Vitamin D3 Repletion Improves Vascular Function, as Measured by Cardiorenal Biomarkers in a High-Risk African American Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Enzyme Linked Immunosorbent Assays (ELISAs)
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takeyama, K.; Kitanaka, S.; Sato, T.; Kobori, M.; Yanagisawa, J.; Kato, S. 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science 1997, 277, 1827–1830. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J. Age and sex differences in the relationship between serum 25-hydroxyvitamin D and hypertension in the general Korean population. Eur. J. Clin. Nutr. 2016, 70, 326–332. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Y.; Hou, Y.; Han, F.; Ren, J.; Hu, Z. Vitamin D deficiency and related risk factors in patients with diabetic nephropathy. J. Int. Med. Res. 2016, 44, 673–684. [Google Scholar] [CrossRef]
- Farhangi, M.A.; Mesgari-Abbasi, M.; Hajiluian, G.; Nameni, G.; Shahabi, P. Adipose Tissue Inflammation and Oxidative Stress: The Ameliorative Effects of Vitamin D. Inflammation 2017, 40, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
- Gangula, P.R.; Dong, Y.L.; Al-Hendy, A.; Richard-Davis, G.; Montgomery-Rice, V.; Haddad, G.; Millis, R.; Nicholas, S.B.; Moseberry, D. Protective cardiovascular and renal actions of vitamin D and estrogen. Front. Biosci. Sch. Ed. 2013, 5, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.J.; Gebreab, S.Y.; Riestra, P.; Sims, M.; Gaye, A.; Xu, R.; Davis, S.K. Associations between Vitamin D and Cardiovascular Disease Risk Factors in African Americans Are Partly Explained by Circulating Adipokines and C-Reactive Protein: The Jackson Heart Study. J. Nutr. 2016, 146, 2537–2543. [Google Scholar] [CrossRef]
- Norris, K.C.; Olabisi, O.; Barnett, M.E.; Meng, Y.X.; Martins, D.; Obialo, C.; Lee, J.E.; Nicholas, S.B. The Role of Vitamin D and Oxidative Stress in Chronic Kidney Disease. Int. J. Environ. Res. Public Health 2018, 15, 2701. [Google Scholar] [CrossRef]
- Liu, X.; Baylin, A.; Levy, P.D. Vitamin D deficiency and insufficiency among US adults: Prevalence, predictors and clinical implications. Br. J. Nutr. 2018, 119, 928–936. [Google Scholar] [CrossRef]
- Al-Khalidi, B.; Kimball, S.M.; Rotondi, M.A.; Ardern, C.I. Standardized serum 25-hydroxyvitamin D concentrations are inversely associated with cardiometabolic disease in U.S. adults: A cross-sectional analysis of NHANES, 2001–2010. Nutr. J. 2017, 16, 16. [Google Scholar]
- Yao, S.; Hong, C.C.; Bandera, E.V.; Zhu, Q.; Liu, S.; Cheng, T.D.; Zirpoli, G.; Haddad, S.A.; Lunetta, K.L.; Ruiz-Narvaez, E.A.; et al. Demographic, lifestyle, and genetic determinants of circulating concentrations of 25-hydroxyvitamin D and vitamin D-binding protein in African American and European American women. Am. J. Clin. Nutr. 2017, 105, 1362–1371. [Google Scholar] [CrossRef]
