Determinants of Longitudinal Changes in Cardiometabolic Risk in Adolescents with Overweight/Obesity: The EVASYON Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Socioeconomic Variables
2.3. Early Life Factors
2.4. Body Composition Parameters
2.5. Fitness and Physical Activity
2.5.1. Cardiorespiratory Fitness
2.5.2. Muscular Strength
2.5.3. Physical Activity
2.6. Cardiometabolic Risk Factors
2.6.1. Fasting Glucose, Triglycerides and High-Density Lipoprotein
2.6.2. Blood Pressure
2.6.3. Waist Circumference
2.6.4. Cardiometabolic Risk Score Using MetS
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO World Health Organization. Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 July 2022).
- Garrido-Miguel, M.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Rodríguez-Artalejo, F.; Moreno, L.A.; Ruiz, J.R.; Ahrens, W.; Martínez-Vizcaíno, V. Prevalence and Trends of Overweight and Obesity in European Children From 1999 to 2016: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2019, 173, e192430. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, T.; Jackson-Leach, R. Planning for the Worst: Estimates of Obesity and Comorbidities in School-Age Children in 2025. Pediatr. Obes. 2016, 11, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic Risks and Severity of Obesity in Children and Young Adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and Cardiovascular Disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerendiain, M.; Mayneris-Perxachs, J.; Montes, R.; López-Belmonte, G.; Martín-Matillas, M.; Castellote, A.I.A.I.; Martín-Bautista, E.; Martí, A.; Martínez, J.A.A.; Moreno, L.; et al. Relation between Plasma Antioxidant Vitamin Levels, Adiposity and Cardio-Metabolic Profile in Adolescents: Effects of a Multidisciplinary Obesity Programme. Clin. Nutr. 2017, 36, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Guerendiain, M.; Montes, R.; López-Belmonte, G.; Martín-Matillas, M.; Castellote, A.I.A.I.; Martín-Bautista, E.; Martí, A.; Martínez, J.A.A.; Moreno, L.; Garagorri, J.M.J.M.; et al. Changes in Plasma Fatty Acid Composition Are Associated with Improvements in Obesity and Related Metabolic Disorders: A Therapeutic Approach to Overweight Adolescents. Clin. Nutr. 2018, 37, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkner, B.; Gidding, S. Life-Course Implications of Pediatric Risk Factors for Cardiovascular Disease. Can. J. Cardiol. 2021, 37, 766–775. [Google Scholar] [CrossRef]
- Iguacel, I.; Börnhorst, C.; Michels, N.; Breidenassel, C.; Dallongeville, J.; González-Gross, M.; Gottrand, F.; Kafatos, A.; Karaglani, E.; Kersting, M.; et al. Socioeconomically Disadvantaged Groups and Metabolic Syndrome in European Adolescents: The HELENA Study. J. Adolesc. Health 2021, 68, 146–154. [Google Scholar] [CrossRef]
- Wang, J.; Perona, J.S.; Schmidt-RioValle, J.; Chen, Y.; Jing, J.; González-Jiménez, E. Metabolic Syndrome and Its Associated Early-Life Factors among Chinese and Spanish Adolescents: A Pilot Study. Nutrients 2019, 11, 1568. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical Fitness in Childhood and Adolescence: A Powerful Marker of Health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, N.S.; Ruiz, J.R.; Hurtig-Wennlöf, A.; Ortega, F.B.; Sjöström, M. Relationship of Physical Activity, Fitness, and Fatness with Clustered Metabolic Risk in Children and Adolescents: The European Youth Heart Study. J. Pediatr. 