-Herreros, P.; Bailey, S.J. Effect of Beetroot Juice Supplementation on Mood, Perceived Exertion, and Performance During a 30-Second Wingate Test. Int. J. Sports Physiol. Perform. 2020, 15, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.J.; Baur, D.A.; Spicer, M.T.; Vukovich, M.D.; Ormsbee, M.J. The Effect of Six Days of Dietary Nitrate Supplementation on Performance in Trained CrossFit Athletes. J. Int. Soc. Sports Nutr. 2016, 13, 39–45. [Google Scholar] [CrossRef]
- Rimer, E.G.; Peterson, L.R.; Coggan, A.R.; Martin, J.C. Increase in Maximal Cycling Power With Acute Dietary Nitrate Supplementation. Int. J. Sports Physiol. Perform. 2016, 11, 715–720. [Google Scholar] [CrossRef]
- Boorsma, R.K.; Whitfield, J.; Spriet, L.L. Beetroot Juice Supplementation Does Not Improve Performance of Elite 1500-m Runners. Med. Sci. Sports Exerc. 2014, 46, 2326–2334. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and Chronic Effects of Dietary Nitrate Supplementation on Blood Pressure and the Physiological Responses to Moderate-Intensity and Incremental Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.D.; Looney, D.P.; Miller, M.J.S.; DuPont, W.H.; Pryor, L.; Creighton, B.C.; Sterczala, A.J.; Szivak, T.K.; Hooper, D.R.; Maresh, C.M.; et al. The Effects of Nitrate-Rich Supplementation on Neuromuscular Efficiency during Heavy Resistance Exercise. J. Am. Coll Nutr. 2016, 35, 100–107. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; Sánchez-Nuño, S.; Molina-Raya, L.; Carbonell, T.; Maté-Muñoz, J.L.; Pleguezuelos-Cobo, E.; Serra-Payá, N. Circulating Nitrate-Nitrite Reduces Oxygen Uptake for Improving Resistance Exercise Performance after Rest Time in Well-Trained CrossFit Athletes. Sci. Rep. 2022, 12, 9671–9681. [Google Scholar] [CrossRef]
- Jurado-Castro, J.M.; Campos-Perez, J.; Ranchal-Sanchez, A.; Durán-López, N.; Domínguez, R. Acute Effects of Beetroot Juice Supplements on Lower-Body Strength in Female Athletes: Double-Blind Crossover Randomized Trial. Sports Health 2022, 19417381221083590. [Google Scholar] [CrossRef]
- Mosher, S.L.; Sparks, S.A.; Williams, E.L.; Bentley, D.J.; Mc Naughton, L.R. Ingestion of a Nitric Oxide Enhancing Supplement Improves Resistance Exercise Performance. J. Strength Cond Res. 2016, 30, 3520–3524. [Google Scholar] [CrossRef]
- Ranchal-Sanchez, A.; Diaz-Bernier, V.M.; De La Florida-Villagran, C.A.; Llorente-Cantarero, F.J.; Campos-Perez, J.; Jurado-Castro, J.M. Acute Effects of Beetroot Juice Supplements on Resistance Training: A Randomized Double-Blind Crossover. Nutrients 2020, 12, 1912. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, A.; Castillo, D.; Raya-González, J.; Domínguez, R.; Bailey, S.J. Beetroot Juice Supplementation Increases Concentric and Eccentric Muscle Power Output. Original Investigation. J. Sci. Med. Sport 2021, 24, 80–84. [Google Scholar] [CrossRef]
- Williams, T.D.; Martin, M.P.; Mintz, J.A.; Rogers, R.R.; Ballmann, C.G. Effect of Acute Beetroot Juice Supplementation on Bench Press Power, Velocity, and Repetition Volume. J. Strength Cond. Res. 2020, 34, 924–928. [Google Scholar] [CrossRef]