- Xia, J.; Tu, W.; Manson, J.E.; Nan, H.; Shadyab, A.H.; Bea, J.W.; Gower, E.W.; Qi, L.; Cheng, T.D.; Song, Y. Combined associations of 25-hydroxivitamin D and parathyroid hormone with diabetes risk and associated comorbidities among U.S. white and black women. Nutr. Diabetes 2021, 11, 29. [Google Scholar] [CrossRef]
- Carnethon, M.R.; Pu, J.; Howard, G.; Albert, M.A.; Anderson, C.A.M.; Bertoni, A.G.; Mujahid, M.S.; Palaniappan, L.; Taylor, H.A., Jr.; Willis, M.; et al. Cardiovascular Health in African Americans: A Scientific Statement from the American Heart Association. Circulation 2017, 136, e393–e423. [Google Scholar] [CrossRef]
- Nally, J.V. Chronic kidney disease in African Americans: Puzzle pieces are falling into place. Clevel. Clin. J. Med. 2017, 84, 855–862. [Google Scholar] [CrossRef]
- Naeem, Z. Vitamin d deficiency—An ignored epidemic. Int. J. Health Sci. 2010, 4, V–VI. [Google Scholar]
- Raed, A.; Bhagatwala, J.; Zhu, H.; Pollock, N.K.; Parikh, S.J.; Huang, Y.; Havens, R.; Kotak, I.; Guo, D.H.; Dong, Y. Dose responses of vitamin D3 supplementation on arterial stiffness in overweight African Americans with vitamin D deficiency: A placebo controlled randomized trial. PLoS ONE 2017, 12, e0188424. [Google Scholar] [CrossRef]
- Farrokhian, A.; Raygan, F.; Bahmani, F.; Talari, H.R.; Esfandiari, R.; Esmaillzadeh, A.; Asemi, Z. Long-Term Vitamin D Supplementation Affects Metabolic Status in Vitamin D-Deficient Type 2 Diabetic Patients with Coronary Artery Disease. J. Nutr. 2017, 147, 384–389. [Google Scholar] [CrossRef]
- Carrara, D.; Bruno, R.M.; Bacca, A.; Taddei, S.; Duranti, E.; Ghiadoni, L.; Bernini, G. Cholecalciferol treatment downregulates renin-angiotensin system and improves endothelial function in essential hypertensive patients with hypovitaminosid D. J. Hypertens 2016, 34, 2199–2205. [Google Scholar] [CrossRef]
- Liyanage, P.; Lekamwasam, S.; Weerarathna, T.P.; Liyanage, C. Effect of Vitamin D therapy on urinary albumin excretion, renal functions, and plasma renin among patients with diabetic nephropathy: A randomized, double-blind clinical trial. J. Postgrad. Med. 2018, 64, 10–15. [Google Scholar] [CrossRef]
- Nicholas, S.B.; Liu, J.; Kim, J.; Ren, Y.; Collins, A.R.; Nguyen, L.; Hsueh, W.A. Critical role for osteopontin in diabetic nephropathy. Kidney Int. 2010, 77, 588–600. [Google Scholar] [CrossRef]
- Lok, Z.S.Y.; Lyle, A.N. Osteopontin in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 613–622. [Google Scholar] [CrossRef]
- Collins, A.R.; Schnee, J.; Wang, W.; Kim, S.; Fishbein, M.C.; Bruemmer, D.; Law, R.E.; Nicholas, S.; Ross, R.S.; Hsueh, W.A. Osteopontin modulates angiotensin II-induced fibrosis in the intact murine heart. J. Am. Coll. Cardiol. 2004, 43, 1698–1705. [Google Scholar] [CrossRef]
- Wolak, T.; Kim, H.; Ren, Y.; Kim, J.; Vaziri, N.D.; Nicholas, S.B. Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney. Kidney Int. 2009, 76, 32–43. [Google Scholar] [CrossRef]