2007, 150, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Brand, C.; Martins, C.M.D.L.; Lemes, V.B.; Pessoa, M.L.F.; Dias, A.F.; Cadore, E.L.; Mota, J.; Gaya, A.C.A.; Gaya, A.R. Effects and Prevalence of Responders after a Multicomponent Intervention on Cardiometabolic Risk Factors in Children and Adolescents with Overweight/Obesity: Action for Health Study. J. Sports Sci. 2020, 38, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.; Corgosinho, F.C.; Isacco, L.; Scheuermaier, K.; Pereira, B.; Gillet, V.; Moreira, G.A.; Pradella-Hallinan, M.; Tufik, S.; de Mello, M.T.; et al. A Multidisciplinary Weight Loss Intervention in Obese Adolescents with and without Sleep-Disordered Breathing Improves Cardiometabolic Health, Whether SDB Was Normalized or not. Sleep Med. 2020, 75, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Silveira, D.S.; Lemos, L.F.G.B.F.; Tassitano, R.M.; Cattuzzo, M.T.; Feitoza, A.H.P.; Aires, L.M.S.M.C.; Silva Mota, J.A.P.; Martins, C.M.D.L. Effect of a Pilot Multi-Component Intervention on Motor Performance and Metabolic Risks in Overweight/Obese Youth. J. Sports Sci. 2018, 36, 2317–2326. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gomez, D.; Gomez-Martinez, S.; Puertollano, M.A.; Nova, E.; Wärnberg, J.; Veiga, O.L.; Martí, A.; Campoy, C.; Garagorri, J.M.; Azcona, C.; et al. Design and Evaluation of a Treatment Programme for Spanish Adolescents with Overweight and Obesity. the EVASYON Study. BMC Public Health 2009, 9, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Miguel-Etayo, P.; Moreno, L.A.; Santabárbara, J.; Bueno, G.; Martín-Matillas, M.; Zapatera, B.; Julián, C.A.-S.; Martí, A.; Campoy, C.; Marcos, A.; et al. Body Composition Changes during a Multidisciplinary Treatment Programme in Overweight Adolescents: EVASYON Study. Nutr. Hosp. 2015, 32, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Romeo, J.; Martinez-Gomez, D.; Diaz, L.E.; Gómez-Martinez, S.; Marti, A.; Martin-Matillas, M.; Puertollano, M.A.; Veiga, O.L.; Martinez, J.A.; Wärnberg, J.; et al. Changes in Cardiometabolic Risk Factors, Appetite-Controlling Hormones and Cytokines after a Treatment Program in Overweight Adolescents: Preliminary Findings from the EVASYON Study. Pediatr. Diabetes 2011, 12, 372–380. [Google Scholar] [CrossRef] [Green Version]
- De Miguel-Etayo, P.; Moreno, L.A.; Santabarbara, J.; Martín-Matillas, M.; Piqueras, M.J.; Rocha-Silva, D.; Marti del Moral, A.; Campoy, C.; Marcos, A.; Garagorri, J.M. Anthropometric Indices to Assess Body-Fat Changes during a Multidisciplinary Obesity Treatment in Adolescents: EVASYON Study. Clin. Nutr. 2015, 34, 523–528. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Dardet, C.; Alonso, J.; Domingo, A.; Regidor, E. La Medición de La Clase Social En Ciencias de La Salud. Informe de Un Grupo de Trabajo e La Sociedad Española de Epidemiología [The Measurement of Social Class in Health Sciences. Report of a Working Group of the Spanish Society of Epidemiology]; SG Editores: Barcelona, Spain, 1995; ISBN 84-87621-35-X. [Google Scholar]
- Moreno, L.A.; Joyanes, M.; Mesana, M.I.; González-Gross, M.; Gil, C.M.; Sarría, A.; Gutierrez, A.; Garaulet, M.; Perez-Prieto, R.; Bueno, M.; et al. Harmonization of Anthropometric Measurements for a Multicenter Nutrition Survey in Spanish Adolescents. Nutrition 2003, 19, 481–486. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended International (IOTF) Body Mass Index Cut-Offs for Thinness, Overweight and Obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Delgado, G.; Cadenas-Sanchez, C.; Martinez-Tellez, B.; Mora-Gonzalez, J.R.; Ruiz, J.R.; Ortega, F.B.P. An Excel-Based Classifier of BMI into Sex- and Age-Specific Weight Status in Youths Aged 2–18 Years According to the World Obesity Federation (Formerly IOTF) Cut-Points ©. 2020. OTRI-UGR-IPR-868. Available online: https://digibug.ugr.es/handle/10481/61590 (accessed on 19 May 2022).
