Anthropometrics, Hemoglobin Status and Dietary Micronutrient Intake among Tanzanian and Mozambican Pigeon Pea Farmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Field Procedure
2.2. Anthropometric and Hemoglobin Measurements
2.3. Assessment of Dietary Intake
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Stelle, I.; Kalea, A.Z.; Pereira, D.I.A. Iron deficiency anaemia: Experiences and challenges. Proc. Nutr. Soc. 2019, 78, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishnan, U. Prevalence of micronutrient malnutrition worldwide. Nutr. Rev. 2002, 60, S46–S52. [Google Scholar] [CrossRef] [PubMed]
- Ruel-Bergeron, J.C.; Stevens, G.A.; Sugimoto, J.D.; Roos, F.F.; Ezzati, M.; Black, R.E.; Kraemer, K. Global update and trends of hidden hunger, 1995–2011: The hidden hunger index. PLoS ONE 2015, 10, e0143497. [Google Scholar] [CrossRef] [PubMed]
- Muthayya, S.; Rah, J.H.; Sugimoto, J.D.; Roos, F.F.; Kraemer, K.; Black, R.E. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 2013, 8, e67860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa-Agudelo, E.; Kim, H.Y.; Musuka, G.N.; Mukandavire, Z.; Miller, F.D.; Tanser, F.; Cuadros, D.F. The epidemiological landscape of anemia in women of reproductive age in sub-Saharan Africa. Sci. Rep. 2021, 11, 11955. [Google Scholar] [CrossRef] [PubMed]
- Farid, Z.; Patwardhan, V.N.; Darby, W.J. Parasitism and anemia. Am. J. Clin. Nutr. 1969, 22, 498–503. [Google Scholar] [CrossRef]
- Tulu, B.D.; Atomssa, E.M.; Mengist, H.M. Determinants of anemia among pregnant women attending antenatal care in Horo Guduru Wollega zone, west Ethiopia: Unmatched case-control study. PLoS ONE 2019, 14, e0224514. [Google Scholar] [CrossRef]
- Tatala, S.; Svanberg, U.; Mduma, B. Low dietary iron availability is a major cause of anemia: A nutrition survey in the Lindi district of Tanzania. Am. J. Clin. Nutr. 1998, 68, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Korkalo, L.; Freese, R.; Alfthan, G.; Fidalgo, L.; Mutanen, M. Poor micronutrient intake and status is a public health problem among adolescent Mozambican girls. Nutr. Res. 2015, 35, 664–673. [Google Scholar] [CrossRef]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Capacci, S.; Mazzocchi, M.; Shankar, B.; Traill, B. The Triple Burden of Malnutrition in Europe and Central Asia: A Multivariate Analysis. In FAO Regional Office for Europe and Central Asia Policy Studies on Rural Transition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume 7, pp. 7–8. [Google Scholar]
- Fall, C.H.; Abera, M.; Chopra, H.; Hardy-Johnson, P.; Janha, R.E.; Jesson, J.; Joglekar, C.; Joseph, S.; Kehoe, S.H.; Mukoma, G.; et al. Anthropometric nutritional status, and social and dietary characteristics of African and Indian adolescents taking part in the talent (transforming adolescent lives through nutrition) qualitative study. Public Health Nutr. 2020, 24, 5249–5260. [Google Scholar] [CrossRef] [PubMed]
- Amugsi, D.A.; Dimbuene, Z.T.; Mberu, B.; Muthuri, S.; Ezeh, A.C. Prevalence and time trends in overweight and obesity among urban women: An analysis of demographic and health surveys data from 24 African countries, 1991–2014. BMJ Open 2017, 7, e017344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajayi, I.O.; Adebamowo, C.; Adami, H.O.; Dalal, S.; Diamond, M.B.; Bajunirwe, F.; Guwatudde, D.; Njelekela, M.; Nankya-Mutyoba, J.; Chiwanga, F.S.; et al. Urban-rural and geographic differences in overweight and obesity in four sub-Saharan African adult populations: A multi-country cross-sectional study. BMC Public Health 2016, 16, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reardon, T.; Tschirley, D.; Liverpool-Tasie, L.S.O.; Awokuse, T.; Fanzo, J.; Minten, B.; Vos, R.; Dolislager, M.; Sauer, C.; Dhar, R.; et al. The processed food revolution in African food systems and the double burden of malnutrition. Glob. Food Sec. 2021, 28, 100466. [Google Scholar] [CrossRef] [PubMed]
- Amarteifio, J.O.; Munthali, D.C.; Karikari, S.K.; Morake, T.K. The composition of pigeon peas (Cajanus cajan (L.) millsp.) grown in Botswana. Plant Foods Hum. Nutr. 2002, 57, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Talari, A.; Shakappa, D. Role of pigeon pea (Cajanus cajan L.) in human nutrition and health: A review. Asian J. Dairy Food Res. 2018, 37, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Nwokolo, E. Nutritional evaluation of pigeon pea meal. Plant Foods Hum. Nutr. 1987, 37, 283–290. [Google Scholar] [CrossRef]
- Adepoju, O.; Dudulewa, B.; Bamigboye, A. Effect of cooking methods on time and nutrient retention of pigeon pea (Cajanus cajan). Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14708–14725. [Google Scholar] [CrossRef]
- Stuetz, W.; Gowele, V.; Kinabo, J.; Bundala, N.; Mbwana, H.; Rybak, C.; Eleraky, L.; Lambert, C.; Biesalski, H.K. Consumption of dark green leafy vegetables predicts vitamin A and iron intake and status among female small-scale farmers in Tanzania. Nutrients 2019, 11, 1025. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC); National Bureau of Statistics (NBS); ICF. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015–2016; NBS: Dar es Salaam, Tanzania; ICF: Rockville, MD, USA, 2016.
