Social Determinants of Obesity and Stunting among Brazilian Adolescents: A Multilevel Analysis
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Data Source
2.2. Study Variables
- The school’s sociopolitical and economic context: geographic macro-region (North, Northeast, Southeast, South, and Central-West).
- The school’s material circumstances: school situation (urban, rural), administrative dependence (public, private), food environment—canteen (none, present), alternative points for food purchase (none, present), and school garden (none, present).
- The socioeconomic position and material circumstances of the individual and family: gender (male, female), ethnicity (white, non-white—composed by the union of “black”, “mixed”, “indigenous”, and “East Asian”), age (10–14 years, 15–19 years), job (yes, no), maternal education level (uneducated, literate, primary school, high school, college, or did not know); number of residents in the household (≥5 residents, <5 residents).
- Individuals’ behavioral and psychosocial health factors: dietary pattern (higher nutritional risk, lower nutritional risk), breakfast consumption, lunch or dinner consumption with parents or caregivers, food consumption while watching TV or studying (regular ≥ 5 days, irregular < 5 days), having been to fast-food restaurants in the week before the survey (no, yes), practicing physical activity (<300 min/week, ≥300 min/week), and body satisfaction (satisfied, dissatisfied, or indifferent).
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swinburn, B.A.; Kraak, V.I.; Allender, S.; Atkins, V.J.; Baker, P.I.; Bogard, J.R.; Brinsden, H.; Calvillo, A.; de Schutter, O.; Devarajan, R.; et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet 2019, 393, 791–846. [Google Scholar] [CrossRef]
- World Health Organization. Nutrition in Adolescence—Issues and Challenges for the Health Sector—Issues in Adolescent Health and Development; World Health Organization: Geneva, Switzerland, 2005; pp. 1–115. [Google Scholar] [CrossRef]
- Cardel, M.I.; Atkinson, M.A.; Taveras, E.M.; Holm, J.C.; Kelly, A.S. Obesity Treatment among Adolescents: A Review of Current Evidence and Future Directions. JAMA Pediatr. 2020, 174, 609–617. [Google Scholar] [CrossRef] [PubMed]
- The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Steinbeck, K.S.; Lister, N.B.; Gow, M.L.; Baur, L.A. Treatment of adolescent obesity. Nat. Rev. Endocrinol. 2018, 14, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geografia e Estatística (IBGE). ENDEF—Estudo Nacional da Despesa Familiar 1974–1975; IBGE: Rio de Janeiro, Brazil, 1978; pp. 1–88. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv9885_4.pdf (accessed on 26 March 2022).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de Orçamentos Familiares: 2008–2009. Antropometria e Estado Nutricional; IBGE: Rio de Janeiro, Brazil, 2010; pp. 1–222. ISBN 978-85-240-4131-0.
- Bloch, K.V.; Klein, C.H.; Szklo, M.; Kuschnir, M.C.C.; Abreu, G.D.A.; Barufaldi, L.A.; da Veiga, G.V.; Schaan, B.; da Silva, T.L.N.; Moraes, A.J.P.; et al. ERICA: Prevalences of hypertension and obesity in Brazilian adolescents. Rev. Saude Publica 2016, 50 (Suppl. 1), 1s–12s. [Google Scholar] [CrossRef] [PubMed]
- Uzêda, J.C.O.; Ribeiro-Silva, R.D.C.; Silva, N.D.J.; Fiaccone, R.L.; Malta, D.C.; Ortelan, N.; Barrato, M.L. Factors associated with the double burden of malnutrition among adolescents, National Adolescent School-Based Health Survey (PENSE 2009 and 2015). PLoS ONE 2019, 14, e0218566. [Google Scholar] [CrossRef]
