Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Sources
2.2. Primary and Secondary Outcomes
2.3. Statistical Analyses
3. Results
3.1. Patient Baseline Characteristics
3.2. All-Cause and Cardiovascular Mortality
3.3. Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, T.I.; Streja, E.; Soohoo, M.; Kim, T.W.; Rhee, C.M.; Kovesdy, C.P.; Kashyap, M.L.; Vaziri, N.D.; Kalantar-Zadeh, K.; Moradi, H. Association of serum triglyceride to HDL cholesterol ratio with all-cause and cardiovascular mortality in incident hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2017, 12, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.N.; Baird, B.C.; Leypoldt, J.K.; Cheung, A.K.; Goldfarb-Rumyantzev, A.S. The association of lipid levels with mortality in patients on chronic peritoneal dialysis. Nephrol. Dial. Transplant. 2006, 21, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Sun, Z.; Zhang, X.; Li, Z.; Guo, X.; Xie, Y.; Sun, Y.; Zheng, L. Non-traditional lipid profiles associated with ischemic stroke not hemorrhagic stroke in hypertensive patients: Results from an 8.4 years follow-up study. Lipids Health Dis. 2019, 18, 9. [Google Scholar] [CrossRef]
- Guo, X.; Li, Z.; Sun, G.; Guo, L.; Zheng, L.; Yu, S.; Yang, H.; Pan, G.; Zhang, Y.; Sun, Y. Comparison of four nontraditional lipid profiles in relation to ischemic stroke among hypertensive Chinese population. Int. J. Cardiol. 2015, 201, 123–125. [Google Scholar] [CrossRef]
- Arsenault, B.J.; Rana, J.S.; Stroes, E.S.; Després, J.-P.; Shah, P.K.; Kastelein, J.J.; Wareham, N.J.; Boekholdt, S.M.; Khaw, K.-T. Beyond low-density lipoprotein cholesterol: Respective contributions of non–high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J. Am. Coll. Cardiol. 2009, 55, 35–41. [Google Scholar]
- Wang, H.; Li, Z.; Guo, X.; Chen, Y.; Chang, Y.; Chen, S.; Sun, Y. The impact of nontraditional lipid profiles on left ventricular geometric abnormalities in general Chinese population. BMC Cardiovasc. Disord. 2018, 18, 88. [Google Scholar] [CrossRef]
- Moradi, H.; Streja, E.; Kashyap, M.L.; Vaziri, N.D.; Fonarow, G.C.; Kalantar-Zadeh, K. Elevated high-density lipoprotein cholesterol and cardiovascular mortality in maintenance hemodialysis patients. Nephrol. Dial. Transplant. 2014, 29, 1554–1562. [Google Scholar] [CrossRef]
- Chang, T.I.; Streja, E.; Ko, G.J.; Naderi, N.; Rhee, C.M.; Kovesdy, C.P.; Kashyap, M.L.; Vaziri, N.D.; Kalantar-Zadeh, K.; Moradi, H. Inverse Association Between Serum Non–High-Density Lipoprotein Cholesterol Levels and Mortality in Patients Undergoing Incident Hemodialysis. J. Am. Heart Assoc. 2018, 7, e009096. [Google Scholar] [CrossRef]
- Park, C.H.; Kang, E.W.; Park, J.T.; Han, S.H.; Yoo, T.-H.; Kang, S.-W.; Chang, T.I. Association of serum lipid levels over time with survival in incident peritoneal dialysis patients. J. Clin. Lipidol. 2017, 11, 945–954.e3. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Tsai, W.-C.; Chiu, Y.-L.; Hsu, S.-P.; Pai, M.-F.; Yang, J.-Y.; Peng, Y.-S. Triglyceride to high-density lipoprotein cholesterol ratio predicts cardiovascular outcomes in prevalent dialysis patients. Medicine 2015, 94, e619. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Criqui, M.H.; Golomb, B.A. Epidemiologic aspects of lipid abnormalities. Am. J. Med. 1998, 105, 48S–57S. [Google Scholar] [CrossRef]
