Estimating Dietary Intake from Grocery Shopping Data—A Comparative Validation of Relevant Indicators in Switzerland
Abstract
:1. Introduction
1.1. Conventional Diet Monitoring Approaches
1.2. Digital Receipts
1.3. Proposed Food Shopping Quality Indicators
2. Materials and Methods
2.1. Digital Receipt Integration
2.2. Food Composition Database
2.3. Food Frequency Questionnaire
2.4. Study Participants
2.5. Validation and Comparison of Food Shopping Quality Indicators
3. Results
3.1. Calibration Capacity: Correlations between Food Shopping Quality Indicators and Nutritional Facts
3.2. Discrimination Capacity: Comparisons of Nutritional Facts across Compliance Tertiles
4. Discussion
4.1. Summary
4.2. Contribution
4.3. Limitations
4.4. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
API | Application Programming Interface |
BAM | BitsaboutMe |
B2C | Business2Consumer |
CHF | Swiss franc |
EFSA | European Food Safety Authority |
ETH Zurich | Swiss Federal Institute of Technology in Zurich |
FFQ | Food Frequency Questionnaire |
FSA-NPS DI | Food Standards Agency Nutrient Profiling System Dietary Index |
GDPR | General Data Protection Regulation |
GPQI | Grocery Purchase Quality Index-2016 |
GTIN | Global Trade Item Number |
HEI-2010 | Healthy Eating Index-2010 |
HEI-2015 | Healthy Eating Index-2015 |
HETI | Healthy Trolley Index |
HPI | Healthy Purchase Index |
kcal | kilocalories |
kJ | kilojoules |
UK | United Kingdom |
US | United States |
USD | United States dollar |
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Hales, C.M.; Fryar, C.D.; Carroll, M.D.; Freedman, D.S.; Ogden, C.L. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007–2008 to 2015–2016. JAMA 2018, 319, 1723–1725. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Praveen, P.A.; Amarchand, R.; Ramakrishnan, L.; Gupta, R.; Kondal, D.; Singh, K.; Sharma, M.; Shukla, D.K.; Tandon, N.; et al. Changes in hypertension prevalence, awareness, treatment and control rates over 20 years in National Capital Region of India: Results from a repeat cross-sectional study. BMJ Open 2017, 7, e015639. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Hawkes, C.; Harris, J.; Gillespie, S. Changing diets: Urbanization and the nutrition transition. In IFPRI Book Chapters; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2017; pp. 34–41. [Google Scholar] [CrossRef] [Green Version]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in Chinese children and adolescents: Data from China Health and Nutrition Survey (CHNS). Nutr. J. 2018, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Taylor, A.W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clin. Nutr. 2018, 37, 276–284. [Google Scholar] [CrossRef]
- Riddle, M.C.; Herman, W.H. The cost of diabetes care—An elephant in the room. Diabetes Care 2018, 41, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, K.; Haldimann, M.; Vuckovac, D.; Ilic, A. Automation of Data Collection Techniques for Recording Food Intake: A Review of Publicly Available and Well-Adopted Diet Apps. In Proceedings of the 9th International Conference on Information and Communication Technology Convergence, ICT Convergence Powered by Smart Intelligence, Jeju, Korea, 17–19 October 2018; pp. 58–65. [Google Scholar] [CrossRef]
- Fallaize, R.; Forster, H.; Macready, A.L.; Walsh, M.C.; Mathers, J.C.; Brennan, L.; Gibney, E.R.; Gibney, M.J.; Lovegrove, J.A. Online dietary intake estimation: Reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J. Med. Internet Res. 2014, 16, e190. [Google Scholar] [CrossRef]