- Polgar, J.; Johnson, M.A.; Weightman, D.; Appleton, D. Data on Fibre Size in Thirty-Six Human Muscles. An Autopsy Study. J. Neurol. Sci. 1973, 19, 307–318. [Google Scholar] [CrossRef]
- Zinner, C.; Morales-Alamo, D.; Ørtenblad, N.; Larsen, F.J.; Schiffer, T.A.; Willis, S.J.; Gelabert-Rebato, M.; Perez-Valera, M.; Boushel, R.; Calbet, J.A.L.; et al. The Physiological Mechanisms of Performance Enhancement with Sprint Interval Training Differ between the Upper and Lower Extremities in Humans. Front. Physiol. 2016, 7, 426. [Google Scholar] [CrossRef]
- Baranauskas, M.N.; Freemas, J.A.; Tan, R.; Carter, S.J. Moving beyond Inclusion: Methodological Considerations for the Menstrual Cycle and Menopause in Research Evaluating Effects of Dietary Nitrate on Vascular Function. Nitric Oxide 2022, 118, 39–48. [Google Scholar] [CrossRef]
- Govoni, M.; Jansson, E.A.; Weitzberg, E.; Lundberg, J.O. The Increase in Plasma Nitrite after a Dietary Nitrate Load Is Markedly Attenuated by an Antibacterial Mouthwash. Nitric Oxide 2008, 19, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Golas, A.; Stastny, P.; Nawrocka, M.; Krzysztofik, M.; Zajac, A. Does Tempo of Resistance Exercise Impact Training Volume? J. Hum. Kinet. 2018, 62, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Lane, A.M.; Lane, H.J.; Keohane, L. Development and Validation of a Mood Measure for Adolescents. J. Sports Sci. 1999, 17, 861–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terry, P.C.; Lane, A.M.; Fogarty, G.J. Construct Validity of the Profile of Mood States-Adolescents for Use with Adults. Psychol. Sport Exerc. 2003, 4, 125–139. [Google Scholar] [CrossRef]
- Beedie, C.J.; Terry, P.C.; Lane, A.M. The Profile of Mood States and Athletic Performance: Two Meta-Analyses. J. Appl. Sport Psychol. 2000, 12, 49–68. [Google Scholar] [CrossRef]
- Crum, E.M.; O’Connor, W.J.; Van Loo, L.; Valckx, M.; Stannard, S.R. Validity and Reliability of the Moxy Oxygen Monitor during Incremental Cycling Exercise. Eur. J. Sport Sci. 2017, 17, 1037–1043. [Google Scholar] [CrossRef]
- Feldmann, A.; Schmitz, R.W.; Erlacher, D. Near-Infrared Spectroscopy-Derived Muscle Oxygen Saturation on a 0% to 100% Scale: Reliability and Validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 115001. [Google Scholar] [CrossRef]
- McManus, C.J.; Collison, J.; Cooper, C.E. Performance Comparison of the MOXY and PortaMon Near-Infrared Spectroscopy Muscle Oximeters at Rest and during Exercise. J. Biomed. Opt. 2018, 23, 015007. [Google Scholar] [CrossRef]
- Ferrari, M.; Muthalib, M.; Quaresima, V. The Use of Near-Infrared Spectroscopy in Understanding Skeletal Muscle Physiology: Recent Developments. Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 4577–4590. [Google Scholar] [CrossRef]
- Ballmann, C.G.; McCullum, M.J.; Rogers, R.R.; Marshall, M.R.; Williams, T.D. Effects of Preferred vs. Nonpreferred Music on Resistance Exercise Performance. J. Strength Cond. Res. 2021, 35, 1650–1655. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 978-0-203-77158-7. [Google Scholar]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Tan, R.; Wylie, L.J.; Wilkerson, D.P.; Vanhatalo, A.; Jones, A.M. Effects of Dietary Nitrate on the O2 Cost of Submaximal Exercise: Accounting for “Noise” in Pulmonary Gas Exchange Measurements. J. Sports Sci. 2022, 40, 1149–1157. [Google Scholar] [CrossRef]
