Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Subjects
2.3. Dietary Intakes
2.4. Adherence to Mediterranean Diet
2.5. Anthropometrics and Blood Pressure
2.6. Blood Collection and Analysis
2.7. Intrahepatic Fat Contents Assessment
2.8. Statistics
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petroni, M.L.; Brodosi, L.; Marchignoli, F.; Musio, A.; Marchesini, G. Moderate Alcohol Intake in Non-Alcoholic Fatty Liver Disease: To Drink or Not to Drink? Nutrients 2019, 11, 3048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaskolka Meir, A.; Rinott, E.; Tsaban, G.; Zelicha, H.; Kaplan, A.; Rosen, P.; Shelef, I.; Youngster, I.; Shalev, A.; Blüher, M.; et al. Effect of green-Mediterranean diet on intrahepatic fat: The DIRECT PLUS randomised controlled trial. Gut 2021, 70, 2085–2095. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Brunt, E.M.; Kleiner, D.E.; Kowdley, K.V.; Chalasani, N.; LaVine, J.E.; Ratziu, V.; McCullough, A. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 2011, 54, 344–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuschwander-Tetri, B.A.; Caldwell, S.H. Nonalcoholic steatohepatitis: Summary of an AASLD Single Topic Conference. Hepatology 2003, 37, 1202–1219. [Google Scholar] [CrossRef]
- Yasutake, K.; Kohjima, M.; Kotoh, K.; Nakashima, M.; Nakamuta, M.; Enjoji, M. Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 1756–1767. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S.; Godos, J.; Salomone, F. Lifestyle changes for the treatment of nonalcoholic fatty liver disease: A review of observational studies and intervention trials. Ther. Adv. Gastroenterol. 2016, 9, 392–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Hydes, T.J.; Ravi, S.; Loomba, R.; Gray, M.E. Evidence-based clinical advice for nutrition and dietary weight loss strategies for the management of NAFLD and NASH. Clin. Mol. Hepatol. 2020, 26, 383–400. [Google Scholar] [CrossRef]
- Eslamparast, T.; Tandon, P.; Raman, M. Dietary Composition Independent of Weight Loss in the Management of Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 9, 800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [Green Version]
- Franco, I.; Bianco, A.; Mirizzi, A.; Campanella, A.; Bonfiglio, C.; Sorino, P.; Notarnicola, M.; Tutino, V.; Cozzolongo, R.; Giannuzzi, V.; et al. Physical activity and low glycaemic index Mediterranean diet: Main and modification effects on NAFLD score. Results from a randomized clinical trial. Nutrients 2020, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Cave, M.; Deaciuc, I.; Mendez, C.; Song, Z.; Joshi-Barve, S.; Barve, S.; McClain, C. Nonalcoholic fatty liver disease: Predisposing factors and the role of nutrition. J. Nutr. Biochem. 2007, 18, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Bischoff, S.C. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef] [Green Version]
- Katsagoni, C.N.; Georgoulis, M.; Papatheodoridis, G.V.; Fragopoulou, E.; Ioannidou, P.; Papageorgiou, M.; Alexopoulou, A.; Papadopoulos, N.; Deutsch, M.; Kontogianni, M.D. Associations between lifestyle characteristics and the presence of non-alcoholic fatty liver disease: A case-control study. Metab. Syndr. Relat. Disord. 2017, 15, 72–79. [Google Scholar] [CrossRef]
- Clinical Trial NNCT04442620. Prevention and Reversion of NAFLD in Obese Patients with Metabolic Syndrome by Mediterranean Diet and Physical Activity (FLIPAN). 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04442620 (accessed on 5 May 2022).
- Consensus International Diabetic Federation (IDF). Consensus Statement—The IDF Consensus Worldwide Definition of the Metabolic Syndrome. 2006. Available online: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwidedefinitionof-the-metabolic-syndrome.html (accessed on 5 May 2022).