- Wang, T.-D.; Chen, W.-J.; Chien, K.-L.; Su, S.S.-Y.; Hsu, H.-C.; Chen, M.-F.; Liau, C.-S.; Lee, Y.-T. Efficacy of cholesterol levels and ratios in predicting future coronary heart disease in a Chinese population. Am. J. Cardiol. 2001, 88, 737–743. [Google Scholar] [CrossRef]
- Kinosian, B.; Glick, H.; Garland, G. Cholesterol and coronary heart disease: Predicting risks by levels and ratios. Ann. Intern. Med. 1994, 121, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Emanuele, D.A.; Pei, G.; Lisa, P.; Stephen, K.; Muriel, C.; Alexander, T.; Adam, S.B.; Nadeem, S.; David, W.; Danish, S. Lipid-related markers and cardiovascular disease prediction. JAMA 2012, 307, 506. [Google Scholar]
- Ebong, I.A.; Goff, D.C., Jr.; Rodriguez, C.J.; Chen, H.; Sibley, C.T.; Bertoni, A.G. Association of lipids with incident heart failure among adults with and without diabetes mellitus: Multiethnic Study of Atherosclerosis. Circ. Heart Fail. 2013, 6, 371–378. [Google Scholar] [CrossRef]
- Kastelein, J.J.; Van Der Steeg, W.A.; Holme, I.; Gaffney, M.; Cater, N.B.; Barter, P.; Deedwania, P.; Olsson, A.G.; Boekholdt, S.M.; Demicco, D.A. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation 2008, 117, 3002–3009. [Google Scholar] [CrossRef]
- Mathews, S.C.; Mallidi, J.; Kulkarni, K.; Toth, P.P.; Jones, S.R. Achieving secondary prevention low-density lipoprotein particle concentration goals using lipoprotein cholesterol-based data. PLoS ONE 2012, 7, e33692. [Google Scholar] [CrossRef][Green Version]
- Ingelsson, E.; Schaefer, E.J.; Contois, J.H.; McNamara, J.R.; Sullivan, L.; Keyes, M.J.; Pencina, M.J.; Schoonmaker, C.; Wilson, P.W.; D’Agostino, R.B. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. JAMA 2007, 298, 776–785. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Cook, N.R.; Bradwin, G.; Buring, J.E. Non–HDL cholesterol, apolipoproteins AI and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA 2005, 294, 326–333. [Google Scholar] [CrossRef]
- Elshazly, M.B.; Nicholls, S.J.; Nissen, S.E.; John, J.S.; Martin, S.S.; Jones, S.R.; Quispe, R.; Stegman, B.; Kapadia, S.R.; Tuzcu, E.M. Implications of total to high-density lipoprotein cholesterol ratio discordance with alternative lipid parameters for coronary atheroma progression and cardiovascular events. Am. J. Cardiol. 2016, 118, 647–655. [Google Scholar] [CrossRef]
- Elshazly, M.B.; Quispe, R.; Michos, E.D.; Sniderman, A.D.; Toth, P.P.; Banach, M.; Kulkarni, K.R.; Coresh, J.; Blumenthal, R.S.; Jones, S.R. Patient-Level Discordance in Population Percentiles of the Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio in Comparison with Low-Density Lipoprotein Cholesterol and Non–High-Density Lipoprotein Cholesterol: The Very Large Database of Lipids Study (VLDL-2B). Circulation 2015, 132, 667–676. [Google Scholar] [PubMed]