- Food and Nutrition Technical Assistance III Project (FANTA). Tanzania Malnutrition Fact Sheet 2016. Available online: https://www.fantaproject.org/sites/default/files/resources/Tanzania-Malnutrition-Factsheet-Oct2016.pdf (accessed on 21 March 2022).
- Ministerio da Saude (MISAU/Moçambique); Instituto Nacional de Estatística (INE/Moçambique); ICF International. Moçambique Inquérito Demográfico e de Saúde 2011; MISAU/Moçambique, INE/Moçambique and ICF International: Calverton, MD, USA, 2013.
- World Health Organization. Physical Status: The use and interpretation of anthropometry. In Report of a WHO Expert Consultation; Technical Report Series; WHO: Geneva, Switzerland, 1995; Volume 854. [Google Scholar]
- Kulathinal, S.; Freese, R.; Korkalo, L.; Ismael, C.; Mutanen, M. Mid-upper arm circumference is associated with biochemically determined nutritional status indicators among adolescent girls in central Mozambique. Nutr. Res. 2016, 36, 835–844. [Google Scholar] [CrossRef]
- Eleraky, L.; Issa, R.; Maciel, S.; Mbwana, H.; Rybak, C.; Frank, J.; Stuetz, W. High prevalence of overweight and its association with mid-upper arm circumference among female and male farmers in Tanzania and Mozambique. Int. J. Environ. Res. Public Health 2021, 18, 9128. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.M.; Dong, K.; Deitchler, M.; Chung, M.; Maalouf-Manasseh, Z.; Tumilowicz, A.; Wanke, C. Use of Cutoffs for Mid-Upper Arm Circumference (MUAC) as an Indicator or Predictor of Nutritional and Health Related Outcomes in Adolescents and Adults: A Systematic Review; FANTA, FHI 360/FANTA; FANTA: Washington, DC, USA, 2013. [Google Scholar]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention and Control; WHO: Geneva, Switzerland, 2001; Volume WHO/NHD/01.3. [Google Scholar]
- Lukmanji, Z.; Hertzmark, E.; Mlingi, N.; Assey, V.; Ndossi, G.; Fawzi, W. Tanzania Food Composition Tables; MUHAS-TFNC, HSPH: Dar es Salaam, Tanzania; Boston, MA, USA, 2008; pp. 1–259. [Google Scholar]
- Korkalo, L.; Freese, R.; Fidalgo, L.; Selvester, K.; Ismael, C.; Mutanen, M. A cross-sectional study on the diet and nutritional status of adolescent girls in Zambezia province, Mozambique (the Zane study): Design, methods, and population characteristics. JMIR Res. Protoc. 2014, 3, e12. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, J. Nutrisurvey Software Version 2007. Available online: http://www.nutrisurvey.de/index.html (accessed on 29 February 2020).
- Gowele, V.; Kirschmann, C.; Kinabo, J.; Frank, J.; Biesalski, H.K.; Rybak, C.; Stuetz, W. Micronutrient profile of indigenous leafy vegetables from rural areas of Morogoro and Dodoma regions in Tanzania. In Proceedings of the 3rd International Congress 47 Hidden Hunger, Stuttgart, Germany, 20–22 March 2017. [Google Scholar] [CrossRef]
- D-A-C-H. Referenzwerte Für Die Nährstoffzufuhr; DGE e.V: Bonn, Germany. Available online: https://www.dge.de/wissenschaft/referenzwerte/ (accessed on 24 December 2021).
