Total Fatty Acid and Polar Lipid Species Composition of Human Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Data Treatment
2.3. Data Analysis
3. Results
3.1. Association of Concentrations and Composition of Choline-Containing PL Subclasses and Total FAs
3.2. Associations of Total FAs with Choline-Containing PL Species
4. Discussion
Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Prell, C.; Koletzko, B. Breastfeeding and Complementary Feeding. Dtsch. Arztebl. Int. 2016, 113, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; et al. Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar] [CrossRef] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.; Franca, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2016, 69 (Suppl. 2), 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaelsen, K.F.; Skafte, L.; Badsberg, J.H.; Jørgensen, M. Variation in macronutrients in human bank milk: Influencing factors and implications for human milk banking. J. Pediatr. Gastroenterol. Nutr. 1990, 11, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Cauty, C.; Guyomarc’h, F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. Eur. J. Lipid Sci. Technol. 2019, 121, 1800201. [Google Scholar] [CrossRef] [Green Version]
- German, J.B.; Argov-Argaman, N.; Boyd, B.J. Milk Lipids: A Complex Nutrient Delivery System. Nestle Nutr. Inst. Workshop Ser. 2019, 90, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Rodriguez-Palmero, M. Polyunsaturated fatty acids in human milk and their role in early infant development. J. Mammary Gland Biol. Neoplasia 1999, 4, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, I.; Fontannaz, P.; Lee, L.Y.; Giuffrida, F. Quantification of glycerophospholipids and sphingomyelin in human milk and infant formula by high performance liquid chromatography coupled with mass spectrometer detector. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1072, 235–243. [Google Scholar] [CrossRef]
- Timby, N.; Domellof, E.; Hernell, O.; Lonnerdal, B.; Domellof, M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 860–868. [Google Scholar] [CrossRef] [Green Version]
- Dei Cas, M.; Paroni, R.; Signorelli, P.; Mirarchi, A.; Cerquiglini, L.; Troiani, S.; Cataldi, S.; Codini, M.; Beccari, T.; Ghidoni, R.; et al. Human breast milk as source of sphingolipids for newborns: Comparison with infant formulas and commercial cow’s milk. J. Transl. Med. 2020, 18, 481. [Google Scholar] [CrossRef]
- Contarini, G.; Povolo, M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef] [Green Version]
- Nagan, N.; Zoeller, R.A. Plasmalogens: Biosynthesis and functions. Prog. Lipid Res. 2001, 40, 199–229. [Google Scholar] [CrossRef]
- Zou, X.-Q.; Guo, Z.; Huang, J.-H.; Jin, Q.-Z.; Cheong, L.-Z.; Wang, X.-G.; Xu, X.-B. Human Milk Fat Globules from Different Stages of Lactation: A Lipid Composition Analysis and Microstructure Characterization. J. Agric. Food Chem. 2012, 60, 7158–7167. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.M.; Lodhi, I.J. Structural and functional roles of ether lipids. Protein Cell 2018, 9, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Bouhours, J.-F.; Bouhours, D. Ceramide structure of sphingomyelin from human milk fat globule membrane. Lipids 1981, 16, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: From synthesis to breakdown. Adv. Exp. Med. Biol. 2010, 688, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Larson, B.L.; Smith, V.R. Lactation. A Comprehensive Treatise. Biosynthesis and Secretion of Milk/Diseases; Academic Press: Cambridge, MA, USA, 1974; Volume 2. [Google Scholar]