- Tillin, N.A.; Moudy, S.; Nourse, K.M.; Tyler, C.J. Nitrate Supplement Benefits Contractile Forces in Fatigued but Not Unfatigued Muscle. Med. Sci. Sports Exerc. 2018, 50, 2122–2131. [Google Scholar] [CrossRef]
- Johnson, M.A.; Sharpe, G.R.; Williams, N.C.; Hannah, R. Locomotor Muscle Fatigue Is Not Critically Regulated after Prior Upper Body Exercise. J. Appl. Physiol. 2015, 119, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Husmann, F.; Bruhn, S.; Mittlmeier, T.; Zschorlich, V.; Behrens, M. Dietary Nitrate Supplementation Improves Exercise Tolerance by Reducing Muscle Fatigue and Perceptual Responses. Front. Physiol. 2019, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Thurston, T.S.; Weavil, J.C.; Hureau, T.J.; Gifford, J.R.; Georgescu, V.P.; Wan, H.-Y.; La Salle, D.T.; Richardson, R.S.; Amann, M. On the Implication of Dietary Nitrate Supplementation for the Hemodynamic and Fatigue Response to Cycling Exercise. J. Appl. Physiol. 2021, 131, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.J.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Dietary Nitrate Improves Sprint Performance and Cognitive Function during Prolonged Intermittent Exercise. Eur. J. Appl. Physiol. 2015, 115, 1825–1834. [Google Scholar] [CrossRef]
- Jo, E.; Fischer, M.; Auslander, A.T.; Beigarten, A.; Daggy, B.; Hansen, K.; Kessler, L.; Osmond, A.; Wang, H.; Wes, R. The Effects of Multi-Day vs. Single Pre-Exercise Nitrate Supplement Dosing on Simulated Cycling Time Trial Performance and Skeletal Muscle Oxygenation. J. Strength Cond. Res. 2019, 33, 217–224. [Google Scholar] [CrossRef]
- Wylie, L.J.; Ortiz de Zevallos, J.; Isidore, T.; Nyman, L.; Vanhatalo, A.; Bailey, S.J.; Jones, A.M. Dose-Dependent Effects of Dietary Nitrate on the Oxygen Cost of Moderate-Intensity Exercise: Acute vs. Chronic Supplementation. Nitric Oxide 2016, 57, 30–39. [Google Scholar] [CrossRef]
- Coggan, A.R.; Peterson, L.R. Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exerc. Sport Sci. Rev. 2018, 46, 254–261. [Google Scholar] [CrossRef]
- Dutka, T.L.; Mollica, J.P.; Lamboley, C.R.; Weerakkody, V.C.; Greening, D.W.; Posterino, G.S.; Murphy, R.M.; Lamb, G.D. S-Nitrosylation and S-Glutathionylation of Cys134 on Troponin I Have Opposing Competitive Actions on Ca2+ Sensitivity in Rat Fast-Twitch Muscle Fibers. Am. J. Physiol. Cell Physiol. 2017, 312, C316–C327. [Google Scholar] [CrossRef]
- Gould, N.; Doulias, P.-T.; Tenopoulou, M.; Raju, K.; Ischiropoulos, H. Regulation of Protein Function and Signaling by Reversible Cysteine S-Nitrosylation. J. Biol. Chem. 2013, 288, 26473–26479. [Google Scholar] [CrossRef]
- Ishii, T.; Sunami, O.; Saitoh, N.; Nishio, H.; Takeuchi, T.; Hata, F. Inhibition of Skeletal Muscle Sarcoplasmic Reticulum Ca 2+ -ATPase by Nitric Oxide. FEBS Lett. 1998, 440, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, L.; Figueiredo-Freitas, C.; Casimiro-Lopes, G.; Magdesian, M.H.; Assreuy, J.; Sorenson, M.M. Myosin Is Reversibly Inhibited by S-Nitrosylation. Biochem. J. 2009, 424, 221–231. [Google Scholar] [CrossRef]