- Muraro, A.P.; de Souza, R.A.G.; Rodrigues, P.R.M.; Ferreira, M.G.; Sichieri, R. Efeitos da classe econômica e mobilidade social no crescimento linear desde a infância até a adolescência. Rev. Bras. Epidemiol. 2017, 20, 514–525. [Google Scholar] [CrossRef]
- Araújo, C.; Toral, N.; Silva, A.C.F.; Velásquez-Melendez, G.; Dias, A.J.R. Estado nutricional dos adolescentes e sua relação com variáveis sociodemográficas: Pesquisa Nacional de Saúde do Escolar (PeNSE), 2009. Cien Saude Colet 2010, 15 (Suppl. 2), 3077–3084. [Google Scholar] [CrossRef] [Green Version]
- Van Tuijl, C.J.W.; Madjdian, D.S.; Bras, H.; Chalise, B. Sociocultural and economic determinants of stunting and thinness among adolescent boys and girls in Nepal. J. Biosoc. Sci. 2021, 53, 531–556. [Google Scholar] [CrossRef]
- Morais, D.C.; Dutra, L.V.; Franceschini, S.C.; Priore, S.E. Food insecurity and anthropometric, dietary and social indicators in Brazilian studies: A systematic review. Cien Saude Colet 2014, 19, 1475–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogarín, R.; Richmond, E.; Rogol, A.D. A new approach to the diagnosis of short stature. Minerva Pediatr. 2020, 72, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Norris, S.A.; Frongillo, E.A.; Black, M.M.; Dong, Y.; Fall, C.; Lampl, M.; Liese, A.D.; Naguib, M.; Prentice, A.; Rochat, T.; et al. Nutrition in adolescent growth and development. Lancet 2022, 399, 172–184. [Google Scholar] [CrossRef]
- Silva, M.A.I.; Mello, F.C.M.; Mello, D.F.; Ferriani, M.G.C.; Sampaio, J.M.C.; Oliveira, W.A. Vulnerabilidade na saúde do adolescente: Questões contemporâneas. Cienc Saude Coletiva 2014, 19, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Azzopardi, P.S.; Hearps, S.J.C.; Francis, K.L.; Kennedy, E.C.; Mokdad, A.H.; Kassebaum, N.J.; Lim, S.; Irvine, C.M.S.; Vos, T.; Brown, A.D.; et al. Progress in adolescent health and wellbeing: Tracking 12 headline indicators for 195 countries and territories, 1990–2016. Lancet 2019, 393, 1101–1118. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). A Conceptual Framework for Action on the Social Determinants of Health; World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/9789241500852 (accessed on 26 March 2022).
- Barata, R.B. Como e Por Que as Desigualdades Sociais Fazem Mal à Saúde; Editora Fiocruz: Rio de Janeiro, 2009; pp. 1–120. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Coordenação de População e Indicadores Sociais. In Pesquisa Nacional de Saúde do Escolar: 2015; IBGE: Rio de Janeiro, Brazil, 2016; pp. 1–131. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv97870.pdf (accessed on 26 March 2022).
- Brasil Ministério da Saúde; Conselho Nacional de Saúde. Resolução no 510, de 07 de Abril de 2016; Ministério da Saúde: Brasília, Brasil, 2016. Available online: http://conselho.saude.gov.br/resolucoes/2016/Reso510.pdf (accessed on 26 March 2022).
- World Health Organization (WHO). WHO AnthroPlus, version 1.0.4, [Computer Program]; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization (WHO). WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age. Methods and Development; WHO: Geneva, Switzerland, 2006. [Google Scholar] [CrossRef]
- Brasil Ministério da Saúde; Secretaria de Atenção à Saúde. Marco de Referência da Vigilância Alimentar e Nutricional na Atenção Básica; Ministério da Saúde: Brasília, Brazil, 2015; pp. 1–56. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/marco_referencia_vigilancia_alimentar.pdf (accessed on 26 March 2022).
- Vale, D. Alimentação e Nutrição de Adolescentes no Brasil: Notas Epidemiológicas, 1st ed.; EDUERN: Mossoró, Brazil, 2020; pp. 1–97. Available online: https://drive.google.com/file/d/1fqGIuaMFXJK5HOiHP5-JAW0mc4cJQc4Z/view (accessed on 22 August 2021).