- Garton, G.A. The composition and biosynthesis of milk lipids. J. Lipid Res. 1963, 4, 237–254. [Google Scholar] [CrossRef]
- Thompson, B.J.; Smith, S. Biosynthesis of fatty acids by lactating human breast epithelial cells: An evaluation of the contribution to the overall composition of human milk fat. Pediatr. Res. 1985, 19, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, M.; Amate, L.; Gil, A. Absorption and distribution of dietary fatty acids from different sources. Early Hum. Dev. 2001, 65 (Suppl. 2), S95–S101. [Google Scholar] [CrossRef]
- Bitman, J.; Wood, D.L. Changes in Milk Fat Phospholipids During Lactation. J. Dairy Sci. 1990, 73, 1208–1216. [Google Scholar] [CrossRef]
- Fauquant, C.; Briard-Bion, V.; Leconte, N.; Michalski, M.-C. Differently sized native milk fat globules separated by microfiltration: Fatty acid composition of the milk fat globule membrane and triglyceride core. Eur. J. Lipid Sci. Technol. 2005, 107, 80–86. [Google Scholar] [CrossRef]
- Dewettinck, K.; Rombaut, R.; Thienpont, N.; Le, T.T.; Messens, K.; van Camp, J. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 2008, 18, 436–457. [Google Scholar] [CrossRef]
- Wang, L.; Shimizu, Y.; Kaneko, S.; Hanaka, S.; Abe, T.; Shimasaki, H.; Hisaki, H.; Nakajima, H. Comparison of the fatty acid composition of total lipids and phospholipids in breast milk from Japanese women. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2000, 42, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Miliku, K.; Duan, Q.L.; Moraes, T.J.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; Subbarao, P.; Field, C.J.; et al. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD Cohort Study. Am. J. Clin. Nutr. 2019, 110, 1370–1383. [Google Scholar] [CrossRef] [PubMed]
- Mesilati-Stahy, R.; Mida, K.; Argov-Argaman, N. Size-Dependent Lipid Content of Bovine Milk Fat Globule and Membrane Phospholipids. J. Agric. Food Chem. 2011, 59, 7427–7435. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Briard-Bion, V.; Ménard, O.; Beaucher, E.; Rousseau, F.; Fauquant, J.; Leconte, N.; Robert, B. Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chem. 2011, 125, 355–368. [Google Scholar] [CrossRef]
- Eggesbø, M.; Stigum, H.; Longnecker, M.P.; Polder, A.; Aldrin, M.; Basso, O.; Thomsen, C.; Skaare, J.U.; Becher, G.; Magnus, P. Levels of hexachlorobenzene (HCB) in breast milk in relation to birth weight in a Norwegian cohort. Environ. Res. 2009, 109, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggesbø, M.; Thomsen, C.; Jørgensen, J.V.; Becher, G.; Odland, J.; Longnecker, M.P. Associations between brominated flame retardants in human milk and thyroid-stimulating hormone (TSH) in neonates. Environ. Res. 2011, 111, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Lenters, V.; Iszatt, N.; Forns, J.; Čechová, E.; Kočan, A.; Legler, J.; Leonards, P.; Stigum, H.; Eggesbø, M. Early-life exposure to persistent organic pollutants (OCPs, PBDEs, PCBs, PFASs) and attention-deficit/hyperactivity disorder: A multi-pollutant analysis of a Norwegian birth cohort. Environ. Int. 2019, 125, 33–42. [Google Scholar] [CrossRef]