- Geelen, A.; Souverein, O.W.; Busstra, M.C.; de Vries, J.H.; van‘t Veer, P. Comparison of approaches to correct intake—Health associations for FFQ measurement error using a duplicate recovery biomarker and a duplicate 24 h dietary recall as reference method. Public Health Nutr. 2015, 18, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Denova-Gutiérrez, E.; Ramírez-Silva, I.; Rodríguez-Ramírez, S.; Jiménez-Aguilar, A.; Shamah-Levy, T.; Rivera-Dommarco, J.A. Validity of a food frequency questionnaire to assess food intake in Mexican adolescent and adult population. Salud Pública de México 2016, 58, 617–628. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Lillegaard, I.T.; Karlsen, A.; Blomhoff, R.; Drevon, C.A.; Andersen, L.F. Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent energy expenditure measurement and weighed food records. Nutr. J. 2010, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- El Kinany, K.; Garcia-Larsen, V.; Khalis, M.; Deoula, M.M.S.; Benslimane, A.; Ibrahim, A.; Benjelloun, M.C.; El Rhazi, K. Adaptation and validation of a food frequency questionnaire (FFQ) to assess dietary intake in Moroccan adults. Nutr. J. 2018, 17, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor Hafizah, Y.; Ang, L.C.; Yap, F.; Nurul Najwa, W.; Cheah, W.L.; Ruzita, A.T.; Jumuddin, F.A.; Koh, D.; Lee, J.A.C.; Essau, C.A.; et al. Validity and reliability of a food frequency questionnaire (FFQ) to assess dietary intake of preschool children. Int. J. Environ. Res. Public Health 2019, 16, 4722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, A.; Bulloch, R.; Wall, C.R.; Grant, C.C. Quality of food-frequency questionnaire validation studies in the dietary assessment of children aged 12 to 36 months: A systematic literature review. J. Nutr. Sci. 2017, 6, e16. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Guidance on the EU Menu Methodology. Available online: https://www.efsa.europa.eu/it/efsajournal/pub/3944 (accessed on 15 November 2021).
- König, L.M.; Sproesser, G.; Schupp, H.T.; Renner, B. Describing the process of adopting nutrition and fitness apps: Behavior stage model approach. J. Med. Internet Res. 2018, 20. [Google Scholar] [CrossRef]
- Tin, S.T.; Mhurchu, C.N.; Bullen, C. Supermarket sales data: Feasibility and applicability in population food and nutrition monitoring. Nutr. Rev. 2007, 65, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.; Brewster, P.; Chidambaram, V.; Hurdle, J. An innovative method for monitoring food quality and the healthfulness of consumers’ grocery purchases. Nutrients 2017, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Varghese, S. The UK’s 11 Billion Yearly Receipts Are an Environmental Nightmare, Technical Report, Wired, UK, 6 November 2018. Available online: https://www.wired.co.uk/article/receipt-recycling-uk-thermal-paper-digital-receipt (accessed on 24 November 2021).
- Caicedo, O. eReceipts 101: The What, Why, Where and How of B2C Tax Compliance, Solve Tax for Good. 2018. Available online: https://sovos.com/blog/vat/ereceipts-b2c-compliance/ (accessed on 24 November 2021).
- Ernst and Young. Tax Administration Is Going Digital, Technical Report, EY. 2016. Available online: https://www.ey.com/Publication/vwLUAssets/EY-tax-administration-is-going-digital/ (accessed on 24 November 2021).
- Johnson, M. The Big Picture On Digital Receipts, Technical Report, Techcrunch. 2014. Available online: https://techcrunch.com/2014/09/19/the-big-picture-on-digital-receipts/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAFTuzjMV55oZaS3adEq-N6YLjI1qQGorvezsUvAYZlGaHUE7RSiRTY9sXQwAEfpUt8iixN6-MaGI_hJb7iTga3uqFnv-COLHdBna2CyGdW_dE1UBiHwOFhwc3A2yEcymJZtELtsxPzHiJkMI3P0KeI1okl-IaBb-yVQifzLbhCcM (accessed on 24 November 2021).