- Nyakayiru, J.; van Loon, L.J.C.; Verdijk, L.B. Could Intramuscular Storage of Dietary Nitrate Contribute to Its Ergogenic Effect? A Mini-Review. Free Radic. Biol. Med. 2020, 152, 295–300. [Google Scholar] [CrossRef]
- Whitfield, J.; Ludzki, A.; Heigenhauser, G.J.F.; Senden, J.M.G.; Verdijk, L.B.; van Loon, L.J.C.; Spriet, L.L.; Holloway, G.P. Beetroot Juice Supplementation Reduces Whole Body Oxygen Consumption but Does Not Improve Indices of Mitochondrial Efficiency in Human Skeletal Muscle. J. Physiol. 2016, 594, 421–435. [Google Scholar] [CrossRef]
- Mattocks, K.T.; Buckner, S.L.; Jessee, M.B.; Dankel, S.J.; Mouser, J.G.; Loenneke, J.P. Practicing the Test Produces Strength Equivalent to Higher Volume Training. Med. Sci. Sports Exerc. 2017, 49, 1945–1954. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; Taylor, J.L.; Gandevia, S.C. CORP: Measurement of Upper and Lower Limb Muscle Strength and Voluntary Activation. J. Appl Physiol. 2019, 126, 513–543. [Google Scholar] [CrossRef]
- Kent, G.L.; Dawson, B.; Cox, G.R.; Abbiss, C.R.; Smith, K.J.; Croft, K.D.; Lim, Z.X.; Eastwood, A.; Burke, L.M.; Peeling, P. Effect of Dietary Nitrate Supplementation on Thermoregulatory and Cardiovascular Responses to Submaximal Cycling in the Heat. Eur. J. Appl. Physiol. 2018, 118, 657–668. [Google Scholar] [CrossRef]
- Nybäck, L.; Glännerud, C.; Larsson, G.; Weitzberg, E.; Shannon, O.M.; McGawley, K. Physiological and Performance Effects of Nitrate Supplementation during Roller-Skiing in Normoxia and Normobaric Hypoxia. Nitric Oxide 2017, 70, 1–8. [Google Scholar] [CrossRef]
- Rokkedal-Lausch, T.; Franch, J.; Poulsen, M.K.; Thomsen, L.P.; Weitzberg, E.; Kamavuako, E.N.; Karbing, D.S.; Larsen, R.G. Multiple-Day High-Dose Beetroot Juice Supplementation Does Not Improve Pulmonary or Muscle Deoxygenation Kinetics of Well-Trained Cyclists in Normoxia and Hypoxia. Nitric Oxide 2021, 111–112, 37–44. [Google Scholar] [CrossRef]
- Masschelein, E.; Van Thienen, R.; Wang, X.; Van Schepdael, A.; Thomis, M.; Hespel, P. Dietary Nitrate Improves Muscle but Not Cerebral Oxygenation Status during Exercise in Hypoxia. J. Appl. Physiol. 2012, 113, 736–745. [Google Scholar] [CrossRef]
- Shannon, O.M.; Duckworth, L.; Barlow, M.J.; Deighton, K.; Matu, J.; Williams, E.L.; Woods, D.; Xie, L.; Stephan, B.C.M.; Siervo, M.; et al. Effects of Dietary Nitrate Supplementation on Physiological Responses, Cognitive Function, and Exercise Performance at Moderate and Very-High Simulated Altitude. Front. Physiol. 2017, 8, 401. [Google Scholar] [CrossRef]
- Cocksedge, S.P.; Breese, B.C.; Morgan, P.T.; Nogueira, L.; Thompson, C.; Wylie, L.J.; Jones, A.M.; Bailey, S.J. Influence of Muscle Oxygenation and Nitrate-Rich Beetroot Juice Supplementation on O2 Uptake Kinetics and Exercise Tolerance. Nitric Oxide 2020, 99, 25–33. [Google Scholar] [CrossRef] [PubMed]
PL | BR | |||
---|---|---|---|---|
Variable | Day 1 | Day 4 | Day 1 | Day 4 |