- Stimming, M.; Mesch, C.M.; Kersting, M.; Kalhoff, H.; Demmelmair, H.; Koletzko, B.; Schmidt, A.; Böhm, V.; Libuda, L. Vitamin E content and estimated need in German infant and follow-on formulas with and without long-chain polyunsaturated fatty acids (LC-PUFA) enrichment. J. Agric. Food Chem. 2014, 62, 10153–10161. [Google Scholar] [CrossRef]
- Rauschert, S.; Uhl, O.; Koletzko, B.; Kirchberg, F.; Mori, T.A.; Huang, R.C.; Beilin, L.J.; Hellmuth, C.; Oddy, W.H. Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults. J. Clin. Endocrinol. Metab. 2016, 101, 871–879. [Google Scholar] [CrossRef]
- Hellmuth, C.; Uhl, O.; Demmelmair, H.; Grunewald, M.; Auricchio, R.; Castillejo, G.; Korponay-Szabo, I.R.; Polanco, I.; Roca, M.; Vriezinga, S.L.; et al. The impact of human breast milk components on the infant metabolism. PLoS ONE 2018, 13, e0197713. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Varamini, B.; Jensen, R.G.; Diersen-Schade, D.A.; Boettcher, J.A.; Arterburn, L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007, 85, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- McGuire, M.; O’Connor, L.D. Human Milk: Sampling and Measurement of Energy-Yielding Nutrients and Other Macromolecules; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Sampath, H.; Ntambi, J.M. The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Ann. N. Y. Acad. Sci. 2011, 1243, 47–53. [Google Scholar] [CrossRef]
- Brevik, A.; Veierød, M.B.; Drevon, C.A.; Andersen, L.F. Evaluation of the odd fatty acids 15:0 and 17:0 in serum and adipose tissue as markers of intake of milk and dairy fat. Eur. J. Clin. Nutr. 2005, 59, 1417–1422. [Google Scholar] [CrossRef] [PubMed]
- Weitkunat, K.; Schumann, S.; Nickel, D.; Hornemann, S.; Petzke, K.J.; Schulze, M.B.; Pfeiffer, A.F.; Klaus, S. Odd-chain fatty acids as a biomarker for dietary fiber intake: A novel pathway for endogenous production from propionate. Am. J. Clin. Nutr. 2017, 105, 1544–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilla, A.; Diego Quintaes, K.; Barberá, R.; Alegría, A. Phospholipids in Human Milk and Infant Formulas: Benefits and Needs for Correct Infant Nutrition. Crit. Rev. Food Sci. Nutr. 2016, 56, 1880–1892. [Google Scholar] [CrossRef] [PubMed]
- Argov-Argaman, N. Symposium review: Milk fat globule size: Practical implications and metabolic regulation. J. Dairy Sci. 2019, 102, 2783–2795. [Google Scholar] [CrossRef] [Green Version]
- Selvalatchmanan, J.; Rukmini, A.V.; Ji, S.; Triebl, A.; Gao, L.; Bendt, A.K.; Wenk, M.R.; Gooley, J.J.; Torta, F. Variability of Lipids in Human Milk. Metabolites 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Smoczyński, M. Role of Phospholipid Flux during Milk Secretion in the Mammary Gland. J. Mammary Gland Biol. Neoplasia 2017, 22, 117–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, B.Y.; Ma, L.; MacGibbon, A.K.H. Lactational changes in phospholipid classes and molecular species concentration in human milk. Int. Dairy J. 2020, 111, 104830. [Google Scholar] [CrossRef]