- Sniderman, A.D.; Lamarche, B.; Contois, J.H.; de Graaf, J. Discordance analysis and the Gordian Knot of LDL and non-HDL cholesterol versus apoB. Curr. Opin. Lipidol. 2014, 25, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Otvos, J.D.; Mora, S.; Shalaurova, I.; Greenland, P.; Mackey, R.H.; Goff, D.C., Jr. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J. Clin. Lipidol. 2011, 5, 105–113. [Google Scholar] [CrossRef]
- Barter, P.J.; Ballantyne, C.M.; Carmena, R.; Cabezas, M.C.; Chapman, M.J.; Couture, P.; De Graaf, J.; Durrington, P.; Faergeman, O.; Frohlich, J. Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: Report of the thirty-person/ten-country panel. J. Intern. Med. 2006, 259, 247–258. [Google Scholar] [CrossRef]
- Cromwell, W.C.; Otvos, J.D.; Keyes, M.J.; Pencina, M.J.; Sullivan, L.; Vasan, R.S.; Wilson, P.W.; D’Agostino, R.B. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study—Implications for LDL management. J. Clin. Lipidol. 2007, 1, 583–592. [Google Scholar] [CrossRef]
- Dincer, N.; Dagel, T.; Afsar, B.; Covic, A.; Ortiz, A.; Kanbay, M. The effect of chronic kidney disease on lipid metabolism. Int. Urol. Nephrol. 2019, 51, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Holzer, M.; Schilcher, G.; Curcic, S.; Trieb, M.; Ljubojevic, S.; Stojakovic, T.; Scharnagl, H.; Kopecky, C.M.; Rosenkranz, A.R.; Heinemann, A. Dialysis modalities and HDL composition and function. J. Am. Soc. Nephrol. 2015, 26, 2267–2276. [Google Scholar] [CrossRef]
- Ali, I.; Chinnadurai, R.; Ibrahim, S.T.; Green, D.; Kalra, P.A. Predictive factors of rapid linear renal progression and mortality in patients with chronic kidney disease. BMC Nephrol. 2020, 21, 345. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Yancey, P.G.; Ikizler, T.A.; Jerome, W.G.; Kaseda, R.; Cox, B.; Bian, A.; Shintani, A.; Fogo, A.B.; Linton, M.F.; et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J. Am. Coll. Cardiol. 2012, 60, 2372–2379. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Ueda, M.; Kojima, S.; Mashiba, S.; Michihata, T.; Takahashi, K.; Shishido, K.; Akizawa, T. Oxidized high-density lipoprotein as a risk factor for cardiovascular events in prevalent hemodialysis patients. Atherosclerosis 2012, 220, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Little, J.; Phillips, L.; Russell, L.; Griffiths, A.; Russell, G.I.; Davies, S.J. Longitudinal lipid profiles on CAPD: Their relationship to weight gain, comorbidity, and dialysis factors. J. Am. Soc. Nephrol. 1998, 9, 1931–1939. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Marchionni, C.; Caldarelli, L.; Curatola, G. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol. 2001, 38, 163–169. [Google Scholar] [CrossRef]
- Boemi, M.; Leviev, I.; Sirolla, C.; Pieri, C.; Marra, M.; James, R.W. Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives; influence on the ability of HDL to protect LDL from oxidation. Atherosclerosis 2001, 155, 229–235. [Google Scholar] [CrossRef]