- Montemayor, S.; Bouzas, C.; Mascaró, C.M.; Casares, M.; Llompart, I.; Abete, I.; Angullo-Martinez, E.; Zulet, M.; Martínez, J.A.; Tur, J.A. Effect of Dietary and Lifestyle Interventions on the Amelioration of NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 2223. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Food Composition Tables (Spanish), 19th ed.; Pirámide: Madrid, Spain, 2018. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, A.; Tanya, W.; Sun, M.; Hamilton, G.; Bydder, M.; Wolfson, T.; Gamst, A.C.; Middleton, M.; Brunt, E.M.; Loomba, R.; et al. Nonalcoholic Fatty Liver Disease: MR Imaging of Liver Proton Density Fat Fraction to Assess Hepatic Steatosis. Radiology 2013, 267, 422–431. [Google Scholar] [CrossRef] [Green Version]
- De la Iglesia, R.; Lopez-Legarrea, P.; Abete, I.; Bondia-Pons, I.; Navas-Carretero, S.; Forga, L.; Martinez, J.A.; Zulet, M.A. A new dietary strategy for long-term treatment of the metabolic syndrome is compared with the American Heart Association (AHA) guidelines: The MEtabolic Syndrome REduction in NAvarra (RESMENA) project. Br. J. Nutr. 2014, 111, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargallo Fernández, M.; Basulto Marset, J.; Breton Lesmes, I.; Quiles Izquierdo, J.; Formiguera Sala, X.; Salas-Salvadó, J. Recomendaciones nutricionales basadas en la evidencia para la prevención y el tratamiento del sobrepeso y la obesidad en adultos (consenso FESNAD-SEEDO). metodología y resumen ejecutivo (I/III). Nutr. Hosp. 2012, 27, 789–799. [Google Scholar]
- Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; et al. Adherence to Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: Effect on Insulin Resistance. Am. J. Gastroenterol. 2017, 112, 1832–1839. [Google Scholar] [CrossRef]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Page, J. Nonalcoholic fatty liver disease: The hepatic metabolic syndrome. J. Am. Acad. Nurse Pract. 2012, 24, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, M.; Kontogianni, M.D.; Margariti, A.; Tiniakos, D.; Fragopoulou, E.; Zafiropoulou, R.; Papatheodoridis, G. Associations between dietary intake and the presence of the metabolic syndrome in patients with non-alcoholic fatty liver disease. J. Hum. Nutr. Diet 2015, 28, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Properzi, C.; O’Sullivan, T.A.; Sherriff, J.L.; Ching, H.L.; Jeffrey, G.P.; Buckley, R.F.; Tibballs, J.; MacQuillan, G.C.; Garas, G.; Adams, L.A. Ad Libitum Mediterranean and Low-Fat Diets Both Significantly Reduce Hepatic Steatosis: A Randomized Controlled Trial. Hepatology 2018, 68, 1741–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelli, C.; Tarocchi, M.; Abenavoli, L.; Di Renzo, L.; Galli, A.; De Lorenzo, A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the nonalcoholic fatty liver disease. World J. Gastroenterol. 2017, 23, 3150–3162. [Google Scholar] [CrossRef]
