Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Samples
2.2. Data Collection and Measurements
2.3. Quality Assurance
2.4. Assessment of EAFH
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. The Frequency of Eating Away from Home (EAFH) in Different Genders
3.2. Association between Eating Away from Home (EAFH) and BMI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Program
Appendix A
Variable | Underweight | Normal | Overweight | Obesity | F | ||||
---|---|---|---|---|---|---|---|---|---|
n | EAFH | n | EAFH | n | EAFH | n | EAFH | ||
Total | 3002 | 2.83 (0.26) | 36,686 | 2.67 (0.15) | 27,177 | 2.40 (0.10) | 11,079 | 2.68 (0.13) | 13.25 * |
Sex | |||||||||
Men | 1303 | 2.90 (0.47) | 17,465 | 3.13 (0.19) | 13,139 | 3.12 (0.14) | 4929 | 3.93 (0.19) | 68.31* |
Women | 1699 | 2.76 (0.30) | 19,221 | 2.23 (0.14) | 14,038 | 1.56 (0.09) | 6150 | 1.28 (0.12) | 406.20 * |
Age Group, year | |||||||||
18–44 | 1143 | 3.65 (0.39) | 11,917 | 3.72 (0.21) | 6961 | 3.40 (0.16) | 3049 | 3.83 (0.21) | 0.30 |
45–59 | 659 | 1.51 (0.30) | 12,455 | 1.66 (0.08) | 11,117 | 1.90 (0.09) | 4521 | 1.86 (0.17) | 19.24 * |
≥60 | 1200 | 0.23 (0.05) | 12,314 | 0.48 (0.03) | 9099 | 0.60 (0.04) | 3509 | 0.50 (0.05) | 15.80 * |
Area of the country | |||||||||
East | 1058 | 3.30 (0.48) | 12,980 | 3.66 (0.29) | 10,718 | 2.96 (0.17) | 4746 | 2.94 (0.20) | 84.85 * |
Central | 796 | 2.61 (0.55) | 10,388 | 2.13 (0.17) | 7823 | 2.10 (0.16) | 3058 | 2.63 (0.24) | 8.51 * |
West | 1148 | 2.31 (0.34) | 13,318 | 1.81 (0.13) | 8636 | 1.80 (0.15) | 3275 | 2.19 (0.23) | 2.09 |
Residence location | |||||||||
Urban | 957 | 3.80 (0.49) | 13,410 | 3.94 (0.25) | 11,949 | 3.43 (0.16) | 5249 | 3.62 (0.20) | 28.41 * |
Rural | 2045 | 1.76 (0.24) | 23,276 | 1.43 (0.09) | 15,228 | 1.28 (0.08) | 5830 | 1.52 (0.12) | 4.54 * |
Household Income Level | |||||||||
Low | 1342 | 1.93 (0.30) | 14,806 | 1.51 (0.10) | 9659 | 1.40 (0.09) | 3828 | 1.95 (0.18) | 4.13 * |
Moderate | 630 | 1.96 (0.41) | 8509 | 2.69 (0.21) | 6930 | 2.60 (0.15) | 2973 | 2.59 (0.27) | 0.42 |
High | 462 | 5.48 (0.74) | 7086 | 4.75 (0.32) | 6472 | 3.79 (0.18) | 2684 | 3.75 (0.25) | 129.46 * |
Unclear/unknown | 568 | 2.76 (0.44) | 6285 | 2.19 (0.20) | 4116 | 1.94 (0.19) | 1594 | 2.68 (0.31) | 0.07 |
Education Level | |||||||||
Low | 2424 | 1.68 (0.28) | 29,400 | 1.48 (0.07) | 21,496 | 1.58 (0.10) | 8687 | 1.83 (0.16) | 36.96 * |
Moderate | 317 | 3.46 (0.79) | 4472 | 3.95 (0.31) | 3722 | 3.25 (0.21) | 1631 | 3.83 (0.31) | 3.80 |
High | 261 | 5.81 (0.63) | 2814 | 6.25 (0.38) | 1959 | 5.44 (0.29) | 761 | 5.77 (0.38) | 8.30 * |
Marital Level | |||||||||
Spinsterhood | 297 | 4.96 (0.65) | 1628 | 6.23 (0.45) | 666 | 4.65 (0.42) | 323 | 4.90 (0.60) | 8.23 * |
Married/cohabitation | 2504 | 2.12 (0.24) | 33,298 | 2.14 (0.10) | 25,363 | 2.28 (0.11) | 10,285 | 2.46 (0.13) | 46.12 * |
Widowed/divorce/separation | 201 | 0.19 (0.08) | 1760 | 1.09 (0.15) | 1148 | 1.07 (0.17) | 471 | 2.52 (0.81) | 60.30 * |
Employment | |||||||||
Farming and aquaculture | 1389 | 0.59 (0.12) | 17,723 | 0.93 (0.07) | 11,690 | 0.91 (0.06) | 4556 | 1.09 (0.11) | 14.54 * |