- Vale, D.; Andrade, M.E.C.; Dantas, N.M.; Lyra, C.O.; Seabra, L.M.J.; Roncalli, A.G. Food and nutrition surveillance of Brazilian adolescents: Possibilities with PeNSE data. Res. Soc. Dev. 2021, 10, e465101119818. [Google Scholar] [CrossRef]
- Patton, G.C.; Neufeld, L.M.; Dogra, S.; Frongillo, E.A.; Hargreaves, D.; He, S.; Mates, E.; Menon, P.; Naguib, M.; Norris, S.A. Nourishing our future: The Lancet Series on adolescent nutrition. Lancet 2022, 399, 123–125. [Google Scholar] [CrossRef]
- Cardoso, L.O.; Engstrom, E.M.; Leite, I.C.; Castro, I.R.R. Socioeconomic, demographic, environmental and behavioral factors associated with overweight in adolescents: A systematic literature review. Rev. Bras. Epidemiol. 2009, 13, 378–403. [Google Scholar] [CrossRef] [Green Version]
- Matijasevich, A.; Victora, C.G.; Golding, J.; Barros, F.C.; Menezes, A.M.; Araujo, C.L.; Smith, G.D. Socioeconomic position and overweight among adolescents: Data from birth cohort studies in Brazil and the UK. BMC Public Health 2009, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Pereira, I.F.D.S.; Andrade, L.D.M.B.; Spyrides, M.H.C.; Lyra, C.D.O. Estado nutricional de menores de 5 anos de idade no Brasil: Evidências da polarização epidemiológica nutricional. Cienc Saude Coletiva 2017, 22, 3341–3352. [Google Scholar] [CrossRef]
- Moradi, S.; Mirzababaei, A.; Mohammadi, H.; Moosavian, S.P.; Arab, A.; Jannat, B.; Mirzaei, K. Food insecurity and the risk of undernutrition complications among children and adolescents: A systematic review and meta-analysis. Nutrition 2019, 62, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Garnelo, L.; Lima, J.G.; Rocha, E.S.C.; Herkrath, F.J. Acesso e cobertura da Atenção Primária à Saúde para populações rurais e urbanas na região norte do Brasil. Saúde Em Debate 2018, 42, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, C.E.A. Rural Health in Brazil: A still relevant old subject. Rev. Saude Publica 2018, 52, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Pari, A.K.; Sinha, A.; Dhara, P.C. Prevalence of undernutrition and associated factors: A cross-sectional study among rural adolescents in West Bengal, India. Int. J. Pediatr. Adolesc. Med. 2017, 4, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Organização Panamericana de Saúde (OPAS). Plano de Ação para Prevenção da Obesidade em Crianças e Adolescentes; OPAS: Washington, DC, USA, 2014; Available online: https://www.paho.org/pt/documentos/cd58inf5-plano-acao-para-prevencao-da-obesidade-em-criancas-e-adolescentes-relatorio (accessed on 26 March 2022).
- Barbosa, L.M.A.; Arruda, I.K.G.; Canuto, R.; Lira, P.I.C.D.; Monteiro, J.S.; Freitas, D.L.; Silva de Paula, W.K.A.; Filho, M.B. Prevalence and factors associated with excess weight in adolescents in a low-income neighborhood-northeast, Brazil. Rev. Bras. Saúde Matern. Infant. 2019, 19, 661–670. [Google Scholar] [CrossRef] [Green Version]
- Forkert, E.C.O.; Cesar, A.; Moraes, F.; Manios, Y.; Widhalm, K.; González-Gross, M.; Gutierrez, A.; Kafatos, A.; Censi, L.; de Henauw, S.; et al. Skipping breakfast is associated with adiposity markers especially when sleep time is adequate in adolescents. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hassan, B.K.; Cunha, D.B.; Veiga, V.G.; Pereira, R.A.; Sichieri, R. Changes in breakfast frequency and composition during adolescence: The Adolescent Nutritional Assessment Longitudinal Study, a cohort from Brazil. PLoS ONE 2018, 13, e0200587. [Google Scholar] [CrossRef]
- Brasil Ministério da Saúde; Departamento de Atenção Básica. Guia Alimentar para a População Brasileira Guia Alimentar para a População Brasileira; Ministério da Saúde: Brasília, Brasil, 2014; pp. 1–148. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/guia_alimentar_populacao_brasileira_2ed.pdf (accessed on 26 March 2022).
- Sugiyama, S.; Okuda, M.; Sasaki, S.; Kunitsugu, I.; Hobara, T. Breakfast habits among adolescents and their association with daily energy and fish, vegetable, and fruit intake: A community-based cross-sectional study. Environ. Health Prev. Med. 2012, 17, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Barufaldi, L.A.; Azevedo, A.G.; Oliveira, J.S.; Santos, D.F.D.; Fujimori, E.; Vasconcelos, S.M.L.; de Vasconcelos, F.d.A.G.; Tavares, B.M. ERICA: Prevalence of healthy eating habits among Brazilian adolescents. Rev. Saude Publica 2016, 50 (Suppl. 1), 1s–9s. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, P.R.M.; Luiz, R.R.; Monteiro, L.S.; Ferreira, M.G.; Gonçalves-Silva, R.M.V.; Pereira, R.A. Adolescents’ unhealthy eating habits are associated with meal skipping. Nutrition 2017, 42, 114–120.e1. [Google Scholar] [CrossRef]