- Sens, F.; Schott-Pethelaz, A.M.; Labeeuw, M.; Colin, C.; Villar, E. Survival advantage of hemodialysis relative to peritoneal dialysis in patients with end-stage renal disease and congestive heart failure. Kidney Int. 2011, 80, 970–977. [Google Scholar] [CrossRef]
- McDonald, S.P.; Marshall, M.R.; Johnson, D.W.; Polkinghorne, K.R. Relationship between dialysis modality and mortality. J. Am. Soc. Nephrol. 2009, 20, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, X.; Hong, H.G.; Li, Y.; Fu, P. The association between body mass index and mortality among Asian peritoneal dialysis patients: A meta-analysis. PLoS ONE 2017, 12, e0172369. [Google Scholar]
- Kiran, V.R.; Zhu, T.Y.; Yip, T.; Lui, S.L.; Lo, W.K. Body mass index and mortality risk in Asian peritoneal dialysis patients in Hong Kong-impact of diabetes and cardiovascular disease status. Perit. Dial. Int. 2014, 34, 390–398. [Google Scholar] [CrossRef]
- Mehrotra, R.; Chiu, Y.W.; Kalantar-Zadeh, K.; Bargman, J.; Vonesh, E. Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch. Intern. Med. 2011, 171, 110–118. [Google Scholar] [CrossRef]
- Yeates, K.; Zhu, N.; Vonesh, E.; Trpeski, L.; Blake, P.; Fenton, S. Hemodialysis and peritoneal dialysis are associated with similar outcomes for end-stage renal disease treatment in Canada. Nephrol. Dial. Transplant. 2012, 27, 3568–3575. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Park, J.Y.; Kang, S.; Kim, K.H.; Ryu, D.R.; Kim, H.; Joo, K.W.; Lim, C.S.; Kim, Y.S.; Kim, D.K. Dialysis Modality and Mortality in the Elderly: A Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2015, 10, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.C.; Huang, S.Q.; Peng, Y.; Wan, L.; Wu, Y.Q.; Hu, T.Y.; Hu, J.J.; Hao, F.B. HDL-C is associated with mortality from all causes, cardiovascular disease and cancer in a J-shaped dose-response fashion: A pooled analysis of 37 prospective cohort studies. Eur. J. Prev. Cardiol. 2020, 27, 1187–1203. [Google Scholar] [CrossRef]
- Rodriguez, A. High HDL-Cholesterol Paradox: SCARB1-LAG3-HDL Axis. Curr. Atheroscler. Rep. 2021, 23, 5. [Google Scholar] [CrossRef]
- Wanner, C.; Krane, V.; März, W.; Olschewski, M.; Mann, J.F.; Ruf, G.; Ritz, E. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 2005, 353, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Fellström, B.C.; Jardine, A.G.; Schmieder, R.E.; Holdaas, H.; Bannister, K.; Beutler, J.; Chae, D.W.; Chevaile, A.; Cobbe, S.M.; Grönhagen-Riska, C.; et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 2009, 360, 1395–1407. [Google Scholar] [CrossRef]
Variables | TC/HDL-C | |||||
---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | p-Value | |
Age at initiation of dialysis (years) | 51.61 ± 14.45 | 52.46 ± 12.19 | 49.95 ± 11.90 | 51.05 ± 12.85 | 52.58 ± 11.99 | 0.451 |
Sex (Male, %) | 69 (54.8) | 74 (59.2) | 74 (58.23) | 75 (59.1) | 82 (65.6) | 0.526 |