- Food and Agriculture Organization (FAO). Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation in Bangkok, Thailand; Food and Nutrition Division, FAO: Rome, Italy, 2001. [Google Scholar]
- Keding, G.B.; Msuya, J.M.; Maass, B.L.; Krawinkel, M.B. Obesity as a public health problem among adult women in rural Tanzania. Glob. Health Sci. Pract. 2013, 1, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Harika, R.; Faber, M.; Samuel, F.; Kimiywe, J.; Mulugeta, A.; Eilander, A. Micronutrient status and dietary intake of iron, vitamin A, iodine, folate and zinc in women of reproductive age and pregnant women in Ethiopia, Kenya, Nigeria and south Africa: A systematic review of data from 2005 to 2015. Nutrients 2017, 9, 1096. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R.F.; Reddy, M.B.; Burri, J.; Cook, J.D. An evaluation of EDTA compounds for iron fortification of cereal-based foods. Br. J. Nutr. 2000, 84, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Egli, I.; Gahutu, J.B.; Tugirimana, P.L.; Boy, E.; Hurrell, R. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J. Nutr. 2014, 144, 1681–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layrisse, M.; Garcia-Casal, M.N.; Solano, L.; Baron, M.A.; Arguello, F.; Llovera, D.; Ramirez, J.; Leets, I.; Tropper, E. New property of vitamin a and beta-carotene on human iron absorption: Effect on phytate and polyphenols as inhibitors of iron absorption. Arch. Lat. Nutr. 2000, 50, 243–248. [Google Scholar]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef]
- Hailu, A.A.; Addis, G. The content and bioavailability of mineral nutrients of selected wild and traditional edible plants as affected by household preparation methods practiced by local community in Benishangul Gumuz regional state, Ethiopia. Int. J. Food Sci. 2016, 2016, 7615853. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2013, 52, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Steyn, N.P.; Olivier, J.; Winter, P.; Burger, S.; Nesamvuni, C. A survey of wild, green, leafy vegetables and their potential in combating micronutrient deficiencies in rural populations: Research in action. S. Afr. J. Sci. 2001, 97, 276–278. [Google Scholar]
- Gowele, V.F.; Kinabo, J.; Jumbe, T.; Kirschmann, C.; Frank, J.; Stuetz, W. Provitamin A carotenoids, tocopherols, ascorbic acid and minerals in indigenous leafy vegetables from Tanzania. Foods 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulokozi, G.; Lietz, G.; Svanberg, U.; Mugyabuso, J.K.; Henry, J.C.; Tomkins, A.M. Plasma levels of retinol, carotenoids, and tocopherols in relation to dietary pattern among pregnant Tanzanian women. Int. J. Vitam. Nutr. Res. 2003, 73, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Gowele, V.F.; Kinabo, J.; Jumbe, T.; Rybak, C.; Stuetz, W. High prevalence of stunting and anaemia is associated with multiple micronutrient deficiencies in school children of small-scale farmers from Chamwino and Kilosa districts, Tanzania. Nutrients 2021, 13, 1576. [Google Scholar] [CrossRef] [PubMed]