- Blaas, N.; Schüürmann, C.; Bartke, N.; Stahl, B.; Humpf, H.-U. Structural Profiling and Quantification of Sphingomyelin in Human Breast Milk by HPLC-MS/MS. J. Agric. Food Chem. 2011, 59, 6018–6024. [Google Scholar] [CrossRef]
- Stals, H.K.; Mannaerts, G.P.; Declercq, P.E. Factors influencing triacylglycerol synthesis in permeabilized rat hepatocytes. Biochem. J. 1992, 283, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Thiel, I.; Abiodun, P.O. The fatty acid composition of human milk in Europe and Africa. J. Pediatr. 1992, 120, S62–S70. [Google Scholar] [CrossRef]
- Fidler, N.; Sauerwald, T.; Pohl, A.; Demmelmair, H.; Koletzko, B. Docosahexaenoic acid transfer into human milk after dietary supplementation: A randomized clinical trial. J. Lipid Res. 2000, 41, 1376–1383. [Google Scholar] [CrossRef]
- Yuhas, R.; Pramuk, K.; Lien, E.L. Human milk fatty acid composition from nine countries varies most in DHA. Lipids 2006, 41, 851–858. [Google Scholar] [CrossRef]
- Bravi, F.; Wiens, F.; Decarli, A.; dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [Green Version]
- Wijendran, V.; Huang, M.C.; Diau, G.Y.; Boehm, G.; Nathanielsz, P.W.; Brenna, J.T. Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in baboon neonates. Pediatr. Res. 2002, 51, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Bartke, N.; van Daele, H.; Lawrence, P.; Qin, X.; Park, H.G.; Kothapalli, K.; Windust, A.; Bindels, J.; Wang, Z.; et al. Higher efficacy of dietary DHA provided as a phospholipid than as a triglyceride for brain DHA accretion in neonatal piglets. J. Lipid Res. 2014, 55, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nessel, I.; Khashu, M.; Dyall, S.C. The effects of storage conditions on long:chain polyunsaturated fatty acids, lipid mediators, and antioxidants in donor human milk—A review. Prostaglandins Leukot. Essent. Fat. Acids 2019, 149, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Cheng, J.; Yang, J.; Chen, C.; Jin, Q.Z.; Song, J.; Wang, X.G. Phospholipid composition and fat globule structure change during low temperature storage of human milk. LWT-Food Sci. Technol. 2021, 150, 112050. [Google Scholar] [CrossRef]
FA | Total Sample (n = 664) | Lowest FA Quartile (n = 166) | Highest FA Quartile (n = 166) | p-Value |
---|---|---|---|---|
Total fatty acid (FA) content (g/L) | 24.57 ± 8.60 | 14.59 ± 3.17 | 35.87 ± 6.08 | 2.85 × 10−110 |
Saturated FAs Caprylic acid (C8:0) | 0.34 ± 0.08 | 0.40 ± 0.10 | 0.29 ± 0.06 | 1.20 × 10−23 |
Capric acid (C10:0) | 1.63 ± 0.35 | 1.68 ± 0.37 | 1.58 ± 0.30 | 0.008 |
Lauric acid (C12:0) | 5.93 ± 1.65 | 5.99 ± 1.71 | 5.80 ± 1.53 | 0.273 |
Tridecanoic acid (C13:0) | 0.11 ± 0.03 | 0.15 ± 0.05 | 0.08 ± 0.02 | 8.34 × 10−39 |
Myristic acid (C14:0) | 6.00 ± 1.39 | 6.07 ± 1.59 | 5.92 ± 1.30 | 0.355 |
Pentadecanoic acid (C15:0) | 0.36 ± 0.09 | 0.38 ± 0.11 | 0.34 ± 0.08 | 0.001 |
Palmitic acid (C16:0) | 23.00 ± 1.64 | 22.91 ± 1.80 | 23.17 ± 1.50 | 0.155 |
Margaric acid (C17:0) | 0.31 ± 0.04 | 0.30 ± 0.04 | 0.31 ± 0.05 | 0.022 |
Stearic acid (C18:0) | 9.09 ± 1.30 | 9.22 ± 1.22 | 8.94 ± 1.16 | 0.029 |
Behenic acid (C22:0) | 0.15 ± 0.04 | 0.16 ± 0.05 | 0.13 ± 0.02 | 2.11 × 10−9 |
Monounsaturated FAs | ||||
Myristoleic acid (C14:1n-5) | 0.25 ± 0.06 | 0.24 ± 0.07 | 0.26 ± 0.05 | 2.71 × 10−4 |
Pentadecenoic acid (C15:1n-5) | 0.08 ± 0.02 | 0.08 ± 0.02 | 0.08 ± 0.02 | 0.850 |