- Trichopoulou, A.; Naska, A.; Group, D.I. European food availability databank based on household budget surveys: The Data Food Networking initiative. Eur. J. Public Health 2003, 13, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Orfanos, P.; Naska, A.; Rodrigues, S.; Lopes, C.; Freisling, H.; Rohrmann, S.; Sieri, S.; Elmadfa, I.; Lachat, C.; Gedrich, K.; et al. Eating at restaurants, at work or at home. Is there a difference? A study among adults of 11 European countries in the context of the HECTOR* project. Eur. J. Clin. Nutr. 2017, 71, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Chappuis, A.; Bochud, M.; Glatz, N.; Vuistiner, P.; Paccaud, F.; Burnier, M. Swiss Survey on Salt Intake: Main Results; Service de Néphrologie et Institut Universitaire de Médecine Sociale et Préventive Centre Hospitalier Universitaire Vaudois (CHUV): Lausanne, Switzerland, 2011; pp. 1–32. [Google Scholar]
- Brewster, P.J.; Guenther, P.M.; Jordan, K.C.; Hurdle, J.F. The Grocery Purchase Quality Index-2016: An innovative approach to assessing grocery food purchases. J. Food Compos. Anal. 2017, 64, 119–126. [Google Scholar] [CrossRef]
- Taylor, A.; Wilson, F.; Hendrie, G.A.; Allman-Farinelli, M.; Noakes, M. Feasibility of a Healthy Trolley Index to assess dietary quality of the household food supply. Br. J. Nutr. 2015, 114, 2129–2137. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Aggarwal, A.; Liu, Z.; Acheson, M.; Rehm, C.D.; Moudon, A.V.; Drewnowski, A. Validating self-reported food expenditures against food store and eating-out receipts. Eur. J. Clin. Nutr. 2016, 70, 352–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ransley, J.; Donnelly, J.; Botham, H.; Khara, T.; Greenwood, D.; Cade, J. Use of supermarket receipts to estimate energy and fat content of food purchased by lean and overweight families. Appetite 2003, 41, 141–148. [Google Scholar] [CrossRef]
- Nelson, M. Family food purchases and home food consumption: Comparison of nutrient contents. Br. J. Nutr. 1985, 54, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.L.; Howell, T.; Duan, Y.; Walters, M. The feasibility and utility of grocery receipt analyses for dietary assessment. Nutr. J. 2006, 5, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Ransley, J.; Donnelly, J.; Khara, T.; Botham, H.; Arnot, H.; Greenwood, D.; Cade, J. The use of supermarket till receipts to determine the fat and energy intake in a UK population. Public Health Nutr. 2001, 4. [Google Scholar] [CrossRef]
- Raynor, H.A.; Polley, B.A.; Wing, R.R.; Jeffery, R.W. Is dietary fat intake related to liking or household availability of high- and low-fat foods? Obes. Res. 2004, 12, 816–823. [Google Scholar] [CrossRef]
- Fulkerson, J.A.; Nelson, M.C.; Lytle, L.; Moe, S.; Heitzler, C.; Pasch, K.E. The validation of a home food inventory. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyles, H.; Jiang, Y.; Ni Mhurchu, C. Use of Household Supermarket Sales Data to Estimate Nutrient Intakes: A Comparison with Repeat 24-h Dietary Recalls. J. Am. Diet. Assoc. 2010, 110, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Ni Mhurchu, C.; Blakely, T.; Wall, J.; Rodgers, A.; Jiang, Y.; Wilton, J. Strategies to promote healthier food purchases: A pilot supermarket intervention study. Public Health Nutr. 2007, 10, 608–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni Mhurchu, C.; Blakely, T.; Jiang, Y.; Eyles, H.C.; Rodgers, A. Effects of price discounts and tailored nutrition education on supermarket purchases: A randomized controlled trial. Am. J. Clin. Nutr. 2010, 91, 736–747. [Google Scholar] [CrossRef] [Green Version]
- The European Parliament; The Council of European Union. Regulation (EU) 2016/679. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj (accessed on 17 June 2021).
- The European Parliament; The Council of the European Union. Regulation (EU) 1169/2011. 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF (accessed on 24 November 2021).