- Pathak, V.A.; Ghosh, K. Erythropoiesis in malaria infections and factors modifying the erythropoietic response. Anemia 2016, 2016, 9310905. [Google Scholar] [CrossRef] [Green Version]
- Seal, A.J.; Creeke, P.I.; Mirghani, Z.; Abdalla, F.; McBurney, R.P.; Pratt, L.S.; Brookes, D.; Ruth, L.J.; Marchand, E. Iron and vitamin A deficiency in long-term African refugees. J. Nutr. 2005, 135, 808–813. [Google Scholar] [CrossRef] [Green Version]
- Pinstrup-Andersen, P. Agricultural research and policy for better health and nutrition in developing countries: A food systems approach. Agric. Econ. 2007, 37, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Kinabo, J.; Mamiro, P.; Dawkins, N.; Bundala, N.; Mwanri, A.; Majili, Z.; Jumbe, T.; Kulwa, K.; Mamiro, D.; Amuri, N. Food intake and dietary diversity of farming households in Morogoro region, Tanzania. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11295–11309. [Google Scholar] [CrossRef]
- Swaminathan, S.; Dehghan, M.; Raj, J.M.; Thomas, T.; Rangarajan, S.; Jenkins, D.; Mony, P.; Mohan, V.; Lear, S.A.; Avezum, A.; et al. Associations of cereal grains intake with cardiovascular disease and mortality across 21 countries in prospective urban and rural epidemiology study: Prospective cohort study. BMJ 2021, 372, m4948. [Google Scholar] [CrossRef]
- Prentice, A.M. Regional case studies—Africa. In Nestle Nutrition Workshop Series Paediatric Programme; Discussion 41–36, 259–268; Karger AG: Basel, Switzerland, 2009; Volume 63, pp. 33–41. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Steyn, N.P.; McHiza, Z.J. Obesity and the nutrition transition in sub-Saharan Africa. Ann. N. Y. Acad. Sci. 2014, 1311, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Sheiham, A. Why free sugars consumption should be below 15 kg per person per year in industrialized countries: The dental evidence. Br. Dent. J. 1991, 171, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Christian, A.K.; Dake, F.A. Profiling household double and triple burden of malnutrition in sub-Saharan Africa: Prevalence and influencing household factors. Public Health Nutr. 2021, 25, 1563–1576. [Google Scholar] [CrossRef]
- Anderson, A.K. Prevalence of anemia, overweight/obesity, and undiagnosed hypertension and diabetes among residents of selected communities in Ghana. Int. J. Chronic Dis. 2017, 2017, 7836019. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; WHO/NMH/NHD/MNM/11.1; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Wirth, J.P.; Rajabov, T.; Petry, N.; Woodruff, B.A.; Shafique, N.B.; Mustafa, R.; Tyler, V.Q.; Rohner, F. Micronutrient deficiencies, over- and undernutrition, and their contribution to anemia in Azerbaijani preschool children and non-pregnant women of reproductive age. Nutrients 2018, 10, 1483. [Google Scholar] [CrossRef] [Green Version]
All (N = 1526) | TZ-F (N = 362) | TZ-M (N = 307) | MZ-F (N = 488) | MZ-M (N = 369) | |
---|---|---|---|---|---|
Age [years] 1 | 39.0 (28.0, 52.0) | 41.0 a (31.0, 57.0) | 44.0 a (32.0, 58.7) | 34.0 b (25.0, 45.0) | 39.0 c (27.0, 51.0) |
