Positive Association between High Protein Food Intake Frequency and Physical Performance and Higher-Level Functional Capacity in Daily Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures
2.2.1. Physical Performance
2.2.2. Frequency of Food Intake
2.2.3. Higher-Level Functional Capacity
2.2.4. Covariates
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Makizako, H.; Shimada, H.; Doi, T.; Tsutsumimoto, K.; Suzuki, T. Impact of physical frailty on disability in community-dwelling older adults: A prospective cohort study. BMJ Open 2015, 5, e008462. [Google Scholar] [CrossRef] [PubMed]
- Abizanda, P.; Romero, L.; Sánchez-Jurado, P.M.; Martínez-Reig, M.; Gómez-Arnedo, L.; Alfonso, S.A. Frailty and mortality, disability and mobility loss in a Spanish cohort of older adults: The FRADEA Study. Maturitas 2013, 74, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Ensrud, K.E.; Ewing, S.K.; Taylor, B.C.; Fink, H.A.; Cawthon, P.M.; Stone, K.L.; Hillier, T.A.; Cauley, J.A.; Hochberg, M.C.; Rodondi, N.; et al. Comparison of 2 Frailty Indexes for Prediction of Falls, Disability, Fractures, and Death in Older Women. Arch. Intern. Med. 2008, 168, 382–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chittrakul, J.; Siviroj, P.; Sungkarat, S.; Sapbamrer, R. Physical Frailty and Fall Risk in Community-Dwelling Older Adults: A Cross-Sectional Study. J. Aging Res. 2020, 2020, 3964973. [Google Scholar] [CrossRef]
- Ramsey, K.A.; Meskers, C.G.M.; Trappenburg, M.C.; Verlaan, S.; Reijnierse, E.M.; Whittaker, A.C.; Maier, A.B. Malnutrition is associated with dynamic physical performance. Aging Clin. Exp. Res. 2020, 32, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.K.A.; Manaf, Z.A.; Yusoff, N.A.M.; Muhammad, N.A.; Phan, M.F.; Shahar, S. Correlation between nutritional status and comprehensive physical performance measures among older adults with undernourishment in residential institutions. Clin. Interv. Aging 2014, 9, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Lengelé, L.; Moehlinger, P.; Bruyère, O.; Locquet, M.; Reginster, J.-Y.; Beaudart, C. Association between Changes in Nutrient Intake and Changes in Muscle Strength and Physical Performance in the SarcoPhAge Cohort. Nutrients 2020, 12, 3485. [Google Scholar] [CrossRef]
- McLean, R.R.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; Sahni, S. Dietary Protein Intake Is Protective Against Loss of Grip Strength Among Older Adults in the Framingham Offspring Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Granic, A.; Mendonça, N.; Sayer, A.A.; Hill, T.R.; Davies, K.; Adamson, A.; Siervo, M.; Mathers, J.C.; Jagger, C. Low protein intake, muscle strength and physical performance in the very old: The Newcastle 85+ Study. Clin. Nutr. 2018, 37, 2260–2270. [Google Scholar] [CrossRef] [Green Version]
- Houston, D.K.; Tooze, J.A.; Neiberg, R.H.; Hausman, D.B.; Johnson, M.A.; Cauley, J.A.; Bauer, D.C.; Cawthon, P.M.; Shea, M.K.; Schwartz, G.G.; et al. 25-Hydroxyvitamin D Status and Change in Physical Performance and Strength in Older Adults: The Health, Aging, and Body Composition Study. Am. J. Epidemiol. 2012, 176, 1025–1034. [Google Scholar] [CrossRef]