- Abdelmalek, M.F.; Suzuki, A.; Guy, C.; AUnalp-Arida, A.; Colvin, R.; Johnson, R.J.; Diehl, A.M. Nonalcoholic Steatohepatitis Clinical Research Network. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010, 51, 1961–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petta, S.; Marchesini, G.; Caracausi, L.; Macaluso, F.S.; Cammà, C.; Ciminnisi, S.; Cabibi, D.; Porcasi, R.; Craxì, A.; Di Marco, V. Industrial, not fruit fructose intake is associated with the severity of liver fibrosis in genotype 1 chronic hepatitis C patients. J. Hepatol. 2013, 59, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Fox, C.S.; Jacques, P.F.; Speliotes, E.K.; Hoffmann, U.; Smith, C.E.; Saltzman, E.; McKeown, N.M. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. J. Hepatol. 2015, 63, 462–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ros, E. Health Benefits of Nut Consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Ibarrola-Jurado, N.; Bulló, M.; Guasch-Ferré, M.; Ros, E.; Martínez-González, M.A.; Corella, D.; Fiol, M.; Wärnberg, J.; Estruch, R.; Román, P.; et al. Cross-Sectional Assessment of Nut Consumption and Obesity, Metabolic Syndrome and Other Cardiometabolic Risk Factors: The Predimed Study. PLoS ONE 2013, 8, e57367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.; Mah, X.J.; Garcia, M.C.; Antonypillai, C.; van der Poorten, D. Oily fish, coffee and walnuts: Dietary treatment for nonalcoholic fatty liver disease. World J. Gastroenterol. 2015, 21, 10621–10635. [Google Scholar] [CrossRef] [PubMed]
- Aslam, H.; Marx, W.; Rocks, T.; Loughman, A.; Chandrasekaran, V.; Ruusunen, A.; Dawson, S.L.; West, M.; Mullarkey, E.; Pasco, J.A.; et al. The effects of dairy and dairy derivatives on the gut microbiota: A systematic literature review. Gut Microbes 2020, 12, 1799533. [Google Scholar] [CrossRef]
- Dugan, C.E.; Fernandez, M.L. Effects of dairy on metabolic syndrome parameters: A review. Yale J. Biol. Med. 2014, 87, 135–147. [Google Scholar]
- Sochol, K.M.; Johns, T.S.; Buttar, R.S.; Randhawa, L.; Sanchez, E.; Gal, M.; Lestrade, K.; Merzkani, M.; Abramowitz, M.K.; Mossavar-Rahmani, Y.; et al. The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019, 11, 2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Lee, H.S.; Ahn, S.B.; Kwon, Y.-J. Dairy protein intake is inversely related to development of non-alcoholic fatty liver disease. Clin. Nutr. 2021, 40, 5252–5260. [Google Scholar] [CrossRef]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godos, J.; Zappalà, G.; Bernardini, S.; Giambini, I.; Bes-Rastrollo, M.; Martinez-Gonzalez, M. Adherence to the Mediterranean diet is inversely associated with metabolic syndrome occurrence: A meta-analysis of observational studies. Int. J. Food Sci. Nutr. 2017, 68, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Van der Poorten, D.; Milner, K.L.; Hui, J.; Hodge, A.; Trenell, M.I.; Kench, J.G.; London, R.; Peduto, T.; Chisholm, D.J.; George, J. Visceral fat: A key mediator of steatohepatitis in metabolic liver disease. Hepatology 2008, 48, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, A.; Hosseini, N.; Osati, S.; NaghiZadeh, M.M.; Dehghan, A.; Ehrampoush, E.; Honarvar, B.; Homayounfar, R. Waist circumference is a mediator of dietary pattern in Non-alcoholic fatty liver disease. Sci. Rep. 2018, 8, 4788. [Google Scholar] [CrossRef] [Green Version]