Plasma [NO3−] (µM) | 39 ± 13 | 34 ± 13 | 428 ± 131 # | 506 ± 159 *# |
Plasma [NO2−] (nM) | 248 ± 82 | 236 ± 91 | 581 ± 272 # | 595 ± 286 # |
PL | BR | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Day 1 | Day 1 Mdn | Day 4 | Day 4 Mdn | Day 1 | Day 1 Mdn | Day 4 | Day 4 Mdn |
Anger | 0.43 ± 0.85 | 0.00 | 0.29 ± 0.83 | 0.00 | 0.29 ± 0.61 | 0.00 | 0.21 ± 0.58 | 0.00 |
Confusion | 0.07 ± 0.27 | 0.00 | 0.07 ± 0.27 | 0.00 | 0.43 ± 1.09 | 0.00 | 0.50 ± 1.09 | 0.00 |
Depression | 0.29 ± 0.61 | 0.00 | 0.71 ± 1.98 | 0.00 | 0.43 ± 1.09 | 0.00 | 0.50 ± 0.94 | 0.00 |
Fatigue | 3.43 ± 3.08 | 2.50 | 3.86 ± 3.78 | 3.00 | 3.07 ± 3.20 | 2.50 | 2.21 ± 2.29 | 1.50 |
Tension | 0.57 ± 1.02 | 0.00 | 1.00 ± 1.92 | 0.00 | 1.00 ± 1.30 | 0.00 | 0.64 ± 0.84 | 0.00 |
Vigor | 6.93 ± 3.20 | 8.00 | 6.36 ± 2.53 | 6.50 | 7.07 ± 2.64 | 6.50 | 6.64 ± 3.25 | 7.00 |
PL | BR | |||||||
---|---|---|---|---|---|---|---|---|
Day 1 | Day 4 | Day 1 | Day 4 | |||||
Variable | Set 1 | Set 2 | Set 1 | Set 2 | Set 1 | Set 2 | Set 1 | Set 2 |
Baseline (%) | 71 ± 11 | 72 ± 11 | 71 ± 13 | 70 ± 12 | 71 ± 13 | 73 ± 10 | 72 ± 14 | 73 ± 13 |
TD (s) | 4.2 ± 2.6 | 4.5 ± 2.5 | 4.6 ± 2.5 | 3.9 ± 3.3 | 2.6 ± 2.1 | 3.0 ± 3.3 | 4.9 ± 3.6 | 3.9 ± 3.4 |
Nadir during exercise | 65 ± 16 | 68 ± 15 | 63 ± 17 | 61 ± 16 | 58 ± 17 | 63 ± 15 | 66 ± 15 | 65 ± 16 |
Nadir post-exercise | 24 ± 17 | 26 ± 19 | 29 ± 25 | 22 ± 23 | 21 ± 16 | 20 ± 18 | 24 ± 17 | 25 ± 19 |
ΔSmO2 during exercise | −6 ± 11 | −4 ± 8 | −8 ± 9 | −9 ± 10 | −13 ± 14 | −11 ± 15 | −5 ± 8 | −8 ± 10 |
ΔSmO2 total | −47 ± 13 | −46 ± 14 | −42 ± 20 | −48 ± 17 | −51 ± 15 | −53 ± 15 | −47 ± 17 | −48 ± 17 |
Time to nadir post-exercise | 22 ± 5 | 21 ± 6 | 22 ± 7 | 22 ± 6 | 20 ± 5 | 19 ± 5 | 23 ± 7 | 21 ± 6 |
Lag from end-exercise | 16 ± 5 | 15 ± 6 | 14 ± 7 | 15 ± 6 | 13 ± 5 | 13 ± 5 | 16 ± 5 | 14 ± 4 |
PL | BR | |||||||
---|---|---|---|---|---|---|---|---|
Day 1 | Day 4 | Day 1 | Day 4 | |||||
Variable | Set 1 | Set 2 | Set 1 | Set 2 | Set 1 | Set 2 | Set 1 | Set 2 |
Baseline (%) | 82 ± 11 | 81 ± 12 | 80 ± 12 | 81 ± 11 | 80 ± 12 | 79 ± 15 | 77 ± 8 | 78 ± 9 |
TD (s) | 2.6 ± 2.1 | 3.9 ± 2.1 | 2.9 ± 2.4 | 3.2 ± 2.3 | 4.2 ± 2.4 | 4.2 ± 2.7 | 3.1 ± 2.7 | 2.5 ± 2.7 |
Nadir during exercise | 77 ± 16 | 78 ± 15 | 72 ± 16 | 76 ± 16 | 73 ± 15 | 78 ± 15 | 70 ± 11 | 70 ± 15 |
Nadir post-exercise | 56 ± 24 | 60 ± 21 | 59 ± 20 | 61 ± 20 | 56 ± 25 | 58 ± 25 | 48 ± 26 | 50 ± 24 |
ΔSmO2 during exercise | −8 ± 12 | −3 ± 5 | −10 ± 12 | −5 ± 9 | −7 ± 7 | −1 ± 8 | −7 ± 8 | −8 ± 11 |
ΔSmO2 total | −26 ± 17 | −21 ± 13 | −23 ± 17 | −20 ± 16 | −24 ± 18 | −20 ± 17 | −29 ± 22 | −28 ± 18 |
Time to nadir post-exercise | 14 ± 6 | 15 ± 6 | 14 ± 7 | 16 ± 9 | 16 ± 7 | 17 ± 8 | 17 ± 8 | 17 ± 8 |
Lag from end-exercise | 9 ± 6 | 9 ± 7 | 9 ± 6 | 10 ± 9 | 11 ± 7 | 12 ± 8 | 11 ± 8 | 11 ± 8 |
PL | BR | |||
---|---|---|---|---|
Variable | Day 1 | Day 4 | Day 1 | Day 4 |
Baseline (%) | 82 ± 10 | 82 ± 10 | 83 ± 11 | 85 ± 8 |
TD (s) | 3.9 ± 6.0 | 2.6 ± 3.3 | 2.8 ± 3.5 | 3.2 ± 3.1 |
End-exercise SmO2 (%) | 17 ± 18 | 13 ± 20 | 8 ± 6 | 10 ± 10 |
ΔSmO2 during exercise | −65 ± 21 | −70 ± 19 | −75 ± 15 | −75 ± 11 |
PL | BR | |||