- Maia, E.G.; Silva, L.E.S.; Santos, M.A.S.; Barufaldi, L.A.; Silva, S.U.; Claro, R.M. Dietary patterns, sociodemographic and behavioral characteristics among Brazilian adolescents. Rev. Bras Epidemiol. 2018, 21 (Suppl. 1), e180009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, D.F.O.; Lyra, C.O.; Lima, S.C.V.C. Padrões alimentares de adolescentes e associação com fatores de risco cardiovascular: Uma revisão sistemática. Cienc Saude Coletiva 2016, 21, 1181–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, F.S.; Dias, M.S.; Mintem, G.C.; Oliveira, I.O.; Gigante, D.P. Food processing and cardiometabolic risk factors: A systematic review. Rev. Saude Publica 2020, 54, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, L.M.; Andrade, E.B.; Suleiman, A.B.; Barker, M.; Beal, T.; Blum, L.S.; Demmler, K.M.; Dogra, S.; Hardy-Johnson, P.; Lahiri, A.; et al. Food choice in transition: Adolescent autonomy, agency, and the food environment. Lancet 2022, 399, 185–197. [Google Scholar] [CrossRef]
- Rubino, F.; Puhl, R.M.; Cummings, D.E.; Eckel, R.H.; Ryan, D.H.; Mechanick, J.I.; Nadglowski, J.; Salas, X.R.; Schauer, P.R.; Twenefour, D.; et al. Joint international consensus statement for ending stigma of obesity. Nat. Med. 2020, 26, 485–497. [Google Scholar] [CrossRef] [Green Version]
- Bianciardi, E.; Di Lorenzo, G.; Niolu, C.; Betrò, S.; Zerbin, F.; Gentileschi, P.; Siracusano, A. Body image dissatisfaction in individuals with obesity seeking bariatric surgery: Exploring the burden of new mediating factors. Riv. Psichiatr. 2019, 54, 8–17. [Google Scholar] [CrossRef]
- Golden, N.H.; Schneider, M.; Wood, C.; Daniels, S.; Abrams, S.; Corkins, M.; de Ferranti, S.; Magge, S.N.; Schwarzenberg, S.; Braverman, P.K.; et al. Preventing obesity and eating disorders in adolescents. Pediatrics 2016, 138, e20161649. [Google Scholar] [CrossRef] [Green Version]
- Brasil Ministério da Saúde; Secretaria de Vigilância em Saúde; Departamento de Ações Programáticas e Estratégicas Coordenação-Geral de Saúde do Adolescente e do Jovem. Proteger e Cuidar da Saúde de Adolescentes na Atenção Básica; Ministério da Saúde: Brasília, Brazil, 2017; pp. 1–233. Available online: http://189.28.128.100/dab/docs/portaldab/publicacoes/saude_adolecentes.pdf (accessed on 26 March 2022).
- Brasil Ministério da Saúde; Secretaria de Atenção à Saúde. Cadernos de Atenção Básica: Estratégias para o Cuidado da Pessoa com doenças Crônica Obesidade; Ministério da Saúde: Brasília, Brazil, 2014; pp. 1–212. [Google Scholar]
- Sociedade Brasileira de Pediatria (SBP). Manual de Orientação Obesidade na Infância e Adolescência, 3rd ed.; SBP: São Paulo, Brazil, 2019.
- Associação Brasileira para o Estudo da Obesidade e Síndrome Metabólica (ABESO). Diretrizes Brasileiras de Obesidade 2016: VI Diretrizes Bras Obesidade; ABESO: São Paulo, Brazil, 2016; pp. 1–188. Available online: https://abeso.org.br/wp-content/uploads/2019/12/Diretrizes-Download-Diretrizes-Brasileiras-de-Obesidade-2016.pdf (accessed on 26 March 2022).
- Castro, I.R.R. A extinção do Conselho Nacional de Segurança Alimentar e Nutricional e a agenda de alimentação e nutrição. Cad. Saúde Pública 2019, 35, e00009919. [Google Scholar] [CrossRef]
- Brasil Ministério do Desenvolvimento Social e Combate à Fome. Marco de referência de educação alimentar e nutricional para as políticas públicas; Secretaria Nacional de Segurança Alimentar e Nutricional: Brasília, Brazil, 2012; pp. 1–68. Available online: https://www.cfn.org.br/wp-content/uploads/2017/03/marco_EAN.pdf (accessed on 26 March 2022).
- Brasil Ministério da Educação. Fundo Nacional de Desenvolvimento da Educação (FNDE). Conselho Deliberativo. Resolução no 06, de 08 de maio de 2020; FNDE: Brasília, Brazil, 2020; pp. 21–55. Available online: https://www.in.gov.br/en/web/dou/-/resolucao-n-6-de-8-de-maio-de-2020-256309972 (accessed on 26 March 2022).
- Brasil Diário Oficial da União. Decreto n. 6286, de 5 de Dezembro de 2007- Institui o Programa Saúde na Escola—PSE; Diário Oficial da União: Brasília, Brazil, 2007. Available online: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2007/decreto/d6286.htm (accessed on 26 March 2022).
- Brasil Diário Oficial da União. Lei nº 13.666, de 16 de maio de 2018. Altera a Lei nº 9.394, de 20 de Dezembro de 1996 (Lei de Diretrizes e Bases da Educação Nacional), Para Incluir o Tema Transversal da Educação Alimentar e Nutricional no Currículo Escolar; Diário Oficial da União: Brasília, Brazil, 2018. Available online: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13666.htm (accessed on 26 March 2022).