- Bervoets, L.; Massa, G. Defining Morbid Obesity in Children Based on BMI 40 at Age 18 Using the Extended International (IOTF) Cut-Offs. Pediatr. Obes. 2014, 9, e94–e98. [Google Scholar] [CrossRef]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.G.; Cameron, N.; Brasher, P.M.A. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, M.H.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold Equations for Estimation of Body Fatness in Children and Youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The Multistage 20 Metre Shuttle Run Test for Aerobic Fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; España-Romero, V.; Ortega, F.B.; Sjöström, M.; Castillo, M.J.; Gutierrez, A. Hand Span Influences Optimal Grip Span in Male and Female Teenagers. J. Hand Surg. Am. 2006, 31, 1367–1372. [Google Scholar] [CrossRef]
- Martínez-Gómez, D.; Martínez-De-Haro, V.; Pozo, T.; Welk, G.J.; Villagra, A.; Calle, M.E.; Marcos, A.; Veiga, O.L. Reliability and Validity of the PAQ-A Questionnaire to Assess Physical Activity in Spanish Adolescents. Rev. Esp. Salud Publica 2009, 83, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Wallach, J.B. Interpretation of Diagnostic Tests; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Topouchian, J.A.; El Assaad, M.A.; Orobinskaia, L.V.; El Feghali, R.N.; Asmar, R.G. Validation of Two Automatic Devices for Self-Measurement of Blood Pressure According to the International Protocol of the European Society of Hypertension: The Omron M6 (HEM-7001-E) and the Omron R7 (HEM 637-IT). Blood Press. Monit. 2006, 11, 165–171. [Google Scholar] [CrossRef] [PubMed]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. American Academy of Pediatrics The Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Nyström, C.D.; Henriksson, P.; Martínez-Vizcaíno, V.; Medrano, M.; Cadenas-Sanchez, C.; Arias-Palencia, N.M.; Löf, M.; Ruiz, J.R.; Labayen, I.; Sánchez-López, M.; et al. Does Cardiorespiratory Fitness Attenuate the Adverse Effects of Severe/Morbid Obesity on Cardiometabolic Risk and Insulin Resistance in Children? A Pooled Analysis. Diabetes Care 2017, 40, 1580–1587. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Ding, Y.; Wu, F.; Li, R.; Hu, Y.; Hou, J.; Mao, P. Socio-Economic Position as an Intervention against Overweight and Obesity in Children: A Systematic Review and Meta-Analysis. Sci. Rep. 2015, 5, 11354. [Google Scholar] [CrossRef] [Green Version]
- Puolakka, E.; Pahkala, K.; Laitinen, T.T.; Magnussen, C.G.; Hutri-Kähönen, N.; Tossavainen, P.; Jokinen, E.; Sabin, M.A.; Laitinen, T.; Elovainio, M.; et al. Childhood Socioeconomic Status in Predicting Metabolic Syndrome and Glucose Abnormalities in Adulthood: The Cardiovascular Risk in Young Finns Study. Diabetes Care 2016, 39, 2311–2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loucks, E.B.; Rehkopf, D.H.; Thurston, R.C.; Kawachi, I. Socioeconomic Disparities in Metabolic Syndrome Differ by Gender: Evidence from NHANES III. Ann. Epidemiol. 2007, 17, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Loucks, E.B.; Magnusson, K.T.; Cook, S.; Rehkopf, D.H.; Ford, E.S.; Berkman, L.F. Socioeconomic Position and the Metabolic Syndrome in Early, Middle, and Late Life: Evidence from NHANES 1999–2002. Ann. Epidemiol. 2007, 17, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Oude Groeniger, J.; De Koster, W.; Van Der Waal, J. Time-Varying Effects of Screen Media Exposure in the Relationship between Socioeconomic Background and Childhood Obesity. Epidemiology 2020, 31, 578–586. [Google Scholar] [CrossRef]