- Houston, D.K.; Cesari, M.; Ferrucci, L.; Cherubini, A.; Maggio, D.; Bartali, B.; Johnson, M.A.; Schwartz, G.G.; Kritchevsky, S.B. Association between Vitamin D Status and Physical Performance: The InCHIANTI Study. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 440–446. [Google Scholar] [CrossRef]
- Beaudart, C.; Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.-Y.; Lengelé, L.; Bruyère, O. Malnutrition as a Strong Predictor of the Onset of Sarcopenia. Nutrients 2019, 11, 2883. [Google Scholar] [CrossRef] [Green Version]
- Gregorio, L.; Brindisi, J.; Kleppinger, A.; Sullivan, R.; Mangano, K.M.; Bihuniak, J.D.; Kenny, A.M.; Kerstetter, J.E.; Insogna, K.L. Adequate dietary protein is associated with better physical performance among post-menopausal women 60–90 years. J. Nutr. Health Aging 2014, 18, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Bartali, B.; Frongillo, E.A.; Stipanuk, M.H.; Bandinelli, S.; Salvini, S.; Palli, D.; Morais, J.A.; Volpato, S.; Guralnik, J.M.; Ferrucci, L. Protein Intake and Muscle Strength in Older Persons: Does Inflammation Matter? J. Am. Geriatr. Soc. 2012, 60, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B.; et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Tagawa, R.; Watanabe, D.; Ito, K.; Ueda, K.; Nakayama, K.; Sanbongi, C.; Miyachi, M. Dose–response relationship between protein intake and muscle mass increase: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2021, 79, 66–75. [Google Scholar] [CrossRef]
- Kimura, M.; Moriyasu, A.; Kumagai, S.; Furuna, T.; Akita, S.; Kimura, S.; Suzuki, T. Community-based intervention to improve dietary habits and promote physical activity among older adults: A cluster randomized trial. BMC Geriatr. 2013, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Hata, T.; Seino, S.; Tomine, Y.; Yokoyama, Y.; Nishi, M.; Narita, M.; Hida, A.; Shinkai, S.; Kitamura, A. The effects of the “Tabepo Check Sheet,” which lists 10 food groups, on the dietary variety of older adults in a metropolitan area. Nihon Koshu Eisei Zasshi 2021, 68, 477–492. [Google Scholar] [CrossRef]
- Okabe, Y.; Seki, A.; Miyake, Y.; Kumagai, S. Effects of the dietary program “SHIKKARITABE CheckSheet 12” to improve dietary variety on higher-level functional capacity among community-dwelling older individuals. Nihon Koshu Eisei Zasshi 2018, 65, 347–355. [Google Scholar] [CrossRef]
- Kimura, M.; Moriyasu, A.; Kumagai, S.; Furuna, T. Evaluation of the comprehensive health program “Sumida TAKE10!” for community-dwelling older adults, which aims to prevent or delay the need for long-term nursing care. Nihon Koshu Eisei Zasshi 2016, 63, 682–693. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Nishi, M.; Murayama, H.; Amano, H.; Taniguchi, Y.; Nofuji, Y.; Narita, M.; Matsuo, E.; Seino, S.; Kawano, Y.; et al. Association of dietary variety with body composition and physical function in community-dwelling elderly Japanese. J. Nutr. Health Aging 2016, 20, 691–696. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Nishi, M.; Murayama, H.; Amano, H.; Taniguchi, Y.; Nofuji, Y.; Narita, M.; Matsuo, E.; Seino, S.; Kawano, Y.; et al. Dietary variety and decline in lean mass and physical performance in community-dwelling older Japanese: A 4-year follow-up study. J. Nutr. Health Aging 2017, 21, 11–16. [Google Scholar] [CrossRef]