Weight [kg] 1 | 52.7 (47.9, 59.2) | 53.8 a (47.9, 62.3) | 55.0 a (49.3, 61.2) | 50.5 b (46.0, 56.5) | 53.0 c (49.9, 59.0) |
Height [cm] 1 | 156.1 (151.1, 162.1) | 151.8 a (148.3, 155.4) | 162.1 b (158.0, 166.7) | 153.1 c (149.0, 156.8) | 162.0 b (157.2, 166.7) |
BMI [kg/m2] 1 | 21.3 (19.6, 23.7) | 23.5 a (21.0, 26.4) | 21.0 b (19.5, 22.7) | 21.5 c (19.9, 23.7) | 20.2 d (19.1, 21.7) |
<18.5 kg/m2 | 12.0 (183) | 6.9 (25) | 13.6 (42) | 10.9 (53) | 17.1 (63) |
18.5–24.9 kg/m2 | 72.0 (1098) | 58.0 (210) | 78.2 (241) | 73.6 (359) | 78.3 (288) |
25–29.9 kg/m2 | 12.3 (187) | 23.8 (86) | 7.1 (22) | 13.5 (66) | 3.5 (13) |
≥30 kg/m2 | 3.8 (58) | 11.3 (41) a | 1.0 (3) b | 2.0 (10) c | 1.1 (4) b |
≥25 kg/m2 | 16.0 (245) | 35.1 (127) a | 8.1 (25) b | 15.6 (76) c | 4.6 (17) d |
MUAC [cm] 1 | 27.1 (25.4, 29.1) | 28.1 a (26.1, 31.5) | 26.8 b (24.7, 28.5) | 27.3 c (25.6, 29.5) | 26.4 b (24.9, 28.0) |
MUAC < 24 cm, % (n) 2 | 10.1 (154) | 7.2 (26) a | 14.9 (46) b | 6.4 (31) a | 13.8 (51) b |
MUAC ≥ 30 cm, % (n) 2 | 14.6 (223) | 22.4 (81) a | 8.8 (27) b | 18.0 (88) c | 7.3 (27) b |
MUAC ≥ 33.5 cm, % (n) 2 | 4.5 (69) | 11.0 (40) a | 1.3 (4) b | 4.3 (21) c | 1.1 (4) b |
Hemoglobin, g/L 1 | 129 (117, 140) | 127 a (117, 136) | 140 b (129, 152) | 120 c (109, 129) | 138 d (126, 148) |
Anemia, % (n) 2 | 34.6 (528) | 29.0 (105) a | 25.0 (77) b | 48.0 (234) c | 30.4 (112) a |
Pregnant, % (n) 2 | 3.6 (55) | 3.0 (11) | - | 9.0 (44) | - |
Diarrhea, 4 weeks, % (n) 2 | 2.4 (37) | 4.1 (15) a | 1.6 (5) b | 2.9 (14) c | 0.8 (3) b |
Malaria, 90 days, % (n) 2 | 33.8 (516) | 17.7 (64) a | 16.3 (50) a | 53.5 (261) b | 38.2 (141) c |
All (N = 1526) | TZ-F (N = 362) | TZ-M (N = 307) | MZ-F (N = 488) | MZ-M (N = 369) | RDI/d | |
---|---|---|---|---|---|---|
Energy [kcal] 1 | 2261 (1564, 2974) | 2071 a (1589, 2778) | 2615 b (2025, 3286) | 2178 a (1373, 2912) | 2211 a (1369, 3037) | 1900–2800 |
E ≥ RDI 2, % (n) | 46.5 (710) | 51.1 (185) a | 48.2 (148) a | 51.0 (249) a | 34.7 (128) b | |
Protein [g] | 60.3 (39.5, 88.9) | 69.6 a (48.1, 98.8) | 86.3 b (62.4, 112.5) | 49.1 c (33.1, 68.7) | 49.8 c (30.3, 76.2) | 47–68 |
Pro ≥ RDI, % (n) | 60.0 (915) | 74.0 (268) a | 79.2 (243) a | 51.2 (250) b | 41.7 (154) c | |
Fat [g] | 44.6 (30.7, 66.2) | 42.0 a (26.4, 62.9) | 51.0 b (35.1, 74.7) | 43.5 a (32.5, 62.8) | 44.7 a (28.2, 63.9) | |
CHO [g] | 398.3 (263.3, 528.8) | 371.7 a (266.1, 479.8) | 451.2 b (346.7, 553.3) | 390.4 a (227.2, 523.9) | 399.5 a (220.6, 543.6) | |
Retinol equiv. [μg] | 50.8 (24.6, 207.6) | 94.4 a (24.0, 265.0) | 121.5 a (29.0, 311.0) | 44.2 b (24.6, 143.2) | 44.2 b (23.9, 127.2) | 500–800 |
RE ≥ RDI, % (n) | 9.9 (151) | 13.0 (47) a | 13.7 (42) a | 8.8 (43) b | 5.1 (19) c | |
Vitamin E [mg] | 2.5 (1.2, 4.9) | 1.8 a (1.5, 3.0) | 3.0 b (1.5, 3.3) | 2.5 b (0.9, 5.0) | 2.5 a,b (0.0, 5.0) | 7.5–10 |
VE ≥ RDI, % (n) | 6.6 (101) | 6.4 (23) a | 5.5 (17) a | 8.2 (40) a | 5.7 (21) a | |
Vitamin B1 [mg] | 1.7 (1.1, 2.5) | 1.5 a (1.0, 2.2) | 1.9 b (1.4, 2.4) | 1.8 b (1.1, 2.6) | 1.7 b (1.0, 2.6) | 1.1–1.4 |
B1 ≥ RDI, % (n) | 73.6 (1123) | 70.7 (256) a,c | 83.7 (257) b | 74.4 (363) a | 66.9 (247) c | |