- Vazquez-Sanchez, S.; Poveda, J.; Navarro-Garcia, J.A.; Gonzalez-Lafuente, L.; Rodriguez-Sanchez, E.; Ruilope, L.M.; Ruiz-Hurtado, G. An Overview of FGF-23 as a Novel Candidate Biomarker of Cardiovascular Risk. Front. Physiol. 2021, 12, 632260. [Google Scholar] [CrossRef]
- Nicholas, S.B.; Aguiniga, E.; Ren, Y.; Kim, J.; Wong, J.; Govindarajan, N.; Noda, M.; Wang, W.; Kawano, Y.; Collins, A.; et al. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 2005, 67, 1297–1307. [Google Scholar] [CrossRef]
- Norris, K.C.; Edwina Barnett, M.; Meng, Y.X.; Martins, D.; Nicholas, S.B.; Gibbons, G.H.; Lee, J.E. Rationale and design of a placebo controlled randomized trial to assess short term, high-dose oral cholecalciferol on select laboratory and genomic responses in African Americans with hypovitaminosis D. Contemp. Clin. Trials 2018, 72, 20–25. [Google Scholar] [CrossRef]
- Martins, D.; Meng, Y.X.; Tareen, N.; Artaza, J.; Lee, J.E.; Farodolu, C.; Gibbons, G.; Norris, K. The Effect of Short Term Vitamin D Supplementation on the Inflammatory and Oxidative Mediators of Arterial Stiffness. Health 2014, 6, 1503–1511. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I., 3rd; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Axtell, A.L.; Gomari, F.A.; Cooke, J.P. Assessing endothelial vasodilator function with the Endo-PAT 2000. JoVE J. Vis. Exp. 2010, 15, 2167. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Tsai, J.P.; Wang, J.H.; Hsu, B.G. A Retrospective Cohort Study of the Association between Serum Osteopontin Levels and Aortic Stiffness in Hypertensive Patients. Int. J. Environ. Res. Public Health 2022, 19, 477. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Wang, C.H.; Hsu, B.G.; Tsai, J.P. Serum Osteopontin Level Is Positively Associated with Aortic Stiffness in Patients with Peritoneal Dialysis. Life 2022, 12, 397. [Google Scholar] [CrossRef] [PubMed]
- Maniatis, K.; Siasos, G.; Oikonomou, E.; Vavuranakis, M.; Zaromytidou, M.; Mourouzis, K.; Paraskevopoulos, T.; Charalambous, G.; Papavassiliou, A.G.; Tousoulis, D. Osteoprotegerin and Osteopontin Serum Levels are Associated with Vascular Function and Inflammation in Coronary Artery Disease Patients. Curr. Vasc. Pharmacol. 2020, 18, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Gavish, B.; Izzo, J.L., Jr. Arterial Stiffness: Going a Step Beyond. Am. J. Hypertens 2016, 29, 1223–1233. [Google Scholar] [CrossRef]
- Franklin, S.S.; Larson, M.G.; Khan, S.A.; Wong, N.D.; Leip, E.P.; Kannel, W.B.; Levy, D. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation 2001, 103, 1245–1249. [Google Scholar] [CrossRef]
- Kheiri, B.; Abdalla, A.; Osman, M.; Ahmed, S.; Hassan, M.; Bachuwa, G. Correction to: Vitamin D deficiency and risk of cardiovascular diseases: A narrative review. Clin. Hypertens. 2018, 24, 19. [Google Scholar] [CrossRef]