Others | 770 | 4.76 (0.62) | 9849 | 4.89 (0.24) | 7317 | 4.56 (0.16) | 2991 | 5.16 (0.25) | 0.28 |
Student | 30 | 8.03 (2.62) | 126 | 10.47 (1.04) | 55 | 7.10 (1.25) | 26 | 8.14 (2.15) | 1.82 |
Unemployed/retired | 813 | 0.91 (0.25) | 8988 | 0.78 (0.06) | 8115 | 0.97 (0.09) | 3506 | 0.81(0.09) | 2.18 |
Variable | City | Rural | ||||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||
n | EAFH | n | EAFH | n | EAFH | n | EAFH | |
Age, years | ||||||||
18–44 | 4135 | 5.20 (0.09) | 5243 | 3.68 (0.07) | 6281 | 2.26 (0.06) | 7411 | 1.15 (0.04) |
45–59 | 4962 | 3.03 (0.07) | 6056 | 1.60 (0.05) | 8315 | 1.42 (0.04) | 9419 | 0.50 (0.02) |
>60 | 5461 | 0.94 (0.04) | 5708 | 0.59 (0.03) | 7682 | 0.51 (0.03) | 7271 | 0.19 (0.02) |
BMI (kg/m2) | ||||||||
Underweight | 377 | 2.83 (0.26) | 580 | 2.35 (0.18) | 926 | 1.15 (0.11) | 1119 | 0.68 (0.08) |
Normal | 5820 | 2.72 (0.06) | 7590 | 2.26 (0.05) | 11,645 | 1.25 (0.03) | 11,631 | 0.67 (0.02) |
Overweight | 5907 | 2.89 (0.06) | 6042 | 1.67 (0.05) | 7232 | 1.36 (0.04) | 7996 | 0.56 (0.03) |
Obesity | 2454 | 3.14 (0.10) | 2795 | 1.35 (0.06) | 2475 | 1.81 (0.08) | 3355 | 0.46 (0.04) |
Variable | City | Rural | ||||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||
n | EAFH | n | EAFH | n | EAFH | n | EAFH | |
Underweight | 141 | 5.44 (0.52) | 291 | 4.04 (0.30) | 288 | 2.22 (0.27) | 423 | 1.52 (0.19) |
Normal | 1711 | 5.03 (0.14) | 3024 | 3.90 (0.10) | 3164 | 2.21 (0.08) | 4018 | 1.22 (0.05) |
Overweight | 1527 | 5.14 (0.15) | 1364 | 3.43 (0.14) | 1966 | 2.18 (0.10) | 2104 | 1.07 (0.07) |
Obesity | 756 | 5.63 (0.21) | 564 | 2.98 (0.20) | 863 | 2.65 (0.16) | 866 | 0.82 (0.09) |
References
- Dai, H.; Alsalhe, T.A.; Chalghaf, N.; Ricco, M.; Bragazzi, N.L.; Wu, J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the Global Burden of Disease Study. PLoS Med. 2020, 17, e1003198. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, B.; Zhao, Z.; Yang, L.; Zhang, M.; Jiang, Y.; Li, Y.; Zhou, M.; Wang, L.; Huang, Z.; et al. Body-mass index and obesity in urban and rural China: Findings from consecutive nationally representative surveys during 2004–18. Lancet 2021, 398, 53–63. [Google Scholar] [CrossRef]
- Koski, M.; Naukkarinen, H. Severe obesity, emotions and eating habits: A case-control study. BMC Obes. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, L.Z.; Varela, A.R.; Lira, B.A.; Contiero, L.C.; Carneiro, M.L.A.; Souza, P.; Nobrega, J.O.T.; Junior, F.B. Weight status, physical activity and eating habits of young adults in Midwest Brazil. Public Health Nutr. 2019, 22, 2609–2616. [Google Scholar] [CrossRef]
- Viljakainen, J.; Figueiredo, R.A.O.; Viljakainen, H.; Roos, E.; Weiderpass, E.; Rounge, T.B. Eating habits and weight status in Finnish adolescents. Public Health Nutr. 2019, 22, 2617–2624. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture, A.R.S. Away from Home: Percentages of Selected Nutrients Contributed by Food and Beverages Consumed Away from Home, by Gender and Age, What We Eat in America, NHANES 2015–2016. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1516/Table_10_AWY_RAC_15.pdf (accessed on 6 December 2021).