- Camier, A.; Cissé, A.H.; Lioret, S.; Bernard, J.Y.; Charles, M.A.; Heude, B.; de Lauzon-Guillain, B. Infant Feeding Practices Associated with Adiposity Peak and Rebound in the EDEN Mother-Child Cohort. Int. J. Obes. 2022, 46, 809–816. [Google Scholar] [CrossRef]
- Nordman, H.; Jääskeläinen, J.; Voutilainen, R. Birth Size as a Determinant of Cardiometabolic Risk Factors in Children. Horm. Res. Paediatr. 2020, 93, 144–153. [Google Scholar] [CrossRef]
- Finken, M.J.J.; Van Der Steen, M.; Smeets, C.C.J.; Walenkamp, M.J.E.; De Bruin, C.; Hokken-Koelega, A.C.S.; Wit, J.M. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr. Rev. 2018, 39, 851–894. [Google Scholar] [CrossRef] [Green Version]
- Córdoba-Rodríguez, D.P.; Rodriguez, G.; Moreno, L.A. Predicting of Excess Body Fat in Children. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 304–310. [Google Scholar] [CrossRef]
- Agius, R.; Savona-Ventura, C.; Vassallo, J. Transgenerational Metabolic Determinants of Fetal Birth Weight. Exp. Clin. Endocrinol. Diabetes 2013, 121, 431–435. [Google Scholar] [CrossRef]
- Yu, Z.B.; Han, S.P.; Zhu, G.Z.; Zhu, C.; Wang, X.J.; Cao, X.G.; Guo, X.R. Birth Weight and Subsequent Risk of Obesity: A Systematic Review and Meta-Analysis. Obes. Rev. 2011, 12, 525–542. [Google Scholar] [CrossRef] [PubMed]
- González-Jiménez, E.; Montero-Alonso, M.A.; Schmidt-RioValle, J.; García-García, C.J.; Padez, C. Metabolic Syndrome in Spanish Adolescents and Its Association with Birth Weight, Breastfeeding Duration, Maternal Smoking, and Maternal Obesity: A Cross-Sectional Study. Eur. J. Nutr. 2015, 54, 589–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakubov, R.; Nadir, E.; Stein, R.; Klein-Kremer, A. The Duration of Breastfeeding and Its Association with Metabolic Syndrome among Obese Children. Sci. World J. 2015, 2015, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.B.; Sui, X.; Lavie, C.J.; Blair, S.N. Body Mass Index, the Most Widely Used But Also Widely Criticized Index. Mayo Clin. Proc. 2016, 91, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.Y.; Chu, C.; Wang, Y.; Zheng, W.L.; Ma, Q.; Hu, J.W.; Yan, Y.; Wang, K.K.; Yuan, Y.; Chen, C.; et al. Long-Term Burden of Higher Body Mass Index from Childhood on Adult Cardiometabolic Biomarkers: A 30-Year Cohort Study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 439–447. [Google Scholar] [CrossRef]
- Ortega, F.B.; Cadenas-Sanchez, C.; Lee, D.; Ruiz, J.R.; Blair, S.N.; Sui, X. Fitness and Fatness as Health Markers through the Lifespan: An Overview of Current Knowledge. Prog. Prev. Med. 2018, 3, e0013. [Google Scholar] [CrossRef]
- Husøy, A.; Dalene, K.E.; Steene-Johannessen, J.; Anderssen, S.A.; Ekelund, U.; Tarp, J. Effect Modification by Cardiorespiratory Fitness on the Association between Physical Activity and Cardiometabolic Health in Youth: A Systematic Review. J. Sports Sci. 2021, 39, 845–853. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Labayen, I.; Lavie, C.J.; Blair, S.N. The Fat but Fit Paradox: What We Know and Don’t Know about It. Br. J. Sports Med. 2018, 52, 151–153. [Google Scholar] [CrossRef]