---|---|---|---|---|
Variable | Day 1 | Day 4 | Day 1 | Day 4 |
Baseline (%) | 84 ± 9 | 86 ± 8 | 84 ± 12 | 82 ± 9 |
TD (s) | 9.9 ± 10.7 | 13.4 ± 14.6 | 8.9 ± 12.0 | 9.5 ± 12.0 |
End-exercise SmO2 (%) | 68 ± 27 | 61 ± 28 | 56 ± 28 | 54 ± 23 |
ΔSmO2 during exercise | −15 ± 22 | −25 ± 26 | −27 ± 22 | −28 ± 20 |
PL | BR | |||
---|---|---|---|---|
Variable | Day 1 | Day 4 | Day 1 | Day 4 |
Peak Power (W) | 1700 ± 444 | 1810 ± 478 * | 1736 ± 461 | 1778 ± 461 |
Mean Power (W) | 699 ± 163 | 693 ± 189 | 689 ± 162 | 707 ± 162 |
Peak Velocity (m/s) | 1.5 ± 0.3 | 1.5 ± 0.2 | 1.5 ± 0.2 | 1.5 ± 0.1 |
Mean Velocity (m/s) | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 |
PL | BR | |||
---|---|---|---|---|
Variable | Day 1 | Day 4 | Day 1 | Day 4 |
Peak Power (W) | 665 ± 179 | 725 ± 216 | 659 ± 163 | 693 ± 183 * |
Mean Power (W) | 411 ± 107 | 438 ± 124 | 404 ± 90 | 431 ± 114 * |
Peak Velocity (m/s) | 0.9 ± 0.2 | 0.9 ± 0.1 | 0.9 ± 0.2 | 0.9 ± 0.2 |
Mean Velocity (m/s) | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 * |
PL | BR | |||
---|---|---|---|---|
Variable | Day 1 | Day 4 | Day 1 | Day 4 |
Repetitions | 28 ± 9 | 29 ± 10 | 28 ± 7 | 30 ± 7 * |
Peak Power (W) | 843 ± 229 | 897 ± 255 | 869 ± 235 | 845 ± 204 |
Mean Power (W) | 493 ± 150 | 502 ± 166 | 497 ± 152 | 486 ± 131 |
Peak Velocity (m/s) | 0.9 ± 0.1 | 1.0 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 |
Mean Velocity (m/s) | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.6 ± 0.1 |
PL | BR | |||
---|---|---|---|---|
Variable | Day 1 | Day 4 | Day 1 | Day 4 |
Reps | 23 ± 4 | 24 ± 4 * | 24 ± 5 # | 24 ± 5 |
Peak Power (W) | 461 ± 186 | 508 ± 273 | 466 ± 241 | 468 ± 192 |
Mean Power (W) | 309 ± 88 | 333 ± 135 | 309 ± 118 | 308 ± 90 |
Peak Velocity (m/s) | 0.8 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.1 |
Mean Velocity (m/s) | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, R.; Pennell, A.; Price, K.M.; Karl, S.T.; Seekamp-Hicks, N.G.; Paniagua, K.K.; Weiderman, G.D.; Powell, J.P.; Sharabidze, L.K.; Lincoln, I.G.; et al. Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men. Nutrients 2022, 14, 3703. https://doi.org/10.3390/nu14183703
Tan R, Pennell A, Price KM, Karl ST, Seekamp-Hicks NG, Paniagua KK, Weiderman GD, Powell JP, Sharabidze LK, Lincoln IG, et al. Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men. Nutrients. 2022; 14(18):3703. https://doi.org/10.3390/nu14183703
Chicago/Turabian StyleTan, Rachel, Adam Pennell, Katherine M. Price, Sean T. Karl, Noelle G. Seekamp-Hicks, Keonabelle K. Paniagua, Grant D. Weiderman, Joanna P. Powell, Luka K. Sharabidze, Isabella G. Lincoln, and et al. 2022. "Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men" Nutrients 14, no. 18: 3703. https://doi.org/10.3390/nu14183703
APA StyleTan, R., Pennell, A., Price, K. M., Karl, S. T., Seekamp-Hicks, N. G., Paniagua, K. K., Weiderman, G. D., Powell, J. P., Sharabidze, L. K., Lincoln, I. G., Kim, J. M., Espinoza, M. F., Hammer, M. A., Goulding, R. P., & Bailey, S. J. (2022). Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men. Nutrients, 14(18), 3703. https://doi.org/10.3390/nu14183703