- Abate, B.B.; Kassie, A.M.; Kassaw, M.W.; Zemariam, A.B.; Alamaw, A.W. Prevalence and determinants of stunting among adolescent girls in Ethiopia. J. Pediatr. Nurs. 2020, 52, e1–e6. [Google Scholar] [CrossRef]
Variables | n | Obesity | Stunting | ||||
---|---|---|---|---|---|---|---|
% | 95% CI | p-Value | % | 95% CI | p-Value | ||
Individual Level | |||||||
Socioeconomic position and material circumstances of the individual and family | |||||||
Gender | 0.094 | 0.656 | |||||
Male | 8287 | 10.5 | 9.6–11.4 | 2.3 | 1.7–2.9 | ||
Female | 8269 | 9.4 | 8.6–10.3 | 2.4 | 2.0–3.0 | ||
Ethnicity | 0.575 | 0.178 | |||||
White | 6575 | 10.2 | 9.3–11.2 | 2 | 1.4–2.7 | ||
Non-white | 9958 | 9.8 | 9.1–10.6 | 2.6 | 2.1–3.1 | ||
Age | <0.001 | <0.001 | |||||
10–14 years | 9400 | 11.9 | 11.0–12.8 | 0.9 | 0.7–1.3 | ||
15–19 years | 7156 | 8.3 | 7.5–9.2 | 3.6 | 2.9–4.3 | ||
Maternal education level | 0.017 | <0.001 | |||||
Uneducated | 749 | 7.9 | 5.8–10.6 | 6.3 | 3.8–10.5 | ||
Literate | 2735 | 9.8 | 8.4–11.3 | 3.3 | 2.4–4.5 | ||
Primary schools | 2002 | 8.8 | 7.3–10.5 | 1.8 | 1.0–3.2 | ||
High school | 3769 | 9.3 | 8.1–10.7 | 1.5 | 1.0–2.2 | ||
College | 3099 | 12.3 | 10.7–14.1 | 1.1 | 0.6–2.1 | ||
Did not know | 4168 | 10.5 | 9.3–11.9 | 2.4 | 1.8–3.2 | ||
Number of residents in the household | <0.001 | 0.012 | |||||
≥5 residents | 6361 | 8.6 | 7.7–9.6 | 3 | 2.3–3.8 | ||
<5 residents | 10,180 | 10.8 | 10.1–11.7 | 1.9 | 1.5–2.4 | ||
Individual’s behavioral and psychosocial health factors | |||||||
Dietary pattern | <0.001 | 0.765 | |||||
Lower nutritional risk | 10,257 | 11.1 | 10.3–11.9 | 2.2 | 1.8–2.8 | ||
Higher nutritional risk | 6153 | 8.2 | 7.3–9.2 | 2.4 | 1.8–3.1 | ||
Lunch or dinner consumption with parents or caregivers | 0.693 | 0.882 | |||||
Regular (≥5 days) | 11,928 | 9.9 | 9.2–10.6 | 2.3 | 1.9–2.9 | ||
Irregular (<5 days) | 4603 | 10.2 | 9.0–11.4 | 2.4 | 1.8–3.2 | ||
Food consumption while watching TV or studying | 0.064 | 0.303 | |||||
Regular (≥5 days) | 9297 | 10.5 | 9.7–11.4 | 2.1 | 1.7–2.7 | ||
Irregular (<5 days) | 7244 | 9.3 | 8.5–10.3 | 2.6 | 2.0–3.2 | ||
Breakfast consumption | 0.064 | 0.303 | |||||
Regular (≥5 days) | 7244 | 9.3 | 8.5–10.3 | 2.6 | 2.0–3.2 | ||
Irregular (<5 days) | 9297 | 10.5 | 9.7–11.4 | 2.1 | 1.7–2.7 | ||
Dining at fast-food restaurants | 0.001 | 0.218 | |||||
No | 8715 | 10.9 | 10.0–11.8 | 2.1 | 1.7–2.6 | ||
Yes | 7804 | 8.8 | 8.0–9.7 | 2.6 | 2.0–3.4 | ||
Body satisfaction | <0.001 | 0.066 | |||||
Satisfied | 11,528 | 6.5 | 5.9–7.1 | 2.5 | 2.1–3.0 | ||
Indifferent | 1807 | 14.8 | 12.8–1.0 | 3.1 | 1.8–5.2 | ||
Dissatisfied | 3040 | 20.6 | 18.7–22.6 | 1.4 | 0.9–2.2 | ||
Physical activity practice | 0.019 | 0.008 | |||||
≥300 min/week | 3433 | 11.4 | 10.0–13.0 | 1.4 | 1.0–2.1 | ||
<300 min/week | 13,013 | 9.6 | 8.9–10.3 | 2.6 | 2.1–3.1 | ||
School Level | |||||||
School’s material circumstances | |||||||
School situation | 0.063 | <0.001 | |||||
Rural | 851 | 7.2 | 5.0–10.3 | 5.6 | 3.3–9.4 | ||
