Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Investigational Drinks
2.4. Anthropometric and Vascular Measurements
2.5. Biochemical Analyses
2.6. Statistical Analyses
3. Results
3.1. Study Participants
3.2. Brachial and Femoral Flow-Mediated Vasodilation
3.3. Carotid Artery Reactivity
3.4. Blood Pressure
3.5. Post-Drink Glucose, Insulin, and Nitrate plus Nitrite Concentrations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bryan, N.S.; Tribble, G.; Angelov, N. Oral microbiome and nitric oxide: The missing link in the management of blood pressure. Curr. Hypertens. Rep. 2017, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Vanhoutte, P.M.; Leung, S.W. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015, 129, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Finkel, A.; Röhrich, M.A.; Maassen, N.; Lützow, M.; Blau, L.S.; Hanff, E.; Tsikas, D.; Maassen, M. Long-term effects of NO3− on the relationship between oxygen uptake and power after three weeks of supplemented HIHVT. J. Appl. Physiol. 2018, 125, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Bryan, N.S. Functional nitric oxide nutrition to combat cardiovascular disease. Curr. Atheroscler. Rep. 2018, 20, 21. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Croft, K.D.; Hodgson, J.M. Dietary nitrate, nitric oxide, and cardiovascular health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2036–2052. [Google Scholar] [CrossRef]
- Jackson, J.K.; Patterson, A.J.; MacDonald-Wicks, L.K.; Oldmeadow, C.; McEvoy, M.A. The role of inorganic nitrate and nitrite in cardiovascular disease risk factors: A systematic review and meta-analysis of human evidence. Nutr. Rev. 2018, 76, 348–371. [Google Scholar] [CrossRef]
- Thijssen, D.H.; Rowley, N.; Padilla, J.; Simmons, G.H.; Laughlin, M.H.; Whyte, G.; Cable, N.T.; Green, D.J. Relationship between upper and lower limb conduit artery vasodilator function in humans. J. Appl. Physiol. 2011, 111, 244–250. [Google Scholar] [CrossRef]
- Walker, M.A.; Bailey, T.G.; McIlvenna, L.; Allen, J.D.; Green, D.J.; Askew, C.D. Acute dietary nitrate supplementation improves flow mediated dilatation of the superficial femoral artery in healthy older males. Nutrients 2019, 11, 954. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Van Mil, A.; Pouwels, S.; Wilbrink, J.; Warle, M.C.; Thijssen, D.H.J. Carotid artery reactivity predicts events in peripheral arterial disease patients. Ann. Surg. 2019, 269, 767–773. [Google Scholar] [CrossRef]
- Van Mil, A.C.; Hartman, Y.; van Oorschot, F.; Heemels, A.; Bax, N.; Dawson, E.A.; Hopkins, N.; Hopman, M.T.; Green, D.J.; Oxborough, D.L.; et al. Correlation of carotid artery reactivity with cardiovascular risk factors and coronary artery vasodilator responses in asymptomatic, healthy volunteers. J. Hypertens. 2017, 35, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Kleinloog, J.P.D.; Mensink, R.P.; Smeets, E.T.H.C.; Ivanov, D.; Joris, P.J. Acute inorganic nitrate intake increases regional insulin action in the brain: Results of a double-blinded, randomized, controlled cross-over trail with abdominally obese men. Neuroimage Clin. 2022, 35, 103115. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.H.J.; Bruno, R.M.; van Mil, A.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019, 40, 2534–2547. [Google Scholar] [CrossRef] [PubMed]