- Koyano, W.; Shibata, H.; Nakazato, K.; Haga, H.; Suyama, Y. Measurement of competence: Reliability and validity of the TMIG Index of Competence. Arch. Gerontol. Geriatr. 1991, 13, 103–116. [Google Scholar] [CrossRef]
- Takata, Y.; Ansai, T.; Akifusa, S.; Soh, I.; Sonoki, K.; Takehara, T. High-Level Functional Capacity and 4-Year Mortality in an 80-Year-Old Population. Gerontology 2007, 53, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Kitamura, A.; Nofuji, Y.; Ishizaki, T.; Seino, S.; Yokoyama, Y.; Shinozaki, T.; Murayama, H.; Mitsutake, S.; Amano, H.; et al. Association of Trajectories of Higher-Level Functional Capacity with Mortality and Medical and Long-Term Care Costs Among Community-Dwelling Older Japanese. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Kuh, D.; Hardy, R.; Mortality Review Group. FALCon and HALCyon study teams Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinkai, S.; Watanabe, S.; Kumagai, S.; Fujiwara, Y.; Amano, H.; Yoshida, H.; Ishizaki, T.; Yukawa, H.; Suzuki, T.; Shibata, H. Walking speed as a good predictor for the onset of functional dependence in a Japanese rural community population. Age Ageing 2000, 29, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohannon, R.W. Hand-Grip Dynamometry Predicts Future Outcomes in Aging Adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Koopman, R.; Van Loon, L.J.C. Aging, exercise, and muscle protein metabolism. J. Appl. Physiol. 2009, 106, 2040–2048. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; D’Angelo, E.; Sisto, A.; Marzetti, E. Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence. Nutrients 2016, 8, 295. [Google Scholar] [CrossRef]
- Deer, R.R.; Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A. Hertfordshire Cohort Study Group Diet and Its Relationship with Grip Strength in Community-Dwelling Older Men and Women: The Hertfordshire Cohort Study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef]
- Wei, K.; Nyunt, M.-S.-Z.; Gao, Q.; Wee, S.-L.; Yap, K.-B.; Ng, T.-P. Association of Frailty and Malnutrition With Long-term Functional and Mortality Outcomes Among Community-Dwelling Older Adults: Results From the Singapore Longitudinal Aging Study 1. JAMA Netw. Open 2018, 1, e180650. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiari, A.; Pourali, M.; Omidvar, S. Nutrition assessment and geriatric associated conditions among community dwelling Iranian elderly people. BMC Geriatr. 2020, 20, 278. [Google Scholar] [CrossRef]
- Han, K.; Wang, S.; Jia, W.; Cao, W.; Liu, M.; Yang, S.; Wang, J.; He, Y. Serum albumin and activities of daily living in Chinese centenarians: A cross-sectional study. BMC Geriatr. 2020, 20, 228. [Google Scholar] [CrossRef]