- Wang, X.; Poole, J.C.; Treiber, F.A.; Harshfield, G.A.; Hanevold, C.D.; Snieder, H. Ethnic and gender differences in ambulatory blood pressure trajectories: Results from a 15-year longitudinal study in youth and young adults. Circulation 2006, 114, 2780–2787. [Google Scholar] [CrossRef]
- Cho, H.J.; Cho, H.J.; Kim, H.S. Osteopontin: A multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr. Atheroscler. Rep. 2009, 11, 206–213. [Google Scholar] [CrossRef]
- Speer, M.Y.; McKee, M.D.; Guldberg, R.E.; Liaw, L.; Yang, H.Y.; Tung, E.; Karsenty, G.; Giachelli, C.M. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: Evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J. Exp. Med. 2002, 196, 1047–1055. [Google Scholar] [CrossRef]
- Panda, D.K.; Miao, D.; Bolivar, I.; Li, J.; Huo, R.; Hendy, G.N.; Goltzman, D. Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J. Biol. Chem 2004, 279, 16754–16766. [Google Scholar] [CrossRef]
- Goltzman, D. Use of genetically modified mice to examine the skeletal anabolic activity of vitamin D. J. Steroid. Biochem. Mol. Biol. 2007, 103, 587–591. [Google Scholar] [CrossRef]
- Lorenzen, J.; Kramer, R.; Kliem, V.; Bode-Boeger, S.M.; Veldink, H.; Haller, H.; Fliser, D.; Kielstein, J.T. Circulating levels of osteopontin are closely related to glomerular filtration rate and cardiovascular risk markers in patients with chronic kidney disease. Eur. J. Clin. Investig. 2010, 40, 294–300. [Google Scholar] [CrossRef]
- Druck, A.; Patel, D.; Bansal, V.; Hoppensteadt, D.; Fareed, J. Osteopontin Levels in Patients with Chronic Kidney Disease Stage 5 on Hemodialysis Directly Correlate With Intact Parathyroid Hormone and Alkaline Phosphatase. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619896621. [Google Scholar] [CrossRef]
- Lau, W.L.; Leaf, E.M.; Hu, M.C.; Takeno, M.M.; Kuro-o, M.; Moe, O.W.; Giachelli, C.M. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012, 82, 1261–1270. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Quarles, L.D. The role of fibroblast growth factor-23 in cardiorenal syndrome. Nephron Clin. Pract. 2013, 123, 194–201. [Google Scholar] [CrossRef]
- Trummer, C.; Schwetz, V.; Pandis, M.; Grubler, M.R.; Verheyen, N.; Gaksch, M.; Zittermann, A.; Marz, W.; Aberer, F.; Steinkellner, J.; et al. Effects of vitamin D supplementation on FGF23, a randomized-controlled trial. Eur. J. Nutr. 2019, 58, 697–703. [Google Scholar] [CrossRef]
- Charoenngam, N.; Rujirachun, P.; Holick, M.F.; Ungprasert, P. Oral vitamin D3 supplementation increases serum fibroblast growth factor 23 concentration in vitamin D-deficient patients: A systematic review and meta-analysis. Osteoporos Int. 2019, 30, 2183–2193. [Google Scholar] [CrossRef]
- Ky, B.; Shults, J.; Keane, M.G.; Sutton, M.S.; Wolf, M.; Feldman, H.I.; Reese, P.P.; Anderson, C.A.; Townsend, R.R.; Deo, R.; et al. Investigators CS. FGF23 modifies the relationship between vitamin D and cardiac remodeling. Circ. Heart Fail. 2013, 6, 817–824. [Google Scholar] [CrossRef]