- Tharrey, M.; Dubois, C.; Maillot, M.; Vieux, F.; Méjean, C.; Perignon, M.; Darmon, N. Development of the Healthy Purchase Index (HPI): A scoring system to assess the nutritional quality of household food purchases. Public Health Nutr. 2019, 22, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Appelhans, B.M.; French, S.A.; Tangney, C.C.; Powell, L.M.; Wang, Y. To what extent do food purchases reflect shoppers’ diet quality and nutrient intake? Int. J. Behav. Nutr. Phys. Act. 2017, 14, 46. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julia, C.; Méjean, C.; Touvier, M.; Péneau, S.; Lassale, C.; Ducrot, P.; Hercberg, S.; Kesse-Guyot, E. Validation of the FSA nutrient profiling system dietary index in French adults—Findings from SUVIMAX study. Eur. J. Nutr. 2016, 55, 1901–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, G.S.; de Groot, J.A.; Dutton, S.; Omar, O.; Shanyinde, M.; Tajar, A.; Voysey, M.; Wharton, R.; Yu, L.M.; Moons, K.G.; et al. External validation of multivariable prediction models: A systematic review of methodological conduct and reporting. BMC Med. Res. Methodol. 2014, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the performance of prediction models: A framework for some traditional and novel measures. Epidemiology 2010, 21, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiss Confederation. Retail. Available online: https://www.eda.admin.ch/aboutswitzerland/en/home/wirtschaft/taetigkeitsgebiete/detailhandel.html (accessed on 23 November 2021).
- Statista. Market Share of the Leading Companies in Retail in Switzerland in 2018. Available online: https://www.statista.com/statistics/787298/switzerland-market-share-of-food-retailers/ (accessed on 24 November 2021).
- Schmid, C. Kundenkarten: Zweifel am Nutzen. Handelszeitung, 22 September 2004. Available online: https://www.handelszeitung.ch/unternehmen/kundenkarten-zweifel-am-nutzen(accessed on 1 November 2021).
- Brinkerhoff, K.M.; Brewster, P.J.; Clark, E.B.; Jordan, K.C.; Cummins, M.R.; Hurdle, J.F. Linking supermarket sales data to nutritional information: An informatics feasibility study. AMIA 2011, 2011, 598–606. [Google Scholar]
- Fuchs, K.; Zeltner, M.; Haldimann, M.; Ilic, A. Icon-based Digital Food Allergen Labels for Complementation of Text-based Declaration. In Proceedings of the 28th European Conference on Information Systems (ECIS 2020), Marrakech, Morocco, 15–17 June 2020. [Google Scholar]
- Fuchs, K.; Barattin, T.; Haldimann, M.; Ilic, A. Towards Tailoring Digital Food Labels: Insights of a Smart-RCT on User-specific Interpretation of Food Composition Data (in submission). In Proceedings of the CHItaly19 (The 13th Biannual Conference of the Italian SIGCHI Chapter), Adova, Italy, 23–25 September 2019. [Google Scholar] [CrossRef]
- Chantal, J.; Hercberg, S.; World Health Organization (WHO). Development of a new front-of-pack nutrition label in France: The five-colour Nutri-Score. Public Health Panor. 2017, 3, 712–725. [Google Scholar]
- Steinemann, N.; Grize, L.; Ziesemer, K.; Kauf, P.; Probst-Hensch, N.; Brombach, C. Relative validation of a food frequency questionnaire to estimate food intake in an adult population. Food Nutr. Res. 2017, 61, 1305193. [Google Scholar] [CrossRef] [Green Version]
- The National Health Service. Understanding Calories. 2019. Available online: https://www.nhs.uk/live-well/healthy-weight/managing-your-weight/understanding-calories/ (accessed on 1 November 2021).
- Jensen, O.M.; Wahrendorf, J.; Rosenqvist, A.; Geser, A. The reliability of questionnaire-derived historical dietary information and temporal stability of food habits in individuals. Am. J. Epidemiol. 1984, 120, 281–290. [Google Scholar] [CrossRef]
- Swiss Society for Nutrition. Swiss Food Pyramid. Available online: http://www.sge-ssn.ch/ich-und-du/essen-und-trinken/ausgewogen/schweizer-lebensmittelpyramide/ (accessed on 15 December 2021).