- Otsuka, R.; Kato, Y.; Nishita, Y.; Tange, C.; Nakamoto, M.; Tomida, M.; Imai, T.; Ando, F.; Shimokata, H.; Suzuki, T. Dietary diversity and 14-year decline in higher-level functional capacity among middle-aged and elderly Japanese. Nutrition 2016, 32, 784–789. [Google Scholar] [CrossRef]
- Kobayashi, M.; Sasazuki, S.; Shimazu, T.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Mizoue, T.; Tsugane, S. Association of dietary diversity with total mortality and major causes of mortality in the Japanese population: JPHC study. Eur. J. Clin. Nutr. 2020, 74, 54–66. [Google Scholar] [CrossRef]
- Tao, L.; Xie, Z.; Huang, T. Dietary diversity and all-cause mortality among Chinese adults aged 65 or older: A community-based cohort study. Asia Pac. J. Clin. Nutr 2020, 29, 152–160. [Google Scholar] [CrossRef]
- Otsuka, R.; Nishita, Y.; Tange, C.; Tomida, M.; Kato, Y.; Nakamoto, M.; Imai, T.; Ando, F.; Shimokata, H. Dietary diversity decreases the risk of cognitive decline among Japanese older adults. Geriatr. Gerontol. Int. 2017, 17, 937–944. [Google Scholar] [CrossRef]
- Yin, Z.; Fei, Z.; Qiu, C.; Brasher, M.S.; Kraus, V.B.; Zhao, W.; Shi, X.; Zeng, Y. Dietary diversity and cognitive function among elderly people: A population-based study. J. Nutr. Health Aging 2017, 21, 1089–1094. [Google Scholar] [CrossRef]
- Huang, W.-C.; Huang, Y.-C.; Lee, M.-S.; Chang, H.-Y.; Doong, J.-Y. Frailty Severity and Cognitive Impairment Associated with Dietary Diversity in Older Adults in Taiwan. Nutrients 2021, 13, 418. [Google Scholar] [CrossRef]
- Kiuchi, Y.; Makizako, H.; Nakai, Y.; Tomioka, K.; Taniguchi, Y.; Kimura, M.; Kanouchi, H.; Takenaka, T.; Kubozono, T.; Ohishi, M. The Association between Dietary Variety and Physical Frailty in Community-Dwelling Older Adults. Healthcare (Basel) 2021, 9, 32. [Google Scholar] [CrossRef]
- Halfon, M.; Phan, O.; Teta, D. Vitamin D: A Review on Its Effects on Muscle Strength, the Risk of Fall, and Frailty. BioMed Res. Int. 2015, 2015, 953241. [Google Scholar] [CrossRef] [Green Version]
- Marcos-Pérez, D.; Sánchez-Flores, M.; Proietti, S.; Bonassi, S.; Costa, S.; Teixeira, J.P.; Fernández-Tajes, J.; Pásaro, E.; Valdiglesias, V.; Laffon, B. Low Vitamin D Levels and Frailty Status in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2286. [Google Scholar] [CrossRef]
- Balboa-Castillo, T.; Struijk, E.A.; Lopez-Garcia, E.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillon, P. Low vitamin intake is associated with risk of frailty in older adults. Age Ageing 2018, 47, 872–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.; Cumming, R.G.; Naganathan, V.; Blyth, F.; Ribeiro, R.V.; Le Couteur, D.G.; Handelsman, D.J.; Waite, L.M.; Simpson, S.J.; Hirani, V. Prospective Associations Between Dietary Antioxidant Intake and Frailty in Older Australian Men: The Concord Health and Ageing in Men Project. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 348–356. [Google Scholar] [CrossRef]