- Blau, J.E.; Collins, M.T. The PTH-Vitamin D-FGF23 axis. Rev. Endocr. Metab. Disord. 2015, 16, 165–174. [Google Scholar] [CrossRef]
- Lederer, E. Regulation of serum phosphate. J. Physiol. 2014, 592, 3985–3995. [Google Scholar] [CrossRef]
- Zittermann, A.; Ernst, J.B.; Birschmann, I.; Dittrich, M. Effect of Vitamin D or Activated Vitamin D on Circulating 1,25-Dihydroxyvitamin D Concentrations: A Systematic Review and Metaanalysis of Randomized Controlled Trials. Clin. Chem. 2015, 61, 1484–1494. [Google Scholar] [CrossRef]
- Trummer, C.; Schwetz, V.; Pandis, M.; Grubler, M.R.; Verheyen, N.; Gaksch, M.; Zittermann, A.; Marz, W.; Aberer, F.; Lang, A.; et al. Effects of Vitamin D Supplementation on IGF-1 and Calcitriol: A Randomized-Controlled Trial. Nutrients 2017, 9, 623. [Google Scholar] [CrossRef]
- Wright, N.C.; Chen, L.; Niu, J.; Neogi, T.; Javiad, K.; Nevitt, M.A.; Lewis, C.E.; Curtis, J.R. Defining physiologically “normal” vitamin D in African Americans. Osteoporos. Int. 2012, 23, 2283–2291. [Google Scholar] [CrossRef]
- Gutierrez, O.M.; Farwell, W.R.; Kermah, D.; Taylor, E.N. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos. Int. 2011, 22, 1745–1753. [Google Scholar] [CrossRef]
- Tentori, F.; Blayney, M.J.; Albert, J.M.; Gillespie, B.W.; Kerr, P.G.; Bommer, J.; Young, E.W.; Akizawa, T.; Akiba, T.; Pisoni, R.L.; et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: The Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2008, 52, 519–530. [Google Scholar] [CrossRef]
- Seiler-Mussler, S.; Limbach, A.S.; Emrich, I.E.; Pickering, J.W.; Roth, H.J.; Fliser, D.; Heine, G.H. Association of Nonoxidized Parathyroid Hormone with Cardiovascular and Kidney Disease Outcomes in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2018, 13, 569–576. [Google Scholar] [CrossRef]
- Levin, A.; Bakris, G.L.; Molitch, M.; Smulders, M.; Tian, J.; Williams, L.A.; Andress, D.L. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int. 2007, 71, 31–38. [Google Scholar] [CrossRef]
- Cunningham, J.; Locatelli, F.; Rodriguez, M. Secondary hyperparathyroidism: Pathogenesis, disease progression, and therapeutic options. Clin. J. Am. Soc. Nephrol. 2011, 6, 913–921. [Google Scholar] [CrossRef]
- Pilz, S.; Gaksch, M.; Kienreich, K.; Grubler, M.; Verheyen, N.; Fahrleitner-Pammer, A.; Treiber, G.; Drechsler, C.; Hartaigh, B.ó.; Obermayer-Pietsch, B.; et al. Effects of vitamin D on blood pressure and cardiovascular risk factors: A randomized controlled trial. Hypertension 2015, 65, 1195–1201. [Google Scholar] [CrossRef]
Total | Placebo Control n = 65 | Vitamin D Treated n = 65 | p-Value | |
---|---|---|---|---|
Demographic characteristics | ||||
Age, years, mean (SD) | 50.0 (9.5) | 49.5 (8.8) | 50.4 (10.1) | 0.60 |
Sex, N (%) | ||||
Male/Female | 51/79 (39) | 27/38 (42) | 24/41 (37) | 0.59 |
Body mass index, kg/m2 | 34.5 (5.2) | 34.30 (5.6) | 34.7 (4.8) | 0.64 |