- Bochud, M.; Chatelan, A.; Blanco, J.M.; Beer-Borst, S. Anthropometric Characteristics and Indicators of Eating and Physical Activity Behaviors in the Swiss Adult Population; Technical Report; The Federal Office of Public Health; Food Safety and Veterinary Office: Bern, Switzerland, 2014. [Google Scholar]
- Bochud, M.; Chatelan, A.; Blanco, J.M.; Beer-Borst, S.M. Anthropometric Characteristics and Indicators of Eating and Physical Activity Behaviors in the Swiss Adult Population: Results from menuCH 2014–2015; Technical Report; The Federal Office of Public Health; Food Safety and Veterinary Office: Bern, Switzerland, 2017. [Google Scholar]
- Hagmann, D.; Siegrist, M.; Hartmann, C. Meat avoidance: Motives, alternative proteins and diet quality in a sample of Swiss consumers. Public Health Nutr. 2019, 22, 2448–2459. [Google Scholar] [CrossRef]
- Louie, J.C.Y.; Moshtaghian, H.; Boylan, S.; Flood, V.M.; Rangan, A.; Barclay, A.; Brand-Miller, J.; Gill, T. A systematic methodology to estimate added sugar content of foods. Eur. J. Clin. Nutr. 2015, 69, 154–161. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA). How Much Fiber Is in Whole Grains versus Refined Grains/Non Whole Grains? Available online: https://ask.usda.gov/s/article/How-much-fiber-is-in-whole-grains-versus-refined-grains-non-whole-grains (accessed on 20 June 2021).
- U.S. Food and Drug Administration (FDA). Health Claim Notification for Whole Grain Foods. Available online: https://www.fda.gov/food/food-labeling-nutrition/health-claim-notification-whole-grain-foods (accessed on 20 June 2021).
- United States Department of Agriculture (USDA). Nutrients: Total Dietary Fiber (g). Available online: https://www.nal.usda.gov/sites/www.nal.usda.gov/files/total_dietary_fiber.pdf (accessed on 20 June 2021).
- Kumanyika, S.K.; Obarzanek, E.; Stettler, N.; Bell, R.; Field, A.E.; Fortmann, S.P.; Franklin, B.A.; Gillman, M.W.; Lewis, C.E.; Poston, W.C.; et al. Population-based prevention of obesity: The need for comprehensive promotion of healthful eating, physical activity, and energy balance: A scientific statement from American Heart Association Council on Epidemiology and Prevention, Interdisciplinary Committee for Prevention (formerly the expert panel on population and prevention science). Circulation 2008, 118, 428–464. [Google Scholar] [PubMed] [Green Version]
- Meyer, H.E.; Johansson, L.; Eggen, A.E.; Johansen, H.; Holvik, K. Sodium and potassium intake assessed by spot and 24-h urine in the population-based Tromsø Study 2015–2016. Nutrients 2019, 11, 1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verschuuren, M.; Gissler, M.; Kilpeläinen, K.; Tuomi-Nikula, A.; Sihvonen, A.P.; Thelen, J.; Gaidelyte, R.; Ghirini, S.; Kirsch, N.; Prochorskas, R.; et al. Public health indicators for the EU: The joint action for ECHIM (European Community Health Indicators & Monitoring). Arch. Public Health 2013, 71, 1–7. [Google Scholar]
- Federal Statistical Office. Population. Available online: https://www.bfs.admin.ch/bfs/en/home/statistics/population/effectif-change/population.html (accessed on 17 June 2021).
- Federal Statistical Office. Overweight-Share of the Population Aged 15 and over Who Are Overweight (BMI of 25 or More)—In percent (2019). Available online: https://www.bfs.admin.ch/bfs/en/home/statistics/sustainable-development/monet-2030/indikatoren/overweight.assetdetail.10187695.html (accessed on 17 June 2021).
- Sluik, D.; Geelen, A.; de Vries, J.H.; Eussen, S.J.; Brants, H.A.; Meijboom, S.; van Dongen, M.C.; Bueno-de Mesquita, H.B.; Wijckmans-Duysens, N.E.; van’t Veer, P.; et al. A national FFQ for the Netherlands (the FFQ-NL 1.0): Validation of a comprehensive FFQ for adults. Br. J. Nutr. 2016, 116, 913–923. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. The Food Classification and Description System FoodEx 2 (Revision 2); EFSA Supporting Publications: Parma, Italy, 2015. [Google Scholar]
- Muenzberg, A.; Sauer, J.; Hein, A.; Roesch, N. Machine Learning and Context-Based Approaches to Get Quality Improved Food Data. In Proceedings of Sixth International Congress on Information and Communication Technology; Yang, X.S., Sherratt, S., Dey, N., Joshi, A., Eds.; Springer: Singapore, 2022; pp. 423–435. [Google Scholar]
- Presser, K.; Hinterberger, H.; Weber, D.; Norrie, M. A scope classification of data quality requirements for food composition data. Food Chem. 2016, 193, 166–172. [Google Scholar] [CrossRef]
- Kweeri. Everything You Need to Know from Receipts. 2021. Available online: https://kweeri.io/ (accessed on 7 November 2021).