Vitamin B2 [mg] | 1.1 (0.7, 1.6) | 1.3 a (0.8, 2.0) | 1.6 b (1.1, 2.1) | 0.9 c (0.5, 1.3) | 0.9 c (0.5, 1.3) | 1.0–1.4 |
B2 ≥ RDI, % (n) | 46.0 (702) | 61.6 (223) a | 64.5 (198) a | 39.1 (191) b | 24.4 (90) c | |
Vitamin B6 [mg] | 1.9 (1.2, 2.8) | 1.6 a (1.0, 2.3) | 2.0 b (1.5, 2.7) | 1.9 b (1.1, 3.0) | 2.0 b (1.1, 3.4) | 1.2–1.9 |
B6 ≥ RDI, % (n) | 67.6 (1031) | 60.8 (220) a | 77.2 (237) b | 68.4 (334) b,c | 65.0 (240) a,c | |
Folic acid [μg] | 431.5 (216.5, 780.0) | 611.7 a (334.5, 1011.1) | 748.8 b (406.9, 1058.0) | 320.0 c (177.5, 522.6) | 318.7 c (161.1, 544.4) | 400–600 |
FA ≥ RDI, % (n) | 52.6 (803) | 70.4 (255) a | 75.9 (233) a | 35.7 (174) b | 38.2 (141) b | |
Vitamin B12 [μg] | 0 (0, 0.6) | 0 a (0, 0.4) | 0 a (0, 0.6) | 0 a (0, 0.6) | 0 a (0, 0.8) | 2.4–2.6 |
B12 ≥ RDI, % (n) | 11.8 (180) | 15.2 (55) a | 17.9 (55) a | 7.2 (35) b | 9.5 (35) b | |
Vitamin C [mg] | 56.5 (23.4, 1178) | 36.8 a (9.8, 76.3) | 39.1 a (14.0, 92.5) | 77.4 b (32.9, 144.1) | 68.5 b (32.1, 131.5) | 40–55 |
VC ≥ RDI, % (n) | 56.4 (860) | 43.4 (157) a | 46.9 (144) a | 66.2 (323) b | 64.0 (236) b | |
Calcium [mg] | 334.5 (196.0, 574.8) | 357.0 a (200.8, 652.0) | 403.3 b (253.0, 600.0) | 280.5 c (176.6, 510.1) | 312.0 c (176.9, 599.3) | 1000–1300 |
Ca ≥ RDI, % (n) | 11.2 (171) | 14.6 (53) a | 16.0 (49) a | 6.8 (33) b | 9.8 (36) b | |
Magnesium [mg] | 485.0 (297.4, 763.0) | 420.8 a (259.6, 619.1) | 465.2 b (300.0, 673.8) | 552.4 c (333.5, 810.6) | 553.1 a,c (293.4, 819.2) | 190–260 |
Mg ≥ RDI, % (n) | 82.6 (1261) | 82.0 (297) a,b | 82.7 (254) a,b | 86.5 (422) a | 78.0 (288) b | |
Iron [mg] | 20.3 (12.8, 27.9) | 18.0 a (11.5, 23,5) | 21.5 b (15.6, 27.6) | 20.8 b (12.7, 29.3) | 22.1 b (12.6, 32.7) | 11–31 |
Fe ≥ RDI, % (n) | 51.4 (784) | 33.7 (122) a | 79.5 (244) b | 32.4 (158) a | 70.5 (260) c | |
Zinc [mg] | 11.1 (7.0, 15.2) | 11.4 a (7.2, 15.6) | 13.0 b (9.5, 17.6) | 10.1 c (6.4, 14.0) | 10.5 c (6.1, 14.5) | 9.8–19.2 |
Zn ≥ RDI, % (n) | 44.4 (678) | 56.1 (203) a | 43.0 (132) b | 49.6 (242) a,b | 27.4 (101) c |
Food Intake | All (N = 1526) | TZ-F (N = 362) | TZ-M (N = 307) | MZ-F (N = 488) | MZ-M (N = 369) | p |
---|---|---|---|---|---|---|
Cereals, % (n) 1 | 87.6 (1337) | 97.8 (354) a | 98.4 (302) a | 81.8 (399) b | 76.4 (282) c | <0.001 |
Grams 2 | 625 (500, 1000) | 500 (500, 1000) a | 1000 (500, 1000) b | 500 (380, 1000) c | 500 (500, 1000) d | <0.001 |
Bread and prod., % (n) | 15.3 (233) | 25.1 (91) a | 28.0 (86) a | 5.1 (25) b | 8.4 (31) b | <0.001 |
Grams | 160 (100, 160) | 160 (120, 160) a | 160 (160, 240) a | 100 (60, 130) b | 65 (60, 110) b | <0.001 |
Starchy plants, % (n) | 41.7 (637) | 35.9 (130) a | 39.1 (120) a,b | 46.1 (225) b | 43.9 (162) a,b | 0.015 |
Grams | 360 (240, 500) | 300 (200, 400) a | 300 (200, 400) a,b | 400 (250, 600) b | 450 (250, 750) b | <0.001 |
Legumes, % (n) | 63.2 (965) | 73.2 (265) a | 75.6 (232) a | 55.7 (272) b | 53.1 (196) b | <0.001 |
Grams | 250 (195, 500) | 500 (250, 500) a | 500 (250, 500) a | 249 (125, 280) b | 250 (125, 280) b | <0.001 |