Waist circumference, cm | 104.7 (12.4) | 104.4 (12.5) | 105 (12.4) | 0.80 |
Physiologic characteristics, mean (SD) | ||||
CKD-EPI eGFR (mL/min/1.73 m2) | 100.2 (18.2) | 103.7 (17.6) | 96.8 (18.2) | 0.02 |
Urine protein to creatinine ratio (mg/g) | 4.8 (6.4) | 4.7 (6.0) | 4.9 (6.8) | 0.97 |
Serum 25(OH) D3 (ng/mL) | 16.8 (5.1) | 16.5 (5.0) | 17.0 (5.2) | 0.60 |
Intact PTH (pg/mL) | 45.5 (24.7) | 50 (34) | 43.0 (20) | 0.20 |
Serum Calcium | 9.32 (0.3) | 9.30 (0.4) | 9.35 (0.3) | 0.44 |
Log FGF-23 | 4.31 (0.7) | 4.34 (0.8) | 4.3 (0.6) | 0.70 |
Log PAI-1 | 7.14 (0.7) | 7.3 (0.6) | 7.0 (0.8) | 0.12 |
Log flOPN | 5.06 (1.0) | 4.9 (1.2) | 5.3 (0.7) | 0.05 |
Cardiac characteristics, mean (SD) | ||||
Systolic BP (mm Hg) | 127 (16) | 128.5 (15.2) | 125.4 (16.1) | 0.22 |
Diastolic BP (mm Hg) | 83 (11) | 84.5 (10.5) | 81.1 (11.4) | 0.10 |
24-h systolic BP (mm Hg) | 128.2 (13.1) | 130.0 (13.5) | 126.7 (12.6) | 0.15 |
24-h diastolic BP (mm Hg) | 78.4 (8.5) | 79.5 (8.8) | 77.4 (8.2) | 0.60 |
Pulse wave velocity (m/s), mean (SD) | 9.1 (2.2) | 9.1 (1.8) | 9.1 (2.4) | 0.90 |
Augmentation pressure (mm Hg) | 11.7 (6.6) | 12.1 (6.8) | 11.4 (6.4) | 0.60 |
Augmentation index (%) | 29.8 (11.4) | 31.0 (12) | 28.1 (11.2) | 0.20 |
(a) | ||||||
---|---|---|---|---|---|---|
Placebo Control Mean (SD) | Vit D Treated Mean (SD) | |||||
Baseline | Week 12 | p-Value | Baseline | Week 12 | p-Value | |
Demographic characteristics | ||||||
Body mass index, kg/m2 | 34.30 (5.6) | 34.30 (5.6) | 1.00 | 34.7 (4.8) | 34.7 (4.8) | 1.00 |
Waist circumference, cm | 104.4 (12.5) | 104.4 (12.5) | 1.00 | 105 (12.4) | 105 (12.4) | 1.00 |
Physiologic characteristics, mean (SD) | ||||||
CKD-EPI eGFR (mL/min/1.73 m2) | 103.7 (17.6) | 99.1 (16.9) | 0.15 | 96.8 (18.2) | 96.1 (19.7) | 0.84 |
Protein to creatinine ratio (mg/g) | 4.7 (6.0) | 4.6 (4.24) | 0.74 | 4.9 (6.8) | 4.4 (5.3) | 0.99 |
Serum 25(OH) D (ng/mL) | 17 (5) | 17 (6) | 0.53 | 17 (5) | 35 (7) | <0.0001 |
Intact PTH (pg/mL) | 50 (34) | 50 (38) | 0.31 | 43 (20) | 38 (16) | <0.01 |
Serum Calcium | 9.3 (0.4) | 9.29 (0.4) | 0.84 | 9.35 (0.3) | 9.39 (0.3) | 0.46 |
Log FGF-23 | 4.3 (0.8) | 4.5 (0.6) | 0.67 | 4.3 (0.6) | 4.5 (0.5) | 0.04 |
Log PAI-1 | 7.3 (0.6) | 7.2 (0.8) | 0.67 | 7.0 (0.8) | 7.1 (0.8) | 0.84 |
Log flOPN | 4.9 (1.2) | 5.0 (1.2) | 0.59 | 5.3 (0.7) | 4.9 (1.3) | 0.03 |
Cardiac characteristics, mean (SD) | ||||||
Systolic blood pressure (mm Hg) | 128.5 (15.2) | 125.8 (13.4) | 0.67 | 125.4 (16.1) | 126.9 (15) | 0.69 |
Diastolic blood pressure (mm Hg) | 84.5 (10.5) | 82.2 (9.2) | 0.38 | 81.1 (11.4) | 81.1 (12) | 0.68 |
24 h systolic blood pressure (mm Hg) | 130.0 (13.5) | 130.8 (13.2) | 0.81 | 126.7 (12.6) | 128.3 (15.2) | 0.61 |
24 h diastolic blood pressure (mm Hg) | 79.5 (8.8) | 79.2 (10.3) | 0.88 | 77.4 (8.2) | 78 (11) | 0.76 |
Pulse wave velocity (m/s) | 9.1 (1.8) | 9.1 (2.0) | 0.96 | 9.1 (2.4) | 8.9 (2.3) | 0.92 |