- Maslova, O.; Da Cruz, A. Product labels classification from Receipt: Word2vec and CNN Approach. 2019. Available online: https://blog.aboutgoods-company.com/receipt-labels-classification-word2vec-and-cnn-approach/ (accessed on 1 November 2021).
Category | Mean | Standard Deviation |
---|---|---|
Unit: portions/day | ||
Meat and meat products | 1.17 | 1.20 |
Vegetables and salad | 2.55 | 1.71 |
Fruits | 1.38 | 1.16 |
Whole grain products | 0.32 | 0.33 |
Sweets, salty snacks, sugar-sweetened beverages, alcohol | 2.93 | 1.95 |
Unit: grams/day | ||
Sodium | 2.1 | 1.5 |
Dietary fibers | 27.1 | 14.3 |
Saturated fatty acids | 37.5 | 26.0 |
Added sugar | 10.4 | 8.52 |
Sample | Count (%) |
---|---|
Gender | |
Male | 68 (76.4) |
Female | 21 (23.6) |
Other | 0 (0.0) |
Age [yrs] | |
18–29 | 29 (32.6) |
30–39 | 29 (32.6) |
40–49 | 18 (20.2) |
> 50 | 13 (14.6) |
Body Mass Index [kg/m2] | |
Underweight (<18.5) | 2 (2.3) |
Normal (≥18.5 and <25.0) | 55 (61.8) |
Overweight (≥25.0 and <30.0) | 22 (24.7) |
Obese (≥30) | 10 (11.2) |
Total | 89 (100.0) |
Characteristics of Observed Food Shopping Behavior a | Mean (SD b) |
---|---|
Household | |
Adults sharing the loyalty card(s) | 1.7 (1.0) |
Children sharing the loyalty card(s) | 0.5 (0.9) |
Food shopping quantity identified via digital receipts | |
Amount spent in Swiss francs (CHF) | 230.30 (175.60) |
Amount spent in United States dollars (USD) c | 250.28 (190.83) |
Weight d of shopped food products in kg | 39.9 (32.1) |
Indicators a | - FSA-NPS DI b | GPQI c | HEI-2015 d | HETI e | HPI f |
---|---|---|---|---|---|
Unit: portions/day | |||||
Meat and meat products | −0.246 * | 0.000 | −0.083 | −0.099 | −0.060 |
Vegetables and salad | 0.235 * | 0.140 | 0.190 | 0.181 | 0.177 |
Fruits | 0.239 * | 0.215 * | 0.254 * | 0.274 ** | 0.288 ** |
Wholegrain products | 0.161 | 0.184 | 0.322 ** | 0.232 * | 0.135 |
Sweets, salty snacks, sugar-sweetened beverages, alcohol | −0.124 | −0.026 | −0.002 | ||
Unit: grams/day | |||||
Sodium | −0.121 | 0.050 | 0.023 | 0.072 | 0.027 |
Dietary fibers | 0.312 ** | 0.178 | 0.329 ** | 0.296 ** | 0.173 |
Saturated fatty acids | −0.144 | 0.033 | 0.006 | 0.034 | |
Added sugar | −0.197 | −0.193 | −0.137 | 0.138 | |
Points | 4 | 1 | 3 | 0 | 1 |
Indicators | - FSA-NPS DI | GPQI | HEI-2015 | HETI | HPI |
---|---|---|---|---|---|
Unit: portions/1000 kcal | |||||
Meat and meat products | −0.359 *** | −0.061 | −0.241 | −0.240 * | −0.090 |
Vegetables and salad | 0.321 ** | 0.136 | 0.191 | 0.108 | 0.133 |
Fruits | 0.354 *** | 0.195 * | 0.238 * | 0.197 | 0.245 * |
Wholegrain products | 0.231 | 0.101 | 0267 * | 0.193 | 0.080 |
Sweets, salty snacks, sugar-sweetened beverages, alcohol | −0.097 | −0.068 | −0.197 | −0.139 | 0.069 |