DGLVs, % (n) | 31.3 (477) | 19.9 (72) a | 18.2 (56) a | 42.4 (207) b | 38.5 (142) b | <0.001 |
Grams | 250 (125, 250) | 250 (125, 394) a | 250 (150, 500) a | 250 (125, 250) b | 185 (125, 250) b | <0.001 |
Other vegetables, % (n) | 21.5 (328) | 8.6 (31) a | 8.8 (27) a | 33.4 (163) b | 29.0 (107) b | <0.001 |
Grams | 187.5 (125, 250) | 200 (125, 250) a | 250 (150, 500) a | 145 (120, 250) b | 162 (120, 250) b | 0.282 |
Fruits, % (n) | 9.8 (149) | 19.3 (70) a | 17.6 (54) a | 2.0 (10) b | 4.1 (15) b | <0.001 |
Grams | 200 (120, 300) | 180 (120, 255) a | 240 (120, 300) a | 200 (142, 275) b | 300 (200, 400) b | <0.001 |
Nuts, % (n) | 2.8 (42) | 3.0 (11) a,b | 5.9 (18) a | 1.2 (6) b | 1.9 (7) b | 0.001 |
Grams | 90 (50, 100) | 100 (50, 100) a,b | 100 (50, 100) a | 40 (19, 100) b | 50 (25, 50) b | 0.081 |
Fish, % (n) | 23.7 (362) | 18.8 (68) a | 22.8 (70) a,b | 24.8 (121) b | 27.9 (103) b | 0.030 |
Grams | 125 (90, 250) | 250 (125, 250) a | 250 (150, 300) a | 100 (60, 170) b | 100 (70, 180) b | <0.001 |
Meat, % (n) | 12.3 (187) | 7.4 (27) a | 11.1 (34) a,b | 12.5 (61) b, c | 17.6 (65) c | <0.001 |
Grams | 150 (100, 240) | 200 (125, 300) a | 250 (150, 400) a,b | 120 (90, 180) a,b | 120 (90, 180) b | <0.001 |
Eggs and diary, % (n) | 2.6 (39) | 4.1 (15) a | 4.2 (13) a | 1.4 (7) b | 1.1 (4) b | 0.005 |
Grams | 120 (80, 180) | 120 (80, 250) a | 140 (65, 340) a,b | 110 (80, 150) a,b | 70 (45, 80) b | 0.102 |
Sugar and sweets, % (n) | 4.5 (69) | 1.9 (7) a | 2.6 (8) a,b | 6.8 (33) b | 5.7 (21) b | 0.002 |
Grams | 240 (87, 245) | 300 (250, 400) a | 315 (100, 500) a | 240 (50, 240) b | 200 (75, 240) a,b | 0.001 |
Beverages, % (n) | 29.8 (455) | 56.9 (206) a | 62.9 (193) a | 5.9 (29) b | 7.3 (27) b | <0.001 |
Grams | 250 (250, 250) | 250 (250, 250) a | 250 (250, 250) a | 250 (245, 250) b | 250 (240, 250) b | <0.001 |
Tanzania (N = 669) | Mozambique (N = 857) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(LN) RE Intake [μg] | B | Beta | R2 Ch. | Partial R | %RE | (LN) RE Intake [μg] | B | Beta | R2 Ch. | Partial R | %RE |
(Constant) | 3.529366 | (Constant) | 3.037323 | ||||||||
DGLVs (g) | 0.005963 | 0.620 ** | 0.328 | 0.625 | 9.1 | DGLVs (g) | 0.006786 | 0.677 ** | 0.363 | 0.654 | 17.0 |
Eggs and diary (g) | 0.007574 | 0.220 ** | 0.042 | 0.283 | 1.1 | Other vegetables (g) | 0.002481 | 0.229 ** | 0.034 | 0.279 | 12.4 |
Other vegetables (g) | 0.003691 | 0.202 ** | 0.033 | 0.259 | 3.4 | Legumes (g) | 0.001355 | 0.163 ** | 0.022 | 0.209 | 25.8 |
Fruits (g) | 0.001419 | 0.102 * | 0.009 | 0.135 | 6.4 | Sugar and sweets (g) | 0.002870 | 0.106 ** | 0.012 | 0.141 | 2.1 |
Starchy plants (g) | 0.000854 | 0.103 ** | 0.010 | 0.136 | 18.5 | Starchy plants (g) | 0.000371 | 0.089 * | 0.008 | 0.116 | 42.4 |
Meat (g) | 0.002283 | 0.120 ** | 0.007 | 0.154 | 3.4 | Eggs and diary (g) | 0.008217 | 0.083 * | 0.007 | 0.111 | 0.3 |
Fish (g) | 0.001728 | 0.130 ** | 0.008 | 0.160 | 7.7 | ||||||
Legumes (g) | 0.000669 | 0.126 ** | 0.013 | 0.149 | 50.4 | ||||||
(LN) Iron Intake [mg] | B | Beta | R2 Ch. | Partial R | %FE | (LN) Iron Intake [mg] | B | Beta | R2 Ch. | Partial R | %FE |