Palmitoleic acid (C16:1n-7) | 2.48 ± 0.64 | 2.40 ± 0.61 | 2.66 ± 0.64 | 1.37 × 10−4 |
Vaccenic acid (C18:1n-7) | 1.65 ± 0.22 | 1.66 ± 0.23 | 1.65 ± 0.22 | 0.510 |
Oleic acid (C18:1n-9) | 31.85 ± 2.50 | 31.52 ± 2.45 | 32.28 ± 2.39 | 0.005 |
Eicosenoic acid (C20:1n-9) | 0.46 ± 0.09 | 0.48 ± 0.12 | 0.44 ± 0.08 | 0.004 |
Polyunsaturated FAs | ||||
Mead acid (C20:3n-9) | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.084 |
n-6PUFA | ||||
Linoleic acid (C18:2n-6) | 12.48 ± 2.55 | 12.47 ± 2.61 | 12.27 ± 2.63 | 0.473 |
Gamma-Linolenic acid (C18:3n-6) | 0.13 ± 0.03 | 0.12 ± 0.03 | 0.13 ± 0.04 | 0.024 |
Eicosadienoic acid (C20:2n-6) | 0.49 ± 0.15 | 0.49 ± 0.17 | 0.49 ± 0.14 | 0.964 |
Dihomo-gamma-linolenic acid (C20:3n-6) | 0.35 ± 0.08 | 0.34 ± 0.08 | 0.36 ± 0.08 | 0.180 |
Arachidonic acid (C20:4n-6) | 0.36 ± 0.07 | 0.36 ± 0.07 | 0.37 ± 0.07 | 0.432 |
Adrenic acid (C22:4n-6) | 0.07 ± 0.03 | 0.07 ± 0.04 | 0.07 ± 0.018 | 0.527 |
Osbond acid (C22:5n-6) | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.054 |
n-3PUFA | ||||
Alpha-Linolenic acid (C18:3n-3) | 1.07 ± 0.29 | 1.07 ± 0.31 | 1.03 ± 0.29 | 0.194 |
Eicosatrienoic acid (C20:3n-3) | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.050 |
Eicosapentaenoic acid (C20:5n-3) | 0.10 ± 0.07 | 0.11 ± 0.08 | 0.09 ± 0.07 | 0.030 |
Clupanodonic acid (C22:5n-3) | 0.17 ± 0.06 | 0.17 ± 0.06 | 0.16 ± 0.05 | 0.061 |
Docosahexaenoic acid (C22:6n-3) | 0.39 ± 0.21 | 0.42 ± 0.24 | 0.36 ± 0.19 | 0.013 |
Concentrations | Percentages | |||||
---|---|---|---|---|---|---|
FAs | Lyso-PC | PC | SM | %Lyso-PC | %PC | %SM |
Caprylic acid (C8:0) | 0.473 * | 0.585 * | 0.605 * | −0.026 | −0.089 | 0.090 |
Capric acid (C10:0) | 0.506 * | 0.623 * | 0.646 * | 0.041 | 0.039 | −0.047 |
Lauric acid (C12:0) | 0.464 * | 0.551 * | 0.614 * | 0.020 | −0.040 | 0.032 |
Tridecanoic acid (C13:0) | 0.259 * | 0.383 * | 0.425 * | −0.170 * | −0.219 * | 0.248 * |
Myristic acid (C14:0) | 0.495 * | 0.591 * | 0.640 * | 0.030 | −0.038 | 0.028 |
Pentadecanoic acid (C15:0) | 0.386 * | 0.524 * | 0.517 * | −0.051 | 0.023 | 0.035 |
Palmitic acid (C16:0) | 0.491 * | 0.632 * | 0.638 * | −0.005 | 0.076 | −0.070 |
Margaric acid (C17:0) | 0.451 * | 0.588 * | 0.595 * | −0.001 | 0.006 | −0.005 |
Stearic acid (C18:0) | 0.460 * | 0.564 * | 0.599 * | −0.009 | −0.121 | 0.115 |
Behenic acid (C22:0) | 0.423 * | 0.471 * | 0.549 * | −0.035 | −0.206 * | 0.201 * |
Oleic acid (C18:1n-9) | 0.485 * | 0.615 * | 0.620 * | 0.063 | 0.072 | −0.084 |
Linoleic acid (C18:2n-6) | 0.383 * | 0.501 * | 0.530 * | −0.085 | −0.052 | 0.070 |
Alpha-Linolenic acid (C18:3n-3) | 0.350 * | 0.432 * | 0.463 * | −0.009 | −0.063 | 0.061 |
Mead acid (C20:3n-9) | 0.386 * | 0.520 * | 0.517 * | −0.024 | 0.022 | −0.014 |
Dihomo-gamma-linolenic acid (C20:3n-6) | 0.445 * | 0.591 * | 0.616 * | −0.028 | 0.051 | −0.041 |
Arachidonic acid (C20:4n-6) | 0.444 * | 0.611 * | 0.596 * | −0.051 | 0.099 | −0.079 |
Adrenic acid (C22:4n-6) | 0.375 * | 0.507 * | 0.533 * | −0.057 | −0.026 | −0.039 |
Osbond acid (C22:5n-6) | 0.201 * | 0.373 * | 0.325 * | −0.123 | 0.001 | 0.031 |
Eicosatrienoic acid (C20:3n-3) | 0.433 * | 0.524 * | 0.559 * | 0.014 | −0.056 | 0.048 |
Eicosapentaenoic acid (C20:5n-3) | 0.174 * | 0.282 * | 0.197 * | −0.023 | 0.040 | −0.031 |