- Tripepi, G.; Jager, K.J.; Dekker, F.W.; Zoccali, C. Selection bias and information bias in clinical research. Nephron Clin. Pract. 2010, 115, c94–c99. [Google Scholar] [CrossRef]
Outcomes | No Changes in Adherence to MedDiet (n = 15) | Moderate Changes in Adherence to MedDiet (n = 56) | High Changes in Adherence to MedDiet (n = 57) | p * |
---|---|---|---|---|
Age (y) (mean ± SD) | 53.3 ± 7.2 | 53.5 ± 8.0 | 52.0 ± 6.9 | 0.516 |
Marital Status (n; %) | 0.402 | |||
Single | 0 (0.0) | 4 (3.1) | 8 (6.3) | |
Married/domestic partnership | 12 (9.4) | 41 (32.0) | 44 (33.6) | |
Divorced/separated/widowed | 3 (2.3) | 11 (8.6) | 6 (4.7) | |
Employment (n; %) | 0.338 | |||
Working | 11 (8.6) | 38 (29.7) | 44 (34.4) | |
Unemployed/retired/housewife | 4 (3.1) | 18 (14.1) | 13 (10.2) | |
Education Level (n; %) | 0.219 | |||
University/post-university | 4 (3.1) | 4 (3.1) | 2 (1.6) | |
Secondary education | 7 (5.5) | 24 (18.8) | 24 (18.8) | |
Primary education | 2 (1.6) | 24 (18.8) | 29 (22.7) | |
None | 2 (1.6) | 4 (3.1) | 2 (1.6) | |
Currently smoking (n; %) | 0 (0.0) | 7 (5.3) | 9 (6.8) | 0.554 |
Regular Physical Activity (n; %) | 0.246 | |||
None | 4 (2.9) | 23 (16.7) | 32 (23.2) | |
Light | 6 (4.3) | 23 (16.7) | 19 (13.8) | |
Moderate | 5 (3.6) | 7 (5.1) | 10 (7.2) | |
Heavy | 0 (0.0) | 3 (2.2) | 6 (4.3) | |
T2DM (%) | 4 (2.9) | 23 (33.8) | 11 (16.2) | 0.141 |
High BP (n; %) | 4 (2.9) | 17 (12.2) | 9 (6.5) | 0.062 |
Outcomes | No Changes in Adherence to MedDiet (n = 15) | Moderate Changes in Adherence to MedDiet (n = 56) | High Changes in Adherence to MedDiet (n = 57) | p‡ | |
---|---|---|---|---|---|
BMI (kg/m2) | Basal | 32.6 ± 3.0 | 33.6 ± 3.5 | 33.9 ± 3.9 | <0.001 |
6-months | 31.9 ± 2.7 | 32.1 ± 3.6 | 30.9 ± 3.9 | ||
Δ | −0.7 ± 1.2 *c | −1.5 ± 1.6 *b | −3.0 ± 2.0 *bc | ||
Body weight (kg) | Basal | 91.5 ± 14.8 | 94.7 ± 12.4 | 96.5 ± 14.5 | <0.001 |
6-months | 89.5 ± 14.5 | 90.5 ± 12.4 | 88.1 ± 14.5 | ||
Δ | −1.9 ± 3.6 c | −4.2 ± 4.6 *b | −8.5 ± 5.8 *bc | ||
WC (cm) | Basal | 110.2 ± 9.4 | 113.0 ± 9.0 | 111.4 ± 9.0 | 0.004 |
6-months | 108.6 ± 7.4 | 110.5 ± 17.0 | 103.1 ± 10.5 | ||
Δ | −1.6 ± 4.1 | −2.5 ± 15.1 b | −8.3 ± 5.6 *b | ||
SBP (mmHg) | Basal | 134.2 ± 19.4 | 138.0 ± 16.2 | 134.7 ± 13.9 | 0.013 |
6-months | 134.4 ± 16.5 | 134.1 ± 15.3 | 126.3 ± 15.0 | ||
Δ | +0.2 ± 11.7 | −4.0 ± 16.7 b | −8.4 ± 14.6 *b | ||
DBP (mmHg) | Basal | 82.0 ± 8.6 | 85.2 ± 9.4 | 86.8 ± 8.8 | 0.009 |
6-months | 82.9 ± 6.8 | 82.7 ± 8.8 | 80.3 ± 9.0 | ||
Δ | +0.9 ± 7.4 c | −2.6 ± 7.4 *b | −6.5 ± 8.9 *bc | ||
Glucose (mg/dL) | Basal | 107.1 ± 16.6 | 120.1 ± 48.8 | 109.1 ± 20.9 | 0.079 |