(Constant) | 1.816587 | (Constant) | 2.025 | ||||||||
Legumes (g) | 0.001231 | 0.561 ** | 0.253 | 0.582 | 24.1 | Cereals (g) | 0.000807 | 0.507 ** | 0.255 | 0.547 | 53.5 |
Cereals (g) | 0.000571 | 0.382 ** | 0.172 | 0.471 | 57.1 | Starchy plants (g) | 0.000636 | 0.245 ** | 0.053 | 0.300 | 20.5 |
DGLVs (g) | 0.000933 | 0.233 ** | 0.040 | 0.308 | 4.4 | Legumes (g) | 0.001348 | 0.261 ** | 0.043 | 0.315 | 12.5 |
Starchy plants (g) | 0.000516 | 0.150 ** | 0.023 | 0.211 | 8.8 | Meat (g) | 0.002639 | 0.194 ** | 0.027 | 0.239 | 2.0 |
Nuts (g) | 0.003972 | 0.117 ** | 0.012 | 0.168 | 0.3 | Fish (g) | 0.001399 | 0.170 ** | 0.024 | 0.214 | 3.3 |
Fish (g) | 0.000786 | 0.142 ** | 0.012 | 0.186 | 3.7 | DGLVs (g) | 0.000710 | 0.114 ** | 0.012 | 0.143 | 8.2 |
Meat (g) | 0.001035 | 0.130 ** | 0.016 | 0.179 | 1.6 | ||||||
(SR) Zinc Intake [mg] | B | Beta | R2 Ch. | Partial R | %ZN | (SR) Zinc Intake [mg] | B | Beta | R2 Ch. | Partial R | %ZN |
(Constant) | 1.731673 | (Constant) | 1.864001 | ||||||||
Legumes (g) | 0.002217 | 0.697 ** | 0.318 | 0.751 | 23.2 | Cereals (g) | 0.001352 | 0.703 ** | 0.502 | 0.781 | 58.2 |
Cereals (g) | 0.000762 | 0.353 ** | 0.188 | 0.532 | 54.9 | Legumes (g) | 0.001844 | 0.295 ** | 0.058 | 0.464 | 13.6 |
Fish (g) | 0.003292 | 0.410 ** | 0.109 | 0.571 | 3.5 | Starchy plants (g) | 0.000803 | 0.256 ** | 0.052 | 0.415 | 22.3 |
Meat (g) | 0.002692 | 0.234 ** | 0.047 | 0.385 | 1.6 | Meat (g) | 0.004180 | 0.254 ** | 0.059 | 0.412 | 2.2 |
Starchy plants (g) | 0.000638 | 0.128 ** | 0.013 | 0.225 | 8.5 | Fish (g) | 0.001227 | 0.124 ** | 0.016 | 0.216 | 3.6 |
DGLVs (g) | 0.000691 | 0.119 ** | 0.012 | 0.207 | 4.2 | Nuts (g) | 0.011565 | 0.078 ** | 0.006 | 0.139 | 0.1 |
Nuts (g) | 0.005260 | 0.107 ** | 0.012 | 0.195 | 0.3 | ||||||
Eggs and milk (g) | 0.001752 | 0.084 ** | 0.008 | 0.153 | 0.5 | ||||||
Bread (g) | 0.000688 | 0.064 ** | 0.004 | 0.114 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eleraky, L.; Issa, R.; Maciel, S.; Mbwana, H.; Rybak, C.; Frank, J.; Stuetz, W. Anthropometrics, Hemoglobin Status and Dietary Micronutrient Intake among Tanzanian and Mozambican Pigeon Pea Farmers. Nutrients 2022, 14, 2914. https://doi.org/10.3390/nu14142914
Eleraky L, Issa R, Maciel S, Mbwana H, Rybak C, Frank J, Stuetz W. Anthropometrics, Hemoglobin Status and Dietary Micronutrient Intake among Tanzanian and Mozambican Pigeon Pea Farmers. Nutrients. 2022; 14(14):2914. https://doi.org/10.3390/nu14142914
Chicago/Turabian StyleEleraky, Laila, Ramula Issa, Sónia Maciel, Hadijah Mbwana, Constance Rybak, Jan Frank, and Wolfgang Stuetz. 2022. "Anthropometrics, Hemoglobin Status and Dietary Micronutrient Intake among Tanzanian and Mozambican Pigeon Pea Farmers" Nutrients 14, no. 14: 2914. https://doi.org/10.3390/nu14142914
APA StyleEleraky, L., Issa, R., Maciel, S., Mbwana, H., Rybak, C., Frank, J., & Stuetz, W. (2022). Anthropometrics, Hemoglobin Status and Dietary Micronutrient Intake among Tanzanian and Mozambican Pigeon Pea Farmers. Nutrients, 14(14), 2914. https://doi.org/10.3390/nu14142914