- Kobayashi, S.; Suga, H.; Sasaki, S.; Three-generation Study of Women on Diets and Health Study Group. Diet with a combination of high protein and high total antioxidant capacity is strongly associated with low prevalence of frailty among old Japanese women: A multicenter cross-sectional study. Nutr. J. 2017, 16, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, T.; Yamamoto, K.; Yamasaki, K.; Hayashi, F.; Momoki, C.; Yasui, Y.; Ohfuji, S.; Fukushima, W.; Habu, D. Lower dietary variety is a relevant factor for malnutrition in older Japanese home-care recipients: A cross-sectional study. BMC Geriatr. 2019, 19, 197. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, Y.; Watanabe, M.; Sun, W.; Sugiura, Y.; Tsuda, Y.; Kimura, M.; Hayashida, I.; Kusabiraki, T.; Kono, K. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan. Arch. Gerontol. Geriatr. 2012, 55, e9–e13. [Google Scholar] [CrossRef]
- Moriya, S.; Tei, K.; Yamazaki, Y.; Hata, H.; Kitagawa, Y.; Inoue, N.; Miura, H. Relationships between higher-level functional capacity and dental health behaviors in community-dwelling older adults. Gerodontology 2013, 30, 133–140. [Google Scholar] [CrossRef]
- Kameyama, K.; Tsutou, A.; Fujino, H. The relationship between health-related quality of life and higher-level functional capacity in elderly women with mild cognitive impairment. J. Phys. Ther. Sci. 2016, 28, 1312–1317. [Google Scholar] [CrossRef]
- Wakayama, S.; Fujita, Y.; Fujii, K.; Sasaki, T.; Yuine, H.; Hotta, K. Skeletal Muscle Mass and Higher-Level Functional Capacity in Female Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 6692. [Google Scholar] [CrossRef]
- Tomioka, K.; Okamoto, N.; Kurumatani, N.; Hosoi, H. Association of Psychosocial Conditions, Oral Health, and Dietary Variety with Intellectual Activity in Older Community-Dwelling Japanese Adults. PLoS ONE 2015, 10, e0137656. [Google Scholar] [CrossRef]
FFS | Overall | Q1 (0–18) | Q2 (19–22) | Q3 (23–24) | Q4 (25–30) | p |
Variable | (n = 1185) | (n = 300) | (n = 353) | (n = 306) | (n = 226) | |
Women, n (%) | 1058 (89.3) | 251 (83.7) | 318 (90.1) | 280 (91.5) | 209 (92.5) | 0.001 |
Age (years) | 74.0 ± 5.5 | 73.8 ± 5.4 | 73.7 ± 5.6 | 73.9 ± 5.5 | 74.8 ± 5.3 | 0.095 |
Height (cm) | 151.9 ± 6.9 | 152.3 ± 7.3 | 152.1 ± 6.6 | 151.6 ± 6.5 | 151.3 ± 7.3 | 0.342 |
Weight (kg) | 53.4 ± 9.1 | 54.0 ± 9.5 | 53.7 ± 8.9 | 53.1 ± 8.6 | 52.7 ± 9.5 | 0.325 |
BMI (kg/m2) | 23.1 ± 3.5 | 23.3 ± 3.6 | 23.2 ± 3.4 | 23.1 ± 3.5 | 23.0 ± 3.4 | 0.795 |
Preexisting conditions | 616 (52.0) | 169 (55.4) | 183 (51.3) | 142 (46.0) | 128 (56.6) | 0.665 |
Exercise habits | 419 (35.4) | 87 (29.0) | 128 (36.3) | 119 (38.9) | 85 (37.6) | 0.062 * |
Fall incidence | 218 (18.4) | 70 (23.1) | 63 (17.7) | 50 (16.2) | 37 (16.4) | 0.033 |
PFFS | Q1 (0–9) | Q2 (10–11) | Q3 (12–13) | Q4 (14–15) | p | |
Variable | (n = 333) | (n = 335) | (n = 353) | (n = 164) | ||
Women, n (%) | 285 (85.6) | 301 (89.9) | 319 (90.4) | 153 (93.3) | 0.007 | |
Age (years) | 73.8 ± 5.5 | 73.7 ± 5.5 | 74.2 ± 5.3 | 74.5 ± 5.6 | 0.400 | |
Height (cm) | 151.9 ± 7.0 | 152.0 ± 6.8 | 151.9 ± 6.9 | 151.6 ± 7.0 | 0.940 | |
Weight (kg) | 53.9 ± 9.5 | 53.6 ± 8.3 | 53.2 ± 9.5 | 53.0 ± 9.1 | 0.632 | |
BMI (kg/m2) | 23.3 ± 3.6 | 23.2 ± 3.3 | 23.0 ± 3.6 | 23.0 ± 3.4 | 0.608 | |