Urban | 15,705 | 10.1 | 9.5–10.8 | 2.1 | 1.8–2.5 | ||
Administrative dependence | <0.001 | <0.001 | |||||
Public | 12,381 | 9.5 | 8.8–10.2 | 2.6 | 2.2–3.1 | ||
Private | 4175 | 13 | 11.6–14.5 | 0.5 | 0.2–0.9 | ||
Canteen | 0.004 | <0.001 | |||||
None | 7253 | 9.1 | 8.3–10.0 | 3 | 2.4–3.7 | ||
Present | 9303 | 10.9 | 10.0–11.8 | 1.6 | 1.2–2.2 | ||
Alternative points for food purchase | 0.197 | 0.907 | |||||
None | 11,601 | 10.2 | 9.5–11.0 | 2.3 | 1.9–2.9 | ||
Present | 4955 | 9.4 | 8.4–10.5 | 2.4 | 1.8–3.1 | ||
School Garden | 0.728 | 0.701 | |||||
Present | 4091 | 9.8 | 8.6–11.1 | 2.5 | 1.7–3.6 | ||
None | 12,465 | 10 | 9.3–10.7 | 2.3 | 1.9–2.8 | ||
School’s sociopolitical and economic context | |||||||
Geographic macro-region | <0.001 | <0.001 | |||||
North | 3188 | 9.1 | 7.9–10.3 | 3.9 | 2.8–5.4 | ||
Northeast | 3465 | 8.1 | 7.1–9.3 | 2.9 | 2.2–4.0 | ||
Southeast | 3276 | 10.5 | 9.4–11.7 | 2 | 1.5–2.8 | ||
South | 3207 | 12.6 | 11.4–13.9 | 1.4 | 1.0–2.0 | ||
Central-West | 3420 | 10.5 | 9.3–11.8 | 1.3 | 0.8–2.1 | ||
Brazil | 16,556 | 10.0 | 9.4–10.6 | 2.3 | 2.0–2.8 |
Variables | Obesity | Stunting | ||||
---|---|---|---|---|---|---|
PRc | 95% CI | p-Value | PRc | 95% CI | p-Value | |
Individual Level | ||||||
Socioeconomic position and material circumstances of the individual and family | ||||||
Gender | ||||||
Male | Ref | Ref | ||||
Female | 0.80 | (0.72–0.88) | <0.001 | 1.19 | (0.93–1.52) | 0.177 |
Ethnicity | ||||||
White | Ref | Ref | ||||
Non-white | 0.91 | (0.82–1.00) | 0.045 | 1.15 | (0.86–1.50) | 0.320 |
Age | ||||||
10–14 years | Ref | Ref | ||||
15–19 years | 0.66 | (0.60–0.73) | <0.001 | 3.53 | (2.60–4.79) | <0.001 |
Maternal education level | ||||||
Uneducated | Ref | Ref | ||||
Literate | 1.15 | (0.89–1.51) | 0.288 | 0.67 | (0.43–1.06) | 0.090 |
Primary schools | 1.06 | (0.80–1.40) | 0.678 | 0.35 | (0.20–0.62) | <0.001 |
High school | 1.11 | (0.85–1.44) | 0.435 | 0.34 | (0.21–0.56) | <0.001 |
College | 1.33 | (1.03–1.74) | 0.032 | 0.19 | (0.10–0.35) | <0.001 |
Did not know | 1.26 | (0.98–1.63) | 0.075 | 0.53 | (0.34–0.83) | 0.005 |
Number of residents in the household | ||||||
≥5 residents | Ref | Ref | ||||
<5 residents | 1.30 | (1.18–1.43) | <0.001 | 0.64 | (0.50–0.82) | 0.001 |
Individual’s behavioral and psychosocial health factors | ||||||
Dietary pattern | ||||||
Lower nutritional risk | Ref | Ref | ||||
Higher nutritional risk | 0.71 | (0.64–0.78) | <0.001 | 0.98 | (0.76–1.27) | 0.880 |
Lunch or dinner consumption with parents or caregivers | ||||||
Regular (≥5 days) | Ref | Ref | ||||
Irregular (<5 days) | 1.05 | (0.95–1.17) | 0.335 | 1.21 | (0.93–1.59) | 0.159 |
Food consumption while watching TV or studying | ||||||
Regular (≥5 days) | Ref | Ref | ||||
Irregular (<5 days) | 0.87 | (0.79–0.96) | 0.005 | 1.07 | (0.83–1.37) | 0.619 |
Breakfast consumption | ||||||
Regular (≥5 days) | Ref | Ref | ||||
Irregular (<5 days) | 1.38 | (1.25–1.52) | <0.001 | 0.94 | (0.73–1.21) | 0.982 |
Dining at fast-food restaurants | ||||||