- U.S. Department of Agriculture, A.R.S. Away from Home: Percentages of Selected Nutrients Contributed by Food and Beverages Consumed Away from Home, by Gender and Age, What We Eat in America, NHANES 2017–2018. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/Table_11_AWY_INC_17.pdf (accessed on 6 December 2021).
- Adams, J.; Goffe, L.; Brown, T.; Lake, A.A.; Summerbell, C.; White, M.; Wrieden, W.; Adamson, A.J. Frequency and socio-demographic correlates of eating meals out and take-away meals at home: Cross-sectional analysis of the UK national diet and nutrition survey, waves 1–4 (2008–12). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- JAPAN Ministry of Health, Labor and Welfare. National Health and Nutrition Survey. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00450171&tstat=000001041744&cycle=7&cycle_facet=cycle (accessed on 18 April 2021).
- Ju, L.; Yu, D.; Guo, Q.; Fang, H.; Xu, X.; Li, S.; Cheng, X.; Piao, W.; Cai, S.; Zhao, L. Eating out behavior and its impact on obesity among Chinese residents aged 18–59 in 2015. J. Hyg. Res. 2021, 50, 395–400. [Google Scholar] [CrossRef]
- Bezerra, I.N.; Sichieri, R. Eating out of home and obesity: A Brazilian nationwide survey. Public Health Nutr. 2009, 12, 2037–2043. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Zhong, L.; von Cramon-Taubadel, S.; Tu, H.; Wang, H. Restaurants in the Neighborhood, Eating Away from Home and BMI in China. PLoS ONE 2016, 11, e0167721. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Oh, S.Y.; Choi, D.W.; Park, E.C. The Association between Eating-Out Rate and BMI in Korea. Int. J. Environ. Res. Public Health 2019, 16, 3186. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, I.N.; Junior, E.V.; Pereira, R.A.; Sichieri, R. Away-from-home eating: Nutritional status and dietary intake among Brazilian adults. Public Health Nutr. 2015, 18, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Bhutani, S.; Schoeller, D.A.; Walsh, M.C.; McWilliams, C. Frequency of Eating out at Both Fast-Food and Sit-Down Restaurants Was Associated with High Body Mass Index in Non-Large Metropolitan Communities in Midwest. Am. J. Health Promot. AJHP 2018, 32, 75–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Du, W.; Zhang, J.; Bai, J.; Ouyang, Y.; Huang, F.; Wang, H. Association between the frequencies of eating out and overweight/obesity among dinners in restaurants aged 18–65 years in 6 provinces of China. Chin. J. Health Educ. 2020, 36, 779–783, 792. [Google Scholar]