- Van Bussel, F.C.; van Bussel, B.C.; Hoeks, A.P.; Op ’t Roodt, J.; Henry, R.M.; Ferreira, I.; Vanmolkot, F.H.; Schalkwijk, C.G.; Stehouwer, C.D.; Reesink, K.D. A control systems approach to quantify wall shear stress normalization by flow-mediated dilation in the brachial artery. PLoS ONE 2015, 10, e0115977. [Google Scholar] [CrossRef]
- Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 51–70. [Google Scholar] [CrossRef]
- Joris, P.J.; Mensink, R.P. Beetroot juice improves in overweight and slightly obese men postprandial endothelial function after consumption of a mixed meal. Atherosclerosis 2013, 231, 78–83. [Google Scholar] [CrossRef]
- Heiss, C.; Meyer, C.; Totzeck, M.; Hendgen-Cotta, U.B.; Heinen, Y.; Luedike, P.; Keymel, S.; Ayoub, N.; Lundberg, J.O.; Weitzberg, E.; et al. Dietary inorganic nitrate mobilizes circulating angiogenic cells. Free Radic. Biol. Med. 2012, 52, 1767–1772. [Google Scholar] [CrossRef]
- Kapil, V.; Milsom, A.B.; Okorie, M.; Maleki-Toyserkani, S.; Akram, F.; Rehman, F.; Arghandawi, S.; Pearl, V.; Benjamin, N.; Loukogeorgakis, S.; et al. Inorganic nitrate supplementation lowers blood pressure in humans: Role for nitrite-derived NO. Hypertension 2010, 56, 274–281. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Nyakayiru, J.; Pinckaers, P.J.; Senden, J.M.; van Loon, L.J.; Verdijk, L.B. Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. J. Nutr. 2016, 146, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Lara, J.; Ashor, A.W.; Oggioni, C.; Ahluwalia, A.; Mathers, J.C.; Siervo, M. Effects of inorganic nitrate and beetroot supplementation on endothelial function: A systematic review and meta-analysis. Eur. J. Nutr. 2016, 55, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Ne, J.Y.A.; Cai, T.Y.; Celermajer, D.S.; Caterson, I.D.; Gill, T.; Lee, C.M.Y.; Skilton, M.R. Obesity, arterial function and arterial structure—A systematic review and meta-analysis. Obes. Sci. Pract. 2017, 3, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Kenjale, A.A.; Ham, K.L.; Stabler, T.; Robbins, J.L.; Johnson, J.L.; Vanbruggen, M.; Privette, G.; Yim, E.; Kraus, W.E.; Allen, J.D. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J. Appl. Physiol. 2011, 110, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Hezel, M.; Aydin, H.; Kelm, M.; Lundberg, J.O.; Weitzberg, E.; Spencer, J.P.; Heiss, C. Interactions between cocoa flavanols and inorganic nitrate: Additive effects on endothelial function at achievable dietary amounts. Free Radic. Biol. Med. 2015, 80, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Bahra, M.; Kapil, V.; Pearl, V.; Ghosh, S.; Ahluwalia, A. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide 2012, 26, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.E.; Phillips, J.K.; Sandow, S.L. Heterogeneous control of blood flow amongst different vascular beds. Med. Res. Rev. 2001, 21, 1–60. [Google Scholar] [CrossRef]
- Newcomer, S.C.; Leuenberger, U.A.; Hogeman, C.S.; Handly, B.D.; Proctor, D.N. Different vasodilator responses of human arms and legs. J. Physiol. 2004, 556 Pt 3, 1001–1011. [Google Scholar] [CrossRef]