No | Ref | |||||
Yes | 0.77 | (0.70–0.85) | <0.001 | 0.96 | (0.75–1.24) | 0.772 |
Body satisfaction | ||||||
Satisfied | Ref | Ref | ||||
Indifferent | 2.44 | (2.14–2.78) | <0.001 | 1.05 | (0.71–1.54) | 0.819 |
Dissatisfied | 3.11 | (2.81–3.45) | <0.001 | 0.62 | (0.42–0.92) | 0.017 |
Physical activity practice | ||||||
≥300 min/week | Ref | Ref | ||||
<300 min/week | 0.90 | (0.80–1.00) | 0.053 | 1.32 | (0.94–1.85) | 0.104 |
School Level | ||||||
School’s material circumstances | ||||||
School situation | ||||||
Rural | Ref | Ref | ||||
Urban | 1.45 | (1.11–1.91) | 0.007 | 0.41 | (0.25–0.68) | <0.001 |
Administrative dependence | ||||||
Public | Ref | Ref | ||||
Private | 1.35 | (1.20–1.53) | <0.001 | 0.29 | (0.18–0.47) | <0.001 |
Canteen | ||||||
None | Ref | Ref | ||||
Present | 1.27 | (1.14–1.42) | <0.001 | 0.43 | (0.31–0.58) | <0.001 |
Alternative points for food purchase | ||||||
None | Ref | Ref | ||||
Present | 0.87 | (0.76–0.98) | 0.025 | 1.11 | (0.79–1.55) | 0.560 |
School Garden | ||||||
Present | Ref | Ref | ||||
None | 1.09 | (0.96–1.24) | 0.200 | 1.04 | (0.72–1.51) | 0.814 |
School’s sociopolitical and economic context | ||||||
Geographic macro-region | ||||||
North | Ref | Ref | ||||
Northeast | 0.96 | (0.80–1.15) | 0.627 | 0.77 | (0.50–1.19) | 0.242 |
Southeast | 1.19 | (1.00–1.43) | 0.053 | 0.63 | (0.40–1.00) | 0.048 |
South | 1.38 | (1.16–1.64) | <0.001 | 0.52 | (0.32–0.83) | 0.007 |
Central-West | 1.09 | (0.91–1.31) | 0.336 | 0.38 | (0.23–0.63) | <0.001 |
Variables | Null Model | Model 1 | Model 2 | ||
---|---|---|---|---|---|
PR (CI 95%) | p-Value | PR (CI 95%) | p-Value | ||
School Level | |||||
Administrative dependence | |||||
Private | 1.16 (1.04–1.30) | 0.010 | |||
Geographic macro-region | |||||
Northeast | 0.92 (0.78–1.10) | 0.369 | |||
Southeast | 1.10 (0.93–1.30) | 0.265 | |||
South | 1.22 (1.04–1.44) | 0.014 | |||
Central-West | 0.99 (0.84–1.16) | 0.869 | |||
Individual Level | |||||
Gender | |||||
Female | 0.66 (0.60–0.73) | <0.001 | 0.67 (0.61–0.73) | <0.001 | |
Age | |||||
15–20 years | 0.61 (0.55–0.68) | <0.001 | 0.61 (0.55–0.68) | <0.001 | |
Dietary pattern | |||||
Higher nutritional risk | 0.72 (0.65–0.80) | <0.001 | 0.72 (0.64–0.79) | <0.001 | |
Food consumption while watching TV or studying | |||||
Regular (≥5 days) | 0.88 (0.80–0.97) | 0.009 | 0.89 (0.81–0.99) | 0.024 | |
Breakfast consumption | |||||
Irregular (<5 days) | 1.32 (1.20–1.45) | <0.001 | 1.31 (1.19–1.44) | <0.001 | |
Dining at fast-food restaurants | |||||
Yes | 0.83 (0.75–0.91) | <0.001 | 0.82 (0.74–0.90) | <0.001 | |
Body satisfaction | |||||
Indifferent | 2.51 (2.20–2.86) | <0.001 | 2.47(2.17–2.82) | <0.001 | |
Dissatisfied | 3.42 (3.08–3.80) | <0.001 | 3.36 (3.03–3.75) | 0.010 | |
Number of residents in the household | |||||
<5 residents | 1.26 (1.14–1.39) | <0.001 | 1.23 (1.11–1.36) | <0.001 | |
Fixed effects | |||||
Intercept (CI 95%) | −2.244 (−2.304–(−2.185)) | 0.099 (0.087–0.112) | 0.093(0.079–0.110) | ||