Preexisting conditions | 265 (79.6) | 152(45.4) | 178 (50.4) | 43 (26.2) | <0.001 | |
Exercise habits | 101 (30.3) | 125 (37.3) | 126 (35.7) | 67 (40.9) | 0.115 * | |
Fall incidence | 78 (23.4) | 53 (15.8) | 65 (18.4) | 22 (13.4) | 0.016 | |
ex-PFFS | Q1 (0–9) | Q2 (10–11) | Q3 (12) | Q4 (13–15) | p | |
Variable | (n = 366) | (n = 341) | (n = 193) | (n = 285) | ||
Women, n (%) | 311 (85.0) | 307 (90.0) | 177 (91.7) | 263 (92.3) | 0.002 | |
Age (years) | 73.8 ± 5.4 | 73.6 ± 5.6 | 74.1 ± 5.3 | 74.5 ± 5.4 | 0.215 | |
Height (cm) | 152.3 ± 7.3 | 151.9 ± 6.3 | 151.3 ± 6.6 | 151.6 ± 7.3 | 0.367 | |
Weight (kg) | 53.9 ± 9.1 | 53.8 ± 9.3 | 52.5 ± 9.1 | 53.0 ± 9.0 | 0.228 | |
BMI (kg/m2) | 23.2 ± 3.5 | 23.3 ± 3.5 | 22.9 ± 3.7 | 23.0 ± 3.3 | 0.586 | |
Preexisting conditions | 191 (52.2) | 162 (47.5) | 72 (37.3) | 197 (69.1) | 0.001 | |
Exercise habits | 103 (28.1) | 135 (39.6) | 70 (36.3) | 111 (38.9) | 0.009 * | |
Fall incidence | 85 (23.2) | 51 (15.0) | 39 (20.2) | 43 (15.1) | 0.031 |
FFS | Q1 (0–18) | Q2 (19–22) | Q3 (23–25) | Q4 (26–30) | p * | p for Trend |
Variable | (n = 300) | (n = 353) | (n = 306) | (n =226) | ||
Usual gait speed (m/s) | 1.37 (0.01) b1 | 1.39 (0.01) | 1.41 (0.01) | 1.41 (0.01) b1 | 0.034 | 0.007 |
Maximum gait speed (m/s) | 1.79 (0.02) | 1.83 (0.01) | 1.84 (0.02) | 1.84 (0.02) | 0.060 | 0.092 |
HGS (kg) | 22.0 (0.2) | 22.4 (0.2) | 22.6 (0.2) | 22.8 (0.2) | 0.109 | 0.481 |
TUG(s) | 5.73 (0.07) | 5.65 (0.07) | 5.53 (0.07) | 5.50 (0.08) | 0.100 | 0.132 |
TMIG-IC | 11.58 (0.08) a1,a2,a3 | 12.17 (0.07) a1,b1 | 12.26 (0.07) a2 | 12.49 (0.09) a3,b1 | <0.001 | <0.001 |
IADL | 4.94 (0.02) | 4.94 (0.01) | 4.97 (0.02) | 4.95 (0.02) | 0.600 | 0.195 |
Intellectual activity | 3.49 (0.04) a1,a2,a3 | 3.73 (0.03) a1 | 3.76 (0.04) a2 | 3.81 (0.04) a3 | <0.001 | <0.001 |
Social roles | 3.17 (0.05) a1,a2,a3 | 3.49 (0.05) a1,b1 | 3.53 (0.05) a2 | 3.72 (0.06) a3,b1 | <0.001 | <0.001 |
PFFS | Q1 (0–9) | Q2 (10–11) | Q3 (12–13) | Q4 (14–15) | p * | p for Trend |
Variable | (n = 333) | (n = 335) | (n = 353) | (n = 164) | ||
Usual gait speed (m/s) | 1.36 (0.01) b1,b2 | 1.40 (0.01) | 1.42 (0.01) b1 | 1.40 (0.02) b2 | 0.003 | <0.001 |
Maximum gait speed (m/s) | 1.78 (0.02) b1,b2,b3 | 1.84 (0.01) b1 | 1.85 (0.01) b2 | 1.86 (0.02) b3 | 0.002 | 0.002 |
HGS (kg) | 21.9 (0.2) b1,b2 | 22.4 (0.2) | 22.7 (0.2) b1 | 23.0 (0.3) b 2 | 0.019 | 0.581 |
TUG (s) | 5.83 (0.07) b1,b2 | 5.57 (0.07) | 5.55 (0.07) b1 | 5.42 (0.10) b2 | 0.006 | 0.025 |
TMIG-IC | 11.69 (0.07) a1,a2,a3 | 12.19 (0.07) a1 | 12.26 (0.07) a2 | 12.42 (0.10) a3 | <0.001 | <0.001 |
IADL | 4.94 (0.04) | 4.96 (0.02) | 4.96 (0.01) | 4.95 (0.02) | 0.753 | 0.214 |
Intellectual Activity | 3.57 (0.04) a1,a2,a3 | 3.73 (0.03) a1 | 3.73 (0.03) a2 | 3.74 (0.05) a3 | 0.002 | <0.001 |
Social Roles | 3.18 (0.05) a1,a2,a3 | 3.50 (0.05) a1,b1 | 3.57 (0.05) a2 | 3.73 (0.07) a3,b1 | <0.001 | <0.001 |
ex-PFFS | Q1 (0–9) | Q2 (10–11) | Q3 (12) | Q4 (13–15) | p * | p for Trend |
Variable | (n = 366) | (n = 341) | (n = 193) | (n = 285) | ||
Usual gait speed (m/s) | 1.38 (0.01) | 1.38 (0.01) | 1.40 (0.02) | 1.42 (0.01) | 0.093 | 0.245 |