- Kim, D.; Ahn, B.I. Eating Out and Consumers’ Health: Evidence on Obesity and Balanced Nutrition Intakes. Int. J. Environ. Res. Public Health 2020, 17, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naska, A.; Orfanos, P.; Trichopoulou, A.; May, A.M.; Overvad, K.; Jakobsen, M.U.; Tjønneland, A.; Halkjær, J.; Fagherazzi, G.; Clavel-Chapelon, F.; et al. Eating out, weight and weight gain. A cross-sectional and prospective analysis in the context of the EPIC-PANACEA study. Int. J. Obes. 2011, 35, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Nago, E.S.; Lachat, C.K.; Dossa, R.A.; Kolsteren, P.W. Association of out-of-home eating with anthropometric changes: A systematic review of prospective studies. Crit. Rev. Food Sci. Nutr. 2014, 54, 1103–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; Yang, M.; Ji, H.; Li, S.; Bi, J. The current situation and development trend of breakfast food in China. J. Henan Inst. Sci. Technol. 2018, 46, 29–33. [Google Scholar] [CrossRef]
- Lassen, A.; Thorsen, A.V.; Trolle, E.; Elsig, M.; Ovesen, L. Successful strategies to increase the consumption of fruits and vegetables: Results from the Danish ‘6 a day’ Work-site Canteen Model Study. Public Health Nutr. 2004, 7, 263–270. [Google Scholar] [CrossRef]
- Roos, E.; Sarlio-Lahteenkorva, S.; Lallukka, T. Having lunch at a staff canteen is associated with recommended food habits. Public Health Nutr. 2004, 7, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Su, C.; Wang, H.; Wang, Z.; Wang, Y.; Zhang, B. Is density of neighbourhood restaurants associated with BMI in rural Chinese adults? A longitudinal study from the China Health and Nutrition Survey. BMJ Open 2014, 4, e004528. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Zhang, H.; Yu, X. Research on influencing factors of college students’ choice of dining location based on logistic regression analysis. NONG JIA CAN MOU 2019, 17, 215–216, 225. [Google Scholar]
- Wechsler, H.; Devereaux, R.S.; Davis, M.; Collins, J. Using the School Environment to Promote Physical Activity and Healthy Eating. Prev. Med. 2000, 31, S121–S137. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, R.W.; Baxter, J.; McGuire, M.; Linde, J. Are fast food restaurants an environmental risk factor for obesity? Int. J. Behav. Nutr. Phys. Act. 2006, 3, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollands, S.; Campbell, M.K.; Gilliland, J.; Sarma, S. A spatial analysis of the association between restaurant density and body mass index in Canadian adults. Prev. Med. 2013, 57, 258–264. [Google Scholar] [CrossRef]
- Mehta, N.K.; Chang, V.W. Weight status and restaurant availability a multilevel analysis. Am. J. Prev. Med. 2008, 34, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, R.; Bastian, N.D.; Griffin, P.M. Association of food environment and food retailers with obesity in US adults. Health Place 2015, 33, 19–24. [Google Scholar] [CrossRef]
Total | Men | Women | F | ||||
---|---|---|---|---|---|---|---|
n | E AFH | n | E AFH | n | E AFH | ||
Total | 77,944 | 2.59 (0.11) | 36,836 | 3.23 (0.12) | 41,108 | 1.92 (0.10) | 1496.39 * |
Age Group, year | |||||||