- Barstad, L.H.; Júlíusson, P.B.; Johnson, L.K.; Hertel, J.K.; Lekhal, S.; Hjelmesæth, J. Gender-Related Differences in Cardiometabolic Risk Factors and Lifestyle Behaviors in Treatment-Seeking Adolescents with Severe Obesity. BMC Pediatr. 2018, 18, 61. [Google Scholar] [CrossRef] [Green Version]
Variables | All Samples | Boys | Girls | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Socioeconomic Variables | ||||||||||
Sex [n (%)] | 165 | (100%) | 76 | (46%) | 89 | (54%) | NA | |||
Age (years) | 14.48 | ± | 1.23 | 14.40 | ± | 1.19 | 14.55 | ± | 1.25 | 0.42 |
PHV (years) | 1.57 | ± | 1.21 | 0.79 | ± | 0.99 | 2.22 | ± | 0.97 | <0.01 |
Father’s education | 0.64 | |||||||||
Primary School [n (%)] | 56 | (37%) | 27 | (38%) | 29 | (36%) | ||||
High School [n (%)] | 55 | (37%) | 23 | (33%) | 32 | (40%) | ||||
University [n (%)] | 39 | (26%) | 20 | (28%) | 19 | (24%) | ||||
Mother’s education | 0.93 | |||||||||
Primary School [n (%)] | 54 | (37%) | 25 | (35%) | 29 | (38%) | ||||
High School [n (%)] | 57 | (39%) | 18 | (39%) | 29 | (38%) | ||||
University [n (%)] | 36 | (24%) | 28 | (25%) | 18 | (24%) | ||||
Father’s occupational level | 0.55 | |||||||||
Low [n (%)] | 61 | (41%) | 27 | (40%) | 34 | (42%) | ||||
Medium [n (%)] | 51 | (35%) | 21 | (31%) | 30 | (37%) | ||||
High [n (%)] | 36 | (24%) | 19 | (28%) | 17 | (21%) | ||||
Mother’s occupational level | 0.72 | |||||||||
Low [n (%)] | 76 | (49%) | 33 | (46%) | 43 | (52%) | ||||
Medium [n (%)] | 54 | (35%) | 26 | (36%) | 28 | (34%) | ||||
High [n (%)] | 25 | (16%) | 13 | (18%) | 12 | (14%) | ||||
Early life factors | ||||||||||
Birth weight (kg) | 3.35 | ± | 0.54 | 3.49 | ± | 0.61 | 3.22 | ± | 0.45 | <0.01 |
Size at birth (cm) | 50.65 | ± | 2.65 | 50.78 | ± | 2.57 | 50.52 | ± | 2.74 | 0.57 |
Breastfeeding | 0.71 | |||||||||
None [n (%)] | 20 | (14%) | 12 | (17%) | 8 | (10%) | ||||
<3 months [n (%)] | 69 | (47%) | 31 | (46%) | 38 | (48%) | ||||
4–6 months [n (%)] | 36 | (24%) | 15 | (22%) | 21 | (26%) | ||||
7–9 months [n (%)] | 12 | (8%) | 6 | (9%) | 6 | (8%) | ||||
>9 months [n (%)] | 10 | (7%) | 4 | (6%) | 6 | (8%) | ||||
Body composition parameters | ||||||||||
Weight (kg) | 86.23 | ± | 17.12 | 90.36 | ± | 17.16 | 82.77 | ± | 16.40 | <0.01 |
Height (cm) | 164.38 | ± | 7.95 | 167.90 | ± | 7.87 | 161.44 | ± | 6.78 | <0.01 |
BMI (kg/m2) | 31.76 | ± | 5.07 | 31.87 | ± | 4.73 | 31.66 | ± | 5.37 | 0.80 |
Obesity types | 0.43 | |||||||||
Overweight [n (%)] | 39 | (25%) | 14 | (20%) | 25 | (30%) | ||||
Obesity type I [n (%)] | 68 | (44%) | 33 | (47%) | 35 | (41%) | ||||
Obesity type II [n (%)] | 33 | (21%) | 18 | (25%) | 15 | (18%) | ||||
Obesity type III [n (%)] | 15 | (10%) | 6 | (8%) | 9 | (11%) | ||||
Sum of 4 skinfolds (mm) | 112.11 | ± | 19.89 | 112.28 | ± | 18.68 | 111.97 | ± | 20.96 | 0.92 |
Sum of 6 skinfolds (mm) | 186.44 | ± | 25.30 | 186.21 | ± | 24.54 | 186.63 | ± | 26.05 | 0.91 |
Fat mass (kg) | 28.24 | ± | 7.97 | 33.36 | ± | 8.28 | 23.92 | ± | 4.32 | <0.01 |
Fat mass (%) | 32.57 | ± | 5.19 | 36.62 | ± | 3.94 | 29.15 | ± | 3.32 | <0.01 |
Fat free mass (kg) | 58.05 | ± | 12.03 | 57.01 | ± | 10.01 | 58.93 | ± | 13.50 | 0.32 |