Augmentation pressure (mmHg) | 12.1 (6.8) | 11.0 (5.4) | 0.64 | 11.3 (6.4) | 12.5 (14.6) | 0.51 |
Augmentation index (%) | 31.0 (12) | 29.3 (11.1) | 0.73 | 28.1 (11.2) | 27.6 (11.1) | 0.92 |
(b) | ||||||
Independent Variables | Parameter Estimate | SE | t-Value | p-Value | ||
Bivariate Correlation analysis | ||||||
PWV | 0.09 | 0.04 | 2.12 | 0.04 | ||
BMI | 0.23 | 0.09 | 2.75 | 0.01 | ||
Multivariate regression analysis * | ||||||
PWV | 1.31 | 0.48 | 2.73 | 0.01 | ||
BMI | 0.40 | 0.34 | 1.18 | 0.23 |
(a) | |||||
Dependent Variable | Independent Variable | Parameter Estimate | S.E. | t-Value | p-Value |
Change of log flOPN between baseline and week 12 | CKD-EPI eGFR (mL/min/1.73 m2) | 0.009 | 0.008 | 1.09 | 0.28 |
Protein creatinine ratio (mg/g) | −0.042 | 0.080 | −0.52 | 0.60 | |
Pulse wave velocity (m/s) | −0.169 | 0.082 | −2.05 | 0.04 | |
Augment Pressure (mm Hg) | −0.007 | 0.021 | −0.31 | 0.75 | |
Augmentation Index (%) | 0.009 | 0.012 | 0.69 | 0.50 | |
Systolic BP (mm Hg) | 0.003 | 0.009 | 0.27 | 0.79 | |
Diastolic BP (mm Hg) | 0.032 | 0.014 | 2.33 | 0.02 | |
24-h Systolic BP (mm Hg) | −0.014 | 0.012 | −1.12 | 0.27 | |
24-h Diastolic BP (mm Hg) | −0.006 | 0.018 | −0.34 | 0.73 | |
(b) | |||||
Dependent Variable | Independent Variable | Parameter Estimate | S.E. | t-Value | p-Value |
Change of Log FGF-23 between baseline and week 12 | CKD-EPI eGFR (mL/min/1.73 m2) | 0.005 | 0.003 | 1.87 | 0.06 |
Protein creatinine ratio (mg/g) | 0.010 | 0.028 | 0.36 | 0.72 | |
Pulse wave velocity (m/s) | −0.021 | 0.027 | −0.80 | 0.43 | |
Augmentation pressure (mm Hg) | −0.012 | 0.008 | −1.58 | 0.12 | |
Augmentation Index (%) | −0.004 | 0.004 | −0.85 | 0.40 | |
Systolic BP (mm Hg) | 0.003 | 0.003 | 0.95 | 0.34 | |
Diastolic BP (mm Hg) | 0.010 | 0.005 | 1.99 | 0.05 | |
24-h Systolic BP | 0.006 | 0.005 | 1.18 | 0.24 | |
24-h Diastolic BP | 0.0100 | 0.008 | 1.19 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, S.K.; Sun, L.; Didero, M.; Martins, D.; Norris, K.C.; Lee, J.E.; Meng, Y.-X.; Sung, J.H.; Sayre, M.; Carpio, M.B.; et al. Vitamin D3 Repletion Improves Vascular Function, as Measured by Cardiorenal Biomarkers in a High-Risk African American Cohort. Nutrients 2022, 14, 3331. https://doi.org/10.3390/nu14163331
Sinha SK, Sun L, Didero M, Martins D, Norris KC, Lee JE, Meng Y-X, Sung JH, Sayre M, Carpio MB, et al. Vitamin D3 Repletion Improves Vascular Function, as Measured by Cardiorenal Biomarkers in a High-Risk African American Cohort. Nutrients. 2022; 14(16):3331. https://doi.org/10.3390/nu14163331
Chicago/Turabian StyleSinha, Satyesh K., Ling Sun, Michelle Didero, David Martins, Keith C. Norris, Jae Eun Lee, Yuan-Xiang Meng, Jung Hye Sung, Michael Sayre, Maria Beatriz Carpio, and et al. 2022. "Vitamin D3 Repletion Improves Vascular Function, as Measured by Cardiorenal Biomarkers in a High-Risk African American Cohort" Nutrients 14, no. 16: 3331. https://doi.org/10.3390/nu14163331