- Van Sloten, T.T.; Schram, M.T.; van den Hurk, K.; Dekker, J.M.; Nijpels, G.; Henry, R.M.; Stehouwer, C.D. Local stiffness of the carotid and femoral artery is associated with incident cardiovascular events and all-cause mortality: The Hoorn study. J. Am. Coll. Cardiol. 2014, 63, 1739–1747. [Google Scholar] [CrossRef]
- Schreuder, T.H.; Green, D.J.; Hopman, M.T.; Thijssen, D.H. Acute impact of retrograde shear rate on brachial and superficial femoral artery flow-mediated dilation in humans. Physiol. Rep. 2014, 2, e00193. [Google Scholar] [CrossRef]
- Peace, A.; Van Mil, A.; Jones, H.; Thijssen, D.H.J. Similarities and differences between carotid artery and coronary artery function. Curr. Cardiol. Rev. 2018, 14, 254–263. [Google Scholar] [CrossRef]
- Peace, A.; Pinna, V.; Timmen, F.; Speretta, G.; Jones, H.; Lotto, R.; Jones, I.; Thijssen, D. Role of blood pressure in mediating carotid artery dilation in response to sympathetic stimulation in healthy, middle-aged individuals. Am. J. Hypertens. 2020, 33, 146–153. [Google Scholar] [CrossRef]
- Yu, S.; McEniery, C.M. Central versus peripheral artery stiffening and cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, S.; van Sloten, T.T.; Laurent, S.; London, G.M.; Pannier, B.; Kavousi, M.; Mattace-Raso, F.; Franco, O.H.; Boutouyrie, P.; Ikram, M.A.; et al. Common carotid artery diameter and risk of cardiovascular events and mortality: Pooled analyses of four cohort studies. Hypertension 2018, 72, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.A.; Sales, A.R.; Rocha, N.G.; Silva, B.M.; Vianna, L.C.; da Nobrega, A.C. Preserved flow-mediated dilation but delayed time-to-peak diameter in individuals with metabolic syndrome. Clin. Physiol. Funct. Imaging 2014, 34, 270–276. [Google Scholar] [CrossRef]
- Stoner, L.; McCully, K.K. Peak and time-integrated shear rates independently predict flow-mediated dilation. J. Clin. Ultrasound 2012, 40, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Irace, C.; Padilla, J.; Carallo, C.; Scavelli, F.; Gnasso, A. Delayed vasodilation is associated with cardiovascular risk. Eur. J. Clin. Invest. 2014, 44, 549–556. [Google Scholar] [CrossRef]
- Kapil, V.; Khambata, R.S.; Robertson, A.; Caulfield, M.J.; Ahluwalia, A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study. Hypertension 2015, 65, 320–327. [Google Scholar] [CrossRef]
- Padilla, J.; Jenkins, N.T.; Laughlin, M.H.; Fadel, P.J. Blood pressure regulation VIII: Resistance vessel tone and implications for a pro-atherogenic conduit artery endothelial cell phenotype. Eur. J. Appl. Physiol. 2014, 114, 531–544. [Google Scholar] [CrossRef]
- Floyd, C.N.; Lidder, S.; Hunt, J.; Omar, S.A.; McNeill, K.; Webb, A.J. Acute interaction between oral glucose (75 g as Lucozade) and inorganic nitrate: Decreased insulin clearance, but lack of blood pressure-lowering. Br. J. Clin. Pharmacol. 2019, 85, 1443–1453. [Google Scholar] [CrossRef]
- Coles, L.T.; Clifton, P.M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr. J. 2012, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Hermida, R.C.; Ayala, D.E.; Portaluppi, F. Circadian variation of blood pressure: The basis for the chronotherapy of hypertension. Adv. Drug Deliv. Rev. 2007, 59, 904–922. [Google Scholar] [CrossRef] [PubMed]