18–44 | 23,070 | 3.64 (0.09) | 10,416 | 4.41 (0.14) | 12,654 | 2.82 (0.10) | 502.07 * |
45–59 | 28,752 | 1.79 (0.05) | 13,277 | 2.42 (0.08) | 15,475 | 1.12 (0.05) | 819.67 * |
≥60 | 26,122 | 0.51 (0.02) | 13,143 | 0.69 (0.03) | 12,979 | 0.34 (0.02) | 172.89 * |
Area of the country | |||||||
East | 29,502 | 3.30 (0.10) | 13,864 | 3.99 (0.15) | 15,638 | 2.55 (0.12) | 581.25 * |
Central | 22,065 | 2.22 (0.07) | 10,482 | 2.89 (0.12) | 11,583 | 1.52 (0.07) | 505.84 * |
West | 26,377 | 1.88 (0.06) | 12,490 | 2.38 (0.10) | 13,887 | 1.36 (0.07) | 393.67 * |
Residence location | |||||||
Urban | 31,565 | 3.71 (0.09) | 14,558 | 4.38 (0.14) | 17,007 | 2.99 (0.11) | 538.79 * |
Rural | 46,379 | 1.41 (0.04) | 22,278 | 1.97 (0.07) | 24,101 | 0.85 (0.04) | 1063.14 * |
Household Income Level | |||||||
Low | 29,635 | 1.56 (0.06) | 14,150 | 2.02 (0.10) | 15,485 | 1.09 (0.08) | 408.32 * |
Moderate | 19,042 | 2.61 (0.10) | 8959 | 3.34 (0.17) | 10,083 | 1.82 (0.09) | 517.43 * |
High | 16,704 | 4.30 (0.13) | 7911 | 5.08 (0.21) | 8793 | 3.43 (0.16) | 366.71 * |
Unclear/unknown | 12,563 | 2.20 (0.11) | 5816 | 2.73 (0.14) | 6747 | 1.70 (0.17) | 163.74 * |
Education Level | |||||||
Low | 62,007 | 1.57 (0.04) | 28,169 | 2.16 (0.07) | 33,838 | 1.02 (0.04) | 1382.76 * |
Moderate | 10,142 | 3.69 (0.16) | 5759 | 4.11 (0.23) | 4383 | 3.04 (0.18) | 99.09 * |
High | 5795 | 5.92 (0.20) | 2908 | 6.48 (0.29) | 2887 | 5.29 (0.27) | 57.49 * |
Marital Level | |||||||
Spinsterhood | 2914 | 5.64 (0.29) | 1893 | 5.35 (0.37) | 1021 | 6.24 (0.46) | 12.23 * |
Married/cohabitation | 71,450 | 2.24 (0.04) | 33,842 | 2.88 (0.07) | 37,608 | 1.60 (0.04) | 1555.16 * |
Widowed/divorce/separation | 3580 | 1.26 (0.17) | 1101 | 2.25 (0.42) | 2479 | 0.71 (0.09) | 162.01 * |
Employment | |||||||
Farming and aquaculture | 35,358 | 0.93 (0.04) | 17,624 | 1.34 (0.07) | 17,734 | 0.50 (0.03) | 715.35 * |
Others | 20,927 | 4.81 (0.10) | 12,076 | 5.06 (0.14) | 8851 | 4.42 (0.13) | 61.38 * |
Student | 237 | 9.29 (0.80) | 125 | 9.09 (0.88) | 112 | 9.65 (1.56) | 0.31 |
Unemployed/retired | 21,422 | 0.86 (0.04) | 7011 | 1.13 (0.08) | 14,411 | 0.73 (0.05) | 101.09 * |
BMI | |||||||
Underweight | 3002 | 2.83 (0.25) | 1303 | 2.90 (0.43) | 1699 | 2.76 (0.29) | 0.60 |
Normal | 36,686 | 2.67 (0.09) | 17,465 | 3.13 (0.15) | 19,221 | 2.23 (0.10) | 311.79 * |
Overweight | 27,177 | 2.40 (0.07) | 13,139 | 3.12 (0.10) | 14,038 | 1.56 (0.08) | 814.69 * |
Obesity | 11,079 | 2.68 (0.12) | 4929 | 3.93 (0.19) | 6150 | 1.28 (0.11) | 881.93 * |
Variable | EAFH | EAFH-Breakfast | EAFH-Lunch | EAFH-Dinner | ||||
---|---|---|---|---|---|---|---|---|
Coefficient | Robust S.E. | Coefficient | Robust S.E. | Coefficient | Robust S.E. | Coefficient | Robust S.E. | |
Total | 0.005 | 0.004 | 0.017 | 0.009 | −0.024 | 0.008 * | 0.04 | 0.014 * |
Sex | ||||||||