Fat free mass (%) | 67.43 | ± | 5.18 | 63.38 | ± | 3.94 | 70.84 | ± | 3.31 | <0.01 |
Fitness and physical activity | ||||||||||
CRF (Stages) | 2.90 | ± | 1.45 | 3.36 | ± | 1.54 | 2.49 | ± | 1.24 | <0.01 |
CRF relative to BW (ml/kg/min) | 35.61 | ± | 4.17 | 36.95 | ± | 4.02 | 34.40 | ± | 3.95 | <0.01 |
CRF relative to FFM (ml/kg/min) | 53.18 | ± | 7.85 | 58.27 | ± | 5.62 | 48.62 | ± | 6.68 | <0.01 |
Handgrip strength (kg) | 28.82 | ± | 7.46 | 32.09 | ± | 8.40 | 26.00 | ± | 5.11 | <0.01 |
Relative handgrip strength (kg/kg) | 0.34 | ± | 0.07 | 0.36 | ± | 0.07 | 0.32 | ± | 0.07 | <0.01 |
Standing long jump (cm) | 124.31 | ± | 25.16 | 132.89 | ± | 25.25 | 117.01 | ± | 22.80 | <0.01 |
Physical Activity levels (PAQ-A) | 1.62 | ± | 1.06 | 1.72 | ± | 1.16 | 1.53 | ± | 0.97 | 0.28 |
Cardiometabolic risk factors | ||||||||||
Fasting Glucose (mg/dL) | 84.15 | ± | 8.37 | 83.97 | ± | 8.20 | 84.30 | ± | 8.57 | 0.81 |
Triglycerides (mg/dL) | 89.01 | ± | 41.74 | 88.27 | ± | 39.06 | 89.74 | ± | 44.55 | 0.84 |
HDL cholesterol (mg/dL) | 46.04 | ± | 10.77 | 44.86 | ± | 10.20 | 47.22 | ± | 11.27 | 0.21 |
Mean arterial blood pressure (mmHg) | 85.01 | ± | 10.33 | 85.45 | ± | 9.42 | 84.62 | ± | 11.12 | 0.65 |
Waist circumference (cm) | 98.71 | ± | 12.79 | 104.00 | ± | 11.02 | 94.25 | ± | 12.53 | 0.01 |
Intervention Phase | Significant Determinants (p < 0.05) | β | R2 of Change | p-Value |
---|---|---|---|---|
Intensive phase | Irrelevant determinants were included | NA | NA | NA |
Extensive phase | Weight (Δ) | 0.534 | 0.261 | 0.002 |
Sex (1 = boys; 2 = girls) | −0.409 | 0.144 | 0.013 | |
Mother’s education (1 = Primary School; 2 = High School; 3 = University) | −0.388 | 0.141 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Matillas, M.; Rocha-Silva, D.; Plaza-Florido, A.; Delgado-Fernández, M.; Marti, A.; De Miguel-Etayo, P.; Moreno, L.A.; Marcos, A.; Campoy, C., on behalf of the EVASYON Study Group. Determinants of Longitudinal Changes in Cardiometabolic Risk in Adolescents with Overweight/Obesity: The EVASYON Study. Nutrients 2022, 14, 3241. https://doi.org/10.3390/nu14153241
Martín-Matillas M, Rocha-Silva D, Plaza-Florido A, Delgado-Fernández M, Marti A, De Miguel-Etayo P, Moreno LA, Marcos A, Campoy C on behalf of the EVASYON Study Group. Determinants of Longitudinal Changes in Cardiometabolic Risk in Adolescents with Overweight/Obesity: The EVASYON Study. Nutrients. 2022; 14(15):3241. https://doi.org/10.3390/nu14153241
Chicago/Turabian StyleMartín-Matillas, Miguel, Dinalrilan Rocha-Silva, Abel Plaza-Florido, Manuel Delgado-Fernández, Amelia Marti, Pilar De Miguel-Etayo, Luis A. Moreno, Ascensión Marcos, and Cristina Campoy on behalf of the EVASYON Study Group. 2022. "Determinants of Longitudinal Changes in Cardiometabolic Risk in Adolescents with Overweight/Obesity: The EVASYON Study" Nutrients 14, no. 15: 3241. https://doi.org/10.3390/nu14153241
APA StyleMartín-Matillas, M., Rocha-Silva, D., Plaza-Florido, A., Delgado-Fernández, M., Marti, A., De Miguel-Etayo, P., Moreno, L. A., Marcos, A., & Campoy, C., on behalf of the EVASYON Study Group. (2022). Determinants of Longitudinal Changes in Cardiometabolic Risk in Adolescents with Overweight/Obesity: The EVASYON Study. Nutrients, 14(15), 3241. https://doi.org/10.3390/nu14153241