- Yano, Y.; Kario, K. Nocturnal blood pressure and cardiovascular disease: A review of recent advances. Hypertens. Res. 2012, 35, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D.; Mikuteit, M. N-Acetyl-L-cysteine in human rheumatoid arthritis and its effects on nitric oxide (NO) and malondialdehyde (MDA): Analytical and clinical considerations. Amino Acids 2022, 54, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
Characteristics | |
---|---|
Age (years) | 50 (45–57) 1 |
Body mass index (kg/m2) | 33.5 ± 5.0 |
Waist circumference (cm) | 117.3 ± 10.3 |
Fasting serum total cholesterol (mmol/L) | 5.1 ± 0.7 |
Fasting plasma glucose (mmol/L) | 5.5 ± 0.6 |
Variables | Placebo | Potassium Nitrate | |
---|---|---|---|
Baseline brachial artery diameter, mm | Pre-drink | 4.7 ± 0.5 | 4.7 ± 0.6 |
Post-drink * | 4.6 ± 0.6 | 4.6 ± 0.6 | |
Changes | −0.1 ± 0.2 | −0.1 ± 0.2 | |
Brachial artery pFMDv, % | Pre-drink | 2.0 ± 2.0 | 2.5 ± 3.1 |
Post-drink * | 1.1 ± 0.8 | 1.2 ± 0.9 | |
Changes | −0.9 ± 1.5 | −1.3 ± 3.0 | |
Brachial velocity flow, % | Pre-drink | 284 ± 116 | 276 ± 116 |
Post-drink * | 404 ± 77 | 370 ± 99 | |
Changes | 120 ± 117 | 095 ± 139 | |
Brachial time to peak dilation, s | Pre-drink | 67 ± 21 | 82 ± 50 |
Post-drink | 70 ± 36 | 60 ± 14 | |
Changes | 3 ± 42 | −22 ± 55 | |
Baseline femoral artery diameter, mm | Pre-drink | 7.5 ± 0.8 | 7.5 ± 0.9 |
Post-drink | 7.6 ± 0.8 | 7.5 ± 0.8 | |
Changes | 0.0 ± 0.3 | 0.0 ± 0.3 | |
Femoral artery pFMDv, % | Pre-drink | 1.0 ± 0.9 | 1.1 ± 0.9 |
Post-drink | 1.3 ± 1.2 | 1.1 ± 1.2 | |
Changes | 0.3 ± 1.2 | 0.1 ± 1.7 | |
Femoral velocity flow, % | Pre-drink | 260 ± 62 | 244 ± 54 |
Post-drink | 284 ± 63 | 259 ± 840 | |
Changes | 24 ± 81 | 15 ± 88 | |
Femoral time to peak dilation, s | Pre-drink | 112 ± 57 | 98 ± 48 |
Post-drink | 112 ± 53 | 105 ± 57 | |
Changes | 0 ± 85 | 7 ± 78 | |
CAR, % | Pre-drink | – | – |
Post-drink | 4.0 ± 2.9 | 3.2 ± 2.5 | |
Changes | – | – | |
Baseline carotid artery diameter, mm | Pre-drink | – | – |
Post-drink | 7.1 ± 0.5 | 7.2 ± 0.6 ** | |
Changes | – | – | |
SBP, mmHg | Pre-drink | 128 ± 15 | 128 ± 12 |
Post-drink * | 132 ± 13 | 132 ± 15 | |
Changes | 4 ± 7 | 3 ± 7 | |
DBP, mmHg | Pre-drink | 81 ± 9 | 81 ± 8 |
Post-drink * | 85 ± 8 | 84 ± 9 | |
Changes | 4 ± 4 | 3 ± 5 | |
HR, beats/min | Pre-drink | 62 ± 9 | 61 ± 8 |
Post-drink * | 56 ± 8 | 57 ± 6 | |
Changes | −5 ± 4 | −5 ± 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smeets, E.T.H.C.; Mensink, R.P.; Kleinloog, J.P.D.; Joris, P.J. Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men. Nutrients 2022, 14, 3560. https://doi.org/10.3390/nu14173560
Smeets ETHC, Mensink RP, Kleinloog JPD, Joris PJ. Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men. Nutrients. 2022; 14(17):3560. https://doi.org/10.3390/nu14173560
Chicago/Turabian StyleSmeets, Ellen T. H. C., Ronald P. Mensink, Jordi P. D. Kleinloog, and Peter J. Joris. 2022. "Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men" Nutrients 14, no. 17: 3560. https://doi.org/10.3390/nu14173560
APA StyleSmeets, E. T. H. C., Mensink, R. P., Kleinloog, J. P. D., & Joris, P. J. (2022). Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men. Nutrients, 14(17), 3560. https://doi.org/10.3390/nu14173560