men | 0.013 | 0.005 * | 0.006 | 0.011 | −0.005 | 0.011 | 0.061 | 0.018 * |
women | −0.019 | 0.006 * | 0.027 | 0.013 ** | −0.056 | 0.013 * | −0.025 | 0.021 |
Age Group, year | ||||||||
18–44 | 0.001 | 0.006 | −0.006 | 0.013 | −0.015 | 0.013 | 0.043 | 0.019 * |
45–59 | 0.008 | 0.006 | 0.042 | 0.014 ** | −0.024 | 0.012 * | 0.016 | 0.022 |
≥60 | 0.022 | 0.009 * | 0.047 | 0.020 * | 0.002 | 0.023 | 0.007 | 0.038 |
Area of the country | ||||||||
East | 0.003 | 0.006 | 0.034 | 0.013 ** | −0.034 | 0.012 ** | 0.030 | 0.020 |
Central | 0.007 | 0.007 | −0.011 | 0.016 | −0.025 | 0.016 | 0.100 | 0.027 ** |
West | 0.009 | 0.007 | 0.005 | 0.017 | 0.024 | 0.018 | −0.011 | 0.027 |
Residence location | ||||||||
Urban | 0.009 | 0.005 | 0.018 | 0.010 | −0.007 | 0.011 | 0.023 | 0.018 |
Rural | 0.006 | 0.006 | 0.023 | 0.016 | −0.035 | 0.013 ** | 0.055 | 0.022 * |
Family per capital annual income | ||||||||
Low | 0.019 | 0.007 ** | 0.024 | 0.018 | 0.022 | 0.017 | 0.008 | 0.026 |
Moderate | 0.001 | 0.008 | 0.025 | 0.017 | −0.043 | 0.016 ** | 0.050 | 0.028 |
High | −0.009 | 0.007 | 0.001 | 0.014 | −0.029 | 0.014 * | 0.017 | 0.023 |
Unclear/unknown | 0.020 | 0.010 * | 0.033 | 0.025 | −0.030 | 0.023 | 0.093 | 0.041 * |
Education Level | ||||||||
Low | 0.012 | 0.005 ** | 0.045 | 0.011 ** | −0.019 | 0.011 | 0.020 | 0.018 |
Moderate | 0.000 | 0.009 | −0.017 | 0.019 | −0.003 | 0.019 | 0.036 | 0.032 |
High | −0.011 | 0.009 | −0.010 | 0.019 | −0.039 | 0.019 * | 0.049 | 0.032 |
Marital Level | ||||||||
Spinsterhood | −0.020 | 0.014 | −0.062 | 0.036 | 0.004 | 0.034 | 0.002 | 0.046 |
Married/cohabitation | 0.007 | 0.004 | 0.024 | 0.009 ** | −0.028 | 0.009 ** | 0.048 | 0.015 ** |
Widowed/divorce/separation | 0.005 | 0.024 | −0.003 | 0.048 | 0.054 | 0.064 | −0.069 | 0.100 |
Employment | ||||||||
Farming and aquaculture | 0.014 | 0.007 | 0.005 | 0.019 | 0.001 | 0.017 | 0.049 | 0.029 |
Others | −0.001 | 0.005 | 0.015 | 0.011 | −0.033 | 0.010 ** | 0.037 | 0.017 * |
Student | −0.043 | 0.032 | −0.020 | 0.165 | 0.049 | 0.125 | −0.159 | 0.172 |
Unemployed/retired | 0.029 | 0.010 ** | 0.035 | 0.018 | 0.040 | 0.024 | −0.002 | 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Yu, D.; Ju, L.; Cheng, X.; Zhao, L. Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015. Nutrients 2022, 14, 146. https://doi.org/10.3390/nu14010146
Wei X, Yu D, Ju L, Cheng X, Zhao L. Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015. Nutrients. 2022; 14(1):146. https://doi.org/10.3390/nu14010146
Chicago/Turabian StyleWei, Xiaoqi, Dongmei Yu, Lahong Ju, Xue Cheng, and Liyun Zhao. 2022. "Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015" Nutrients 14, no. 1: 146. https://doi.org/10.3390/nu14010146
APA StyleWei, X., Yu, D., Ju, L., Cheng, X., & Zhao, L. (2022). Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015. Nutrients, 14(1), 146. https://doi.org/10.3390/nu14010146