Random Effects | Variance (SE) | Variance (SE) | Variance (SE) | ||
Education level | 0.092 (0.057–0.148) | 0.042 (0.019–0.098) | 0.033 (0.012–0.092) | ||
Variation (%) | −54.3 | −64.1 | |||
LR Test (Chi2; p-value) | 30.32 (<0.001) | 7.75 (p = 0.003) | 5.84 (p = 0.007) |
Variables | Null Model | Model 1 | Model 2 | ||
---|---|---|---|---|---|
PR (CI 95%) | p-Value | PR (CI 95%) | p-Value | ||
School Level | |||||
School situation | |||||
Urban | 0.52 (0.33–0.82) | 0.005 | |||
Geographic macro-region | |||||
Northeast | 0.72 (0.49–1.05) | 0.090 | |||
Southeast | 0.70 (0.46–1.05) | 0.082 | |||
South | 0.56 (0.36–0.86) | 0.008 | |||
Central-West | 0.47 (0.30–0.75) | 0.001 | |||
Individual Level | |||||
Age | |||||
15–20 years | 3.71 (2.76–4.99) | <0.001 | 3.61 (2.70–4.82) | <0.001 | |
Body satisfaction | |||||
Indifferent | 1.03 (0.69–1.52) | 0.894 | |||
Dissatisfied | 0.61 (0.42–0.90) | <0.013 | |||
Maternal education level | |||||
Literate | 0.59 (0.38–0.94) | 0.026 | 0.66 (0.42–1.04) | 0.075 | |
Primary schools | 0.34 (0.20–0.59) | <0.001 | 0.38 (0.22–0.66) | 0.001 | |
High school | 0.33 (0.20–0.54) | <0.001 | 0.36 (0.22–0.60) | <0.001 | |
College | 0.21 (0.11–0.39) | <0.001 | 0.23 (0.13–0.42) | <0.001 | |
Did not know | 0.64 (0.41–1.00) | 0.051 | 0.70 (0.44–1.10) | 0.117 | |
Number of residents in the household | |||||
<5 residents | 0.64 (0.50–0.83) | 0.001 | 0.68 (0.53–0.88) | 0.003 | |
Fixed effects | |||||
Intercept (CI 95%) | −4.474 (−4.679–(−4.269)) | 0.018 (0.011–0.030) | 0.043(0.024–0.077) | ||
Random CI Effects | Variance (SE) | Variance (SE) | Variance (SE) | ||
Education level | 0.649 (0.387–1.092) | 0.306 (0.128–0.732) | 0.197 (0.061–0.634) | ||
Variation (%) | −52.9 | −69.6 | |||
LR Test (Chi2; p-value) | 29.75 (<0.001) | 7.44 (p = 0.003) | 3.73 (p = 0.027) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vale, D.; Andrade, M.E.d.C.; Dantas, N.M.; Bezerra, R.A.; Lyra, C.d.O.; Oliveira, A.G.R.d.C. Social Determinants of Obesity and Stunting among Brazilian Adolescents: A Multilevel Analysis. Nutrients 2022, 14, 2334. https://doi.org/10.3390/nu14112334
Vale D, Andrade MEdC, Dantas NM, Bezerra RA, Lyra CdO, Oliveira AGRdC. Social Determinants of Obesity and Stunting among Brazilian Adolescents: A Multilevel Analysis. Nutrients. 2022; 14(11):2334. https://doi.org/10.3390/nu14112334
Chicago/Turabian StyleVale, Diôgo, Maria Eduarda da Costa Andrade, Natalie Marinho Dantas, Ricardo Andrade Bezerra, Clélia de Oliveira Lyra, and Angelo Giuseppe Roncalli da Costa Oliveira. 2022. "Social Determinants of Obesity and Stunting among Brazilian Adolescents: A Multilevel Analysis" Nutrients 14, no. 11: 2334. https://doi.org/10.3390/nu14112334
APA StyleVale, D., Andrade, M. E. d. C., Dantas, N. M., Bezerra, R. A., Lyra, C. d. O., & Oliveira, A. G. R. d. C. (2022). Social Determinants of Obesity and Stunting among Brazilian Adolescents: A Multilevel Analysis. Nutrients, 14(11), 2334. https://doi.org/10.3390/nu14112334