Unit: g/1000 kcal | |||||
Sodium | −0.244 * | −0.092 | −0.178 | −0.055 | −0.045 |
Dietary fibers | 0.500 *** | 0.126 | 0.342 ** | 0.235 * | 0.139 |
Saturated fatty acids | −0.367 *** | −0.125 | −0.228 * | −0.177 | −0.143 |
Added sugar | −0.093 | −0.329 ** | −0.316 ** | −0.306 ** | −0.259 * |
Points | 6 | 1 | 2 | 0 | 0 |
Indicator | - FSA-NPS DI | GPQI | HEI-2015 | HETI | HPI |
---|---|---|---|---|---|
Unit: portions/day | |||||
Meat and meat products | ○ | ○ | |||
Vegetables and salad | ○ | ○ | ◓ | ○ | ○ |
Fruits | ◕ | ◕ | |||
Wholegrain products | ○ | ◕ | |||
Sweets, salty snacks, sugar-sweetened beverages, alcohol | ○ | ○ | ○ | ○ | |
Unit: grams/day | |||||
Sodium | ○ | ○ | ○ | ○ | |
Dietary fiber | ○ | ◕ | |||
Saturated fatty acids | ○ | ○ | ○ | ○ | |
Added sugar | ○ | ○ | ○ | ○ | ○ |
Points | 17 | 2 | 11 | 10 | 5 |
Indicator | - FSA-NPS DI | GPQI | HEI-2015 | HETI | HPI |
---|---|---|---|---|---|
Unit: portions/1000 kcal | |||||
Meat and meat products | ○ | ◕ | ○ | ||
Vegetables and salad | ○ | ○ | ○ | ||
Fruits | ○ | ◑ | |||
Wholegrain products | ◕ | ◕ | ○ | ||
Sweets, salty snacks, sugar-sweetened beverages, alcohol | ○ | ○ | ○ | ○ | |
Unit: g/1000 kcal | |||||
Sodium | ○ | ◑ | ○ | ○ | |
Dietary fibers | ◕ | ○ | |||
Saturated fatty acids | ○ | ◕ | ○ | ||
Added sugar | ○ | ○ | ○ | ||
Points | 19 | 7 | 12 | 12 | 3 |
-FSA-NPS DI Score Tertile | ||||||||
---|---|---|---|---|---|---|---|---|
Overall (N = 89) | T1 (N = 30) | T2 (N = 29) | T3(N = 30) | |||||
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | p | pT1-T2 | pT1-T3 | pT2-T3 | |
Unit: portions/day | ||||||||
Meat and meat products | 1.02 (1.22) | 1.28 (0.95) | 1.06 (1.15) | 0.37 (1.07) | <0.001 *** | 0.744 | <0.001 *** | 0.003 ** |
Vegetables and salad | 2.30 (1.99) | 1.96 (1.73) | 2.16 (2.14) | 2.51 (1.60) | 0.135 | 0.128 | 0.064 | 0.722 |
Fruits | 1.17 (1.28) | 0.74 (1.20) | 1.16 (1.44) | 1.45 (1.15) | 0.063 | 0.200 | 0.018 * | 0.336 |
Wholegrain products | 0.25 (0.45) | 0.09 (0.49) | 0.25 (0.47) | 0.33 (0.32) | 0.049 * | 0.367 | 0.012 * | 0.185 |
Sweets, salty snacks, sugar-sweetened beverages, alcohol | 2.53 (2.24) | 2.58 (1.62) | 3.12 (2.29) | 1.97 (1.83) | 0.038 * | 0.471 | 0.030 * | 0.032 * |
Unit: grams/day | ||||||||
Sodium | 1.87 (1.00) | 1.91 (0.78) | 2.03 (1.39) | 1.45 (0.98) | 0.017 * | 0.529 | 0.022 * | 0.011 * |
Dietary fibers | 22.20 (17.30) | 17.35 (10.48) | 19.90 (23.30) | 31.00 (17.80) | 0.018 * | 0.084 | 0.006 ** | 0.262 |
Saturated fatty acids | 31.70 (17.10) | 34.95 (15.08) | 36.30 (17.70) | 27.90 (16.23) | 0.022 * | 0.970 | 0.011 * | 0.028 * |
Added sugar | 8.01 (7.82) | 7.69 (6.81) | 9.34 (9.20) | 6.49 (7.41) | 0.444 | 0.897 | 0.304 | 0.252 |