6-months | 103.9 ± 14.3 | 116.8 ± 54.3 | 98.9 ± 16.9 | ||
Δ | −3.2 ± 15.3 | −3.4 ± 25.4 | −10.2 ± 15.5 * | ||
TG (mg/dL) | Basal | 151.7 ± 74.0 | 224.0 ± 300.1 | 177.8 ± 76.5 | 0.020 |
6-months | 170.9 ± 135.0 | 175.1 ± 107.1 | 125.0 ± 76.3 | ||
Δ | +19.1 ± 132.5 | −48.9 ± 70.3 *b | 52.9 ± 70.4 *b | ||
HDL-chol (mg/dL) | Basal | 47.8 ± 12.4 | 42.6 ± 10.0 | 45.5 ± 11.9 | 0.185 |
6-months | 47.6 ± 14.5 | 44.7 ± 10.7 | 48.8 ± 12.2 | ||
Δ | +0.2 ± 4.3 | +2.1 ± 5.7 * | +3.3 ± 7.8 * | ||
HOMA-IR | Basal | 5.8 ± 3.8 | 6.6 ± 4.7 | 5.2 ± 2.9 | 0.117 |
6-months | 5.1 ± 3.6 | 5.8 ± 7.3 | 3.1 ± 2.2 | ||
Δ | −0.7 ± 2.5 | −0.8 ± 5.9 | −2.1 ± 2.6 * | ||
Intrahepatic fat contents (%) | Basal | 15.1 ± 13.9 | 13.4 ± 8.8 | 12.5 ± 12.2 | 0.003 |
6-months | 10.6 ± 7.3 | 9.7 ± 6.7 | 6.0 ± 6.4 | ||
Δ | −4.5 ± 14.2 | −3.7 ± 5.8 *b | −6.5 ± 10.0 *b | ||
AST (U/L) | Basal | 25.2 ± 12.0 | 24.0 ± 8.4 | 27.6 ± 15.7 | 0.639 |
6-months | 20.9 ± 5.1 | 22.9 ± 6.5 | 23.8 ± 13.2 | ||
Δ | −4.3 ± 10.1 | −1.1 ± 7.2 | −3.8 ± 14.2 * | ||
ALT (U/L) | Basal | 33.8 ± 25.4 | 32.4 ± 17.8 | 40.9 ± 38.0 | 0.260 |
6-months | 24.5 ± 11.3 | 27.0 ± 14.3 | 26.0 ± 19.9 | ||
Δ | −9.3 ± 17.0 | −5.3 ± 14.0 * | −14.9 ± 30.1 * | ||
GGT (U/L) | Basal | 36.9 ± 27.1 | 44.1 ± 22.6 | 53.8 ± 71.1 | 0.197 |
6-months | 29.5 ± 15.5 | 40.0 ± 36.0 | 35.0 ± 56.1 | ||
Δ | −7.4 ± 14.1 | −4.1 ± 24.3 | −18.8 ± 50.0 * |
Outcomes | No Changes in Adherence to MedDiet (n = 15) | Moderate Changes in Adherence to MedDiet (n = 56) | High Changes in Adherence to MedDiet (n = 57) | p‡ | |
---|---|---|---|---|---|
Adherence to MedDiet | Basal | 9.0 ± 2.4 | 8.2 ± 2.6 | 6.2 ± 2.0 | <0.001 |
6-months | 7.9 ± 2.2 | 10.9 ± 2.7 | 13.7 ± 1.7 | ||
Δ | −1.1 ± 0.8 *ac | +2.8 ± 1.1 *ab | +7.5 ± 2.0 *bc | ||
Energy (kcal/d) | Basal | 2282.6 ± 659.0 | 2373.4 ± 553.0 | 2477.7 ± 992.5 | 0.204 |
6-months | 2266.5 ± 849.4 | 2100.3 ± 592.1 | 2012.2 ± 567.6 | ||
Δ | −16.0 ± 737.1 | −273.0 ± 638.4 * | −465.5 ± 971.9 * | ||
Vegetables (g/d) per 1000 kcal | Basal | 337.0 ± 177.2 | 320.9 ± 167.1 | 282.9 ± 176.2 | 0.547 |
6-months | 344.9 ± 197.0 | 375.3 ± 200.8 | 330.1 ± 121.4 | ||
Δ | +7.9 ± 132.9 | +54.4 ± 143.1 * | +47.2 ± 178.2 | ||
Fruits (g/d) per 1000 kcal | Basal | 366.1 ± 175.7 | 326.1 ± 212.9 | 246.6 ± 192.2 | 0.252 |
6-months | 338.1 ± 197.5 | 371.4 ± 199.8 | 359.5 ± 255.0 | ||
Δ | −28.0 ± 157.4 | +45.2 ± 172.1 | +112.9 ± 238.8 * | ||
Legumes (g/d) per 1000 kcal | Basal | 23.3 ± 9.2 | 21.8 ± 13.1 | 21.0 ± 11.9 | 0.139 |
6-months | 26.9 ± 25.3 | 29.4 ± 17.6 | 37.3 ± 31.2 | ||
Δ | +3.6 ± 26.1 | +7.6 ± 17.4 * | +16.2 ± 30.6 * | ||
Cereal (g/d) per 1000 kcal | Basal | 140.5 ± 66.1 | 141.2 ± 72.2 | 158.4 ± 117.6 | 0.548 |
6-months | 134.2 ± 97.0 | 131.9 ± 63.8 | 119.9 ± 68.1 | ||
Δ | −6.3 ± 51.8 | −9.3 ± 96.5 | −38.4 ± 130.8 * | ||
Dairy (mL/d) per 1000 kcal | Basal | 340.6 ± 243.8 | 364.5 ± 210.7 | 301.1 ± 190.2 | 0.050 |