Clupanodonic acid (C22:5n-3) | 0.344 * | 0.465 * | 0.410 * | 0.007 | 0.036 | −0.035 |
Docosahexaenoic acid (C22:6n-3) | 0.262 * | 0.369 * | 0.280 * | 0.019 | 0.063 | −0.064 |
Total FA | 0.509 * | 0.645 * | 0.663 * | ---- | ---- | ---- |
%FAs | %PCs | r |
---|---|---|
Saturated FAs | ||
C16:0 | PCaa.C32:0 (16:0/16:0) | 0.272 * |
C18:0 | PCaa.C36:0 (18:0/18:0) | 0.170 * |
Monounsaturated FAs | ||
C16:1n-7 | PCaa.C32:1 (16:0/16:1) | 0.429 * |
C18:1 | PCaa.C34:1 (16:0/18:1) | 0.243 * |
C20:1n-9 | PCaa.C40:1 (20:0/20:1) | 0.268 * |
Essential FAs | ||
C18:2n-6 | PCaa.C34:2 (16:0/18:2) | 0.032 |
C18:2n-6 | PCaa.C36:2 (18:0/18:2) | 0.092 |
C18:3 | PCaa.C34:3 (16:0/18:3) | 0.097 |
C18:3 | PCaa.C36:3 (18:0/18:3) | −0.045 |
Long-chain polyunsaturated FAs (LCPUFAs) | ||
C20:4n-6 | PCaa.C38:4 (18:0/20:4) | 0.411 * |
C20:4n-6 | PCaa.C40:4 (20:0/20:4) | 0.138 * |
C20:5n-3 | PCaa.C36:5 (16:0/20:5) | 0.541 * |
C20:5n-3 | PCaa.C38:5 (18:0/20:5) | 0.301 * |
C22:6n-3 | PCaa.C38:6 (16:0/22:6) | 0.248 * |
C22:6n-3 | PCaa.C40:6 (18:0/22:6) | 0.379 * |
%FAs | %SM | r |
---|---|---|
Saturated FAs | ||
C15:0 | SM.C33:1 | 0.202 * |
C16:0 | SM.C34:1 | 0.108 |
C17:0 | SM.C35:1 | 0.435 * |
C18:0 | SM.C36:1 | 0.226 * |
C22:0 | SM.C40:1 | 0.208 * |
Unsaturated FAs | ||
C16:1n-7 | SM.C34:2 | 0.115 |
C18:1 | SM.C36:2 | 0.223 * |
C18:2n-6 | SM.C36:3 | −0.149 |
C20:1n-9 | SM.C38:2 | −0.058 |
C20:2n-6 | SM.C38:3 | −0.084 |
C22:5 | SM.C40:6 | −0.011 |
Dependent Variable (%PCs) | Independent Variable (%FAs) | R² | B (95%CI) | β | p-Value |
---|---|---|---|---|---|
%PCaa.C36:4 | 0.018 | ||||
%C16:0 | 0.003 (−0.004–0.009) | 0.034 | 0.381 | ||
%C20:4n-6 | 0.259 (0.111–0.406) | 0.133 | 0.001 | ||
%PCaa.C38:4 | 0.174 | ||||
%C18:0 | −0.008 (−0.016–0.000) | −0.074 | 0.041 | ||
%C20:4n-6 | 0.785 (0.643–0.926) | 0.395 | 1.63 × 10−25 | ||
%PCaa.C36:5 | 0.301 | ||||
%C16:0 | 0.001 (0.000–0.001) | 0.092 | 0.005 | ||
%C20:5n-3 | 0.091 (0.080–0.101) | 0.543 | 1.53 × 10−5 | ||
%PCaa.C38:5 | 0.095 | ||||
%C18:0 | −0.004 (−0.008–0.000) | −0.006 | 0.007 | ||
%C20:5n-3 | 0.299 (0.225–0.373) | 0.295 | 9.29 × 10−15 | ||
%PCaa.C38:6 | 0.063 | ||||
%C16:0 | 0.001 (−0.001–0.003) | 0.039 | 0.298 | ||
%C22:6n-3 | 0.055 (0.039–0.072) | 0.250 | 7.02 × 10−11 | ||
%PCaa.C40:6 | 0.148 | ||||
%C18:0 | −0.003 (−0.007–0.000) | −0.068 | 0.062 | ||
%C22:6n-3 | 0.112 (0.091–0.134) | 0.370 | 8.48 × 10−23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, T.B.; Eggesbø, M.; Criswell, R.; Uhl, O.; Demmelmair, H.; Koletzko, B. Total Fatty Acid and Polar Lipid Species Composition of Human Milk. Nutrients 2022, 14, 158. https://doi.org/10.3390/nu14010158
Ahmed TB, Eggesbø M, Criswell R, Uhl O, Demmelmair H, Koletzko B. Total Fatty Acid and Polar Lipid Species Composition of Human Milk. Nutrients. 2022; 14(1):158. https://doi.org/10.3390/nu14010158
Chicago/Turabian StyleAhmed, Talat Bashir, Merete Eggesbø, Rachel Criswell, Olaf Uhl, Hans Demmelmair, and Berthold Koletzko. 2022. "Total Fatty Acid and Polar Lipid Species Composition of Human Milk" Nutrients 14, no. 1: 158. https://doi.org/10.3390/nu14010158
APA StyleAhmed, T. B., Eggesbø, M., Criswell, R., Uhl, O., Demmelmair, H., & Koletzko, B. (2022). Total Fatty Acid and Polar Lipid Species Composition of Human Milk. Nutrients, 14(1), 158. https://doi.org/10.3390/nu14010158