-FSA-NPS DI tertile | ||||||||
---|---|---|---|---|---|---|---|---|
Overall (N = 89) | T1 (N = 30) | T2 (N = 29) | T3 (N = 30) | |||||
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | p | pT1-T2 | pT1-T3 | pT2-T3 | |
Unit: portions/1000 kcal | ||||||||
Meat and meat products | 0.57 (0.57) | 0.75 (0.35) | 0.68 (0.55) | 0.31 (0.54) | <0.001 *** | 0.611 | <0.001 *** | 0.002 ** |
Vegetables and salad | 1.19 (1.06) | 1.02 (0.96) | 1.25 (0.97) | 1.50 (1.55) | 0.040 * | 0.120 | 0.014 * | 0.321 |
Fruits | 0.60 (0.63) | 0.49 (0.63) | 0.59 (0.59) | 0.82 (0.67) | 0.008 ** | 0.190 | 0.002 ** | 0.080 |
Wholegrain products | 0.13 (0.22) | 0.06 (0.15) | 0.15 (0.20) | 0.22 (0.24) | 0.007 ** | 0.299 | 0.002 ** | 0.043 |
Sweets, salty snacks, sugar-sweetened beverages, alcohol | 1.50 (0.89) | 1.59 (0.86) | 1.49 (0.88) | 1.36 (0.91) | 0.165 | 0.779 | 0.115 | 0.097 |
Unit: g/1000 kcal | ||||||||
Sodium | 1.07 (0.36) | 1.13(0.25) | 1.20 (0.40) | 0.93 (0.36) | 0.003 | 0.897 | 0.003 ** | 0.004 ** |
Dietary fibers | 13.23 (8.21) | 10.52 (4.11) | 13.73 (5.43) | 18.78 (11.08) | <0.001 *** | 0.057 | <0.001 | 0.012 * |
Saturated fat | 19.54 (6.27) | 20.61 (3.68) | 19.61 (5.14) | 17.01 (5.74) | 0.002 ** | 0.190 | <0.001 *** | 0.020 ** |
Added sugar | 4.72 (2.64) | 4.42 (2.89) | 4.72 (3.43) | 4.82 (2.86) | 0.851 | 0.767 | 0.631 | 0.688 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Fuchs, K.; Lian, J.; Haldimann, M.L.; Schneider, T.; Mayer, S.; Byun, J.; Gassmann, R.; Brombach, C.; Fleisch, E. Estimating Dietary Intake from Grocery Shopping Data—A Comparative Validation of Relevant Indicators in Switzerland. Nutrients 2022, 14, 159. https://doi.org/10.3390/nu14010159
Wu J, Fuchs K, Lian J, Haldimann ML, Schneider T, Mayer S, Byun J, Gassmann R, Brombach C, Fleisch E. Estimating Dietary Intake from Grocery Shopping Data—A Comparative Validation of Relevant Indicators in Switzerland. Nutrients. 2022; 14(1):159. https://doi.org/10.3390/nu14010159
Chicago/Turabian StyleWu, Jing, Klaus Fuchs, Jie Lian, Mirella Lindsay Haldimann, Tanja Schneider, Simon Mayer, Jaewook Byun, Roland Gassmann, Christine Brombach, and Elgar Fleisch. 2022. "Estimating Dietary Intake from Grocery Shopping Data—A Comparative Validation of Relevant Indicators in Switzerland" Nutrients 14, no. 1: 159. https://doi.org/10.3390/nu14010159
APA StyleWu, J., Fuchs, K., Lian, J., Haldimann, M. L., Schneider, T., Mayer, S., Byun, J., Gassmann, R., Brombach, C., & Fleisch, E. (2022). Estimating Dietary Intake from Grocery Shopping Data—A Comparative Validation of Relevant Indicators in Switzerland. Nutrients, 14(1), 159. https://doi.org/10.3390/nu14010159