Maximum gait speed (m/s) | 1.81 (0.01) | 1.84 (0.02) | 1.82 (0.02) | 1.85 (0.02) | 0.281 | 0.837 |
HGS (kg) | 22.1 (0.2) | 22.6 (0.2) | 22.3 (0.3) | 22.8 (0.2) | 0.106 | 0.171 |
TUG (s) | 5.66 (0.06) | 5.69 (0.07) | 5.53 (0.09) | 5.53 (0.08) | 0.289 | 0.430 |
TMIG-IC | 11.70 (0.07) a1,a2,a3 | 12.13 (0.07) a1,b1 | 12.27 (0.09) a2 | 12.47 (0.08) a3,b1 | <0.001 | <0.001 |
IADL | 4.95 (0.01) | 4.94 (0.02) | 4.97 (0.02) | 4.96 (0.02) | 0.689 | 0.331 |
Intellectual Activity | 3.51 (0.03) a1,a2,a3 | 3.71 (0.03) a1 | 3.79 (0.05) a2 | 3.83 (0.04) a3 | <0.001 | <0.001 |
Social Roles | 3.23 (0.05) a1,a2,a3 | 3.49 (0.05) a1,b1 | 3.50 (0.06) a2 | 3.70 (0.05) a3,b1 | <0.001 | <0.001 |
Usual Gait Speed (m/s) | Maximum Gait Speed (m/s) | HGS (kg) | TUG (s) | TMIG-IC (Point) | IADL (Point) | Intellectual Activity (Point) | Social Roles (Point) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p |
FFS | 0.106 (0.001) | <0.001 | 0.101 (0.002) | <0.001 | 0.064 (0.240) | 0.004 | −0.091 (0.008) | 0.002 | 0.272 (0.008) | <0.001 | 0.036 (0.002) | 0.218 | 0.237 (0.004) | <0.001 | 0.235 (0.006) | <0.001 |
PFFS | 0.100 (0.002) | <0.001 | 0.123 (0.003) | <0.001 | 0.069 (0.045) | 0.003 | −0.112 (0.015) | <0.001 | 0.216 (0.016) | <0.001 | 0.007 (0.003) | 0.807 | 0.159 (0.008) | <0.001 | 0.213 (0.011) | <0.001 |
ex-PFFS | 0.078 (0.002) | 0.003 | 0.062 (0.003) | 0.022 | 0.048 (0.043) | 0.032 | −0.050 (0.014) | 0.088 | 0.253 (0.015) | <0.001 | 0.044 (0.003) | 0.132 | 0.244 (0.007) | <0.001 | 0.198 (0.010) | <0.001 |
Usual Gait Speed (m/s) | Maximum Gait Speed (m/s) | HGS (kg) | TUG (s) | |||||
---|---|---|---|---|---|---|---|---|
Model 2 | β (SE) | p | β (SE) | p | β (SE) | p | β (SE) | p |
FFS | 0.068 (0.001) | 0.013 | 0.062 (0.001) | 0.022 | 0.039 (0.025) | 0.092 | −0.066 (0.008) | 0.008 |
PFFS | 0.074 (0.002) | 0.002 | 0.106 (0.003) | <0.001 | 0.049 (0.046) | 0.041 | −0.101 (0.015) | 0.001 |
ex-PFFS | 0.040 (0.002) | 0.142 | 0.036 (0.003) | 0.200 | 0.025 (0.044) | 0.275 | −0.022 (0.014) | 0.465 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, M.; Moriyasu, A.; Makizako, H. Positive Association between High Protein Food Intake Frequency and Physical Performance and Higher-Level Functional Capacity in Daily Life. Nutrients 2022, 14, 72. https://doi.org/10.3390/nu14010072
Kimura M, Moriyasu A, Makizako H. Positive Association between High Protein Food Intake Frequency and Physical Performance and Higher-Level Functional Capacity in Daily Life. Nutrients. 2022; 14(1):72. https://doi.org/10.3390/nu14010072
Chicago/Turabian StyleKimura, Mika, Ai Moriyasu, and Hyuma Makizako. 2022. "Positive Association between High Protein Food Intake Frequency and Physical Performance and Higher-Level Functional Capacity in Daily Life" Nutrients 14, no. 1: 72. https://doi.org/10.3390/nu14010072
APA StyleKimura, M., Moriyasu, A., & Makizako, H. (2022). Positive Association between High Protein Food Intake Frequency and Physical Performance and Higher-Level Functional Capacity in Daily Life. Nutrients, 14(1), 72. https://doi.org/10.3390/nu14010072