6-months | 297.6 ± 148.6 | 362.5 ± 233.8 | 397.7 ± 222.5 | ||
Δ | −43.0 ± 212.9 | −2.1 ± 233.6 | +96.6 ± 200.9 * | ||
Meats and meat products (g/d) per 1000 kcal | Basal | 151.5 ± 87.2 | 182.6 ± 75.9 | 191.9 ± 71.3 | 0.120 |
6-months | 139.1 ± 69.8 | 149.6 ± 61.5 | 130.7 ± 77.6 | ||
Δ | −12.3 ± 26.7 | −33.0 ± 63.6 * | −61.2 ± 88.7 * | ||
Olive oil (g/d) per 1000 kcal | Basal | 27.5 ± 9.2 | 32.3 ± 20.2 | 33.4 ± 20.2 | 0.358 |
6-months | 35.9 ± 14.7 | 29.4 ± 18.5 | 30.1 ± 17.9 | ||
Δ | +8.4 ± 16.7 | −2.9 ± 22.9 | −3.3 ± 23.9 | ||
Fish (g/d) per 1000 kcal | Basal | 79.2 ± 52.0 | 96.9 ± 61.0 | 96.2 ± 61.0 | 0.661 |
6-months | 96.9 ± 87.9 | 124.8 ± 67.5 | 123.1 ± 68.5 | ||
Δ | +17.8 ± 43.6 | +27.9 ± 59.1 * | +26.9 ± 68.7 * | ||
Nuts (g/d) per 1000 kcal | Basal | 16.4 ± 16.8 | 15.6 ± 16.8 | 8.3 ± 12.0 | 0.005 |
6-months | 17.0 ± 21.6 | 19.5 ± 22.7 | 29.9 ± 32.2 | ||
Δ | +0.6 ± 11.9 | +3.9 ± 22.0 b | +21.6 ± 30.8 *b | ||
Sweets and pastries (g/d) per 1000 kcal | Basal | 31.2 ± 74.3 | 22.0 ± 23.8 | 44.3 ± 72.9 | 0.515 |
6-months | 22.7 ± 47.8 | 15.4 ± 22.8 | 13.1 ± 26.2 | ||
Δ | −8.5 ± 86.4 | −6.5 ± 19.3 * | −31.2 ± 79.8 * | ||
Soft Drinks (mL/d) per 1000 kcal | Basal | 21.8 ± 54.6 | 25.3 ± 98.9 | 41.6 ± 95.5 | 0.002 |
6-months | 15.4 ± 32.2 | 2.7 ± 6.9 | 3.1 ± 5.7 | ||
Δ | −6.4 ± 37.7 ac | −22.6 ± 99.3 a | −38.4 ± 96.0 *c |
Outcomes | No Changes in Adherence to MedDiet (n = 15) | Moderate Changes in Adherence to MedDiet (n = 56) | High Changes in Adherence to MedDiet (n = 57) | |
---|---|---|---|---|
Reversion of IFC by MRI | Crude OR | 1.00 (ref) | 1.159 (0.332–4.046) | 3.822 (1.100–13.281) * |
Adjusted OR | 1.00 (ref) | 1.514 (0.371–6.175) | 4.017 (0.965–16.719) | |
Amelioration of IFC by MRI | Crude OR | 1.00 (ref) | 4.235 (1.135–15.799) * | 11.250 (2.889–43.809) * |
Adjusted OR | 1.00 (ref) | 4.925 (1.273–19.046) * | 12.995 (3.117–54.187) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montemayor, S.; Mascaró, C.M.; Ugarriza, L.; Casares, M.; Llompart, I.; Abete, I.; Zulet, M.Á.; Martínez, J.A.; Tur, J.A.; Bouzas, C. Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 3186. https://doi.org/10.3390/nu14153186
Montemayor S, Mascaró CM, Ugarriza L, Casares M, Llompart I, Abete I, Zulet MÁ, Martínez JA, Tur JA, Bouzas C. Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients. 2022; 14(15):3186. https://doi.org/10.3390/nu14153186
Chicago/Turabian StyleMontemayor, Sofía, Catalina M. Mascaró, Lucía Ugarriza, Miguel Casares, Isabel Llompart, Itziar Abete, María Ángeles Zulet, J. Alfredo Martínez, Josep A. Tur, and Cristina Bouzas. 2022. "Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study" Nutrients 14, no. 15: 3186. https://doi.org/10.3390/nu14153186
APA StyleMontemayor, S., Mascaró, C. M., Ugarriza, L., Casares, M., Llompart, I., Abete, I., Zulet, M. Á., Martínez, J. A., Tur, J. A., & Bouzas, C. (2022). Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients, 14(15), 3186. https://doi.org/10.3390/nu14153186