Body mass index (kg/m2) | 21.94 ± 3.24 | 22.39 ± 2.92 | 23.13 ± 3.22 | 23.66 ± 3.40 | 24.36 ± 3.34 | <0.001 |
Primary renal disease, n (%) | ||||||
Diabetes | 50 (39.7) | 50 (40.0) | 45 (35.4) | 52 (40.9) | 70 (56.0) | 0.034 |
Hypertension | 27 (21.4) | 27 (21.6) | 21 (16.5) | 25 (19.7) | 16 (12.8) | |
Glomerulonephritis | 26 (20.6) | 30 (24.0) | 24 (18.9) | 24 (18.9) | 19 (15.2) | |
Others | 23 (18.3) | 18 (14.4) | 37 (29.1) | 26 (20.5) | 20 (16.0) | |
Comorbidity at initiation of dialysis, n (%) | ||||||
Congestive heart failure | 9 (7.1) | 12 (9.7) | 13 (10.2) | 14 (11.0) | 11 (8.8) | 0.858 |
Coronary artery disease | 15 (11.9) | 14 (11.2) | 7 (5.6) | 12 (9.5) | 12 (9.6) | 0.473 |
Peripheral vascular disease | 7 (5.6) | 7 (5.6) | 7 (5.7) | 5 (3.9) | 4 (3.2) | 0.838 |
Arrhythmia | 4 (3.2) | 0 (0.0) | 2 (1.6) | 3 (2.4) | 1 (0.8) | 0.285 |
Cerebrovascular disease | 5 (15.6) | 5 (15.6) | 8 (6.3) | 7 (5.6) | 7 (5.6) | 0.887 |
Chronic lung disease | 6 (4.8) | 2 (1.6) | 3 (2.4) | 6 (4.7) | 3 (2.4) | 0.476 |
Peptic ulcer disease | 1 (0.79) | 7 (5.6) | 10 (7.87) | 3 (2.36) | 3 (2.4) | 0.023 |
Moderate to severe chronic liver disease | 9 (7.1) | 6 (4.8) | 2 (1.6) | 1 (0.8) | 3 (2.4) | 0.032 |
Connective tissue disease | 9 (7.1) | 10 (8.0) | 16 (12.6) | 14 (11.0) | 14 (11.2) | 0.558 |
Malignancy | 5 (4.0) | 5 (4.0) | 3 (2.4) | 5 (4.0) | 2 (1.6) | 0.723 |
Modified Charlson comorbidity index | 4.55 ± 2.26 | 5.55 ± 2.26 | 4.28 ± 2.05 | 4.41 ± 2.13 | 4.69 ± 1.98 | 0.607 |
Laboratory data at initiation of dialysis | ||||||
Hemoglobin (g/dL) | 9.34 ± 1.87 | 9.67 ± 1.49 | 9.76 ± 1.96 | 9.61 ± 1.45 | 9.72 ± 1.51 | 0.282 |
Blood urea nitrogen (mg/dL) | 77.27 ± 34.99 | 82.58 ± 40.13 | 74.76 ± 34.29 | 69.99 ± 31.19 | 69.64 ± 30.24 | 0.015 |
Creatinine (mg/dL) | 8.42 ± 3.55 | 9.06 ± 3.96 | 8.44 ± 3.29 | 8.67 ± 3.53 | 9.30 ± 4.19 | 0.236 |
Albumin (g/dL) | 3.38 ± 0.58 | 3.58 ± 0.55 | 3.52 ± 0.59 | 3.55 ± 0.49 | 3.70 ± 0.63 | 0.016 |
Calcium (mg/dL) | 7.99 ± 0.98 | 8.02 ± 0.99 | 7.96 ± 1.00 | 8.10 ± 1.08 | 8.17 ± 0.94 | 0.458 |
Phosphorus (mg/dL) | 5.49 ± 1.93 | 5.37 ± 1.56 | 5.14 ± 1.89 | 5.35 ± 1.70 | 5.48 ± 1.75 | 0.517 |
Urine volume (mL/day) | 920.91 ± 575.85 | 989.49 ± 692.30 | 1000.31 ± 653.44 | 937.47 ± 623.06 | 885.30 ± 647.41 | 0.586 |
Quintile 1 | Quintile 2 | Quintile 4 | Quintile 5 | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Model 1 | 1.12 (0.77–2.08) | 0.347 | 1.40 (0.87–2.27) | 0.180 | 1.36 (0.84–2.21) | 0.208 | 1.74 (1.09–2.76) | 0.020 |
Model 2 | 1.17 (0.71–1.95) | 0.535 | 1.22 (0.75–2.00) | 0.420 | 1.30 (0.80–2.11) | 0.286 | 1.65 (1.04–2.64) | 0.035 |
Model 3 | 1.27 (0.76–2.13) | 0.366 | 1.29 (0.79–2.12) | 0.315 | 1.46 (0.88–2.40) | 0.141 | 1.70 (1.04–2.76) | 0.034 |
Model 4 | 1.27 (0.75–2.13) | 0.374 | 1.29 (0.78–2.12) | 0.319 | 1.45 (0.88–2.34) | 0.148 | 1.69 (1.04–2.76) | 0.036 |
Univariate | Multivariate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
β | Std | t | p-Value | R2 | β | Std | t | p-Value | R2 | |
(intercept) | 1.840 | 0937 | 1.96 | 0.0500 | 0.036 | |||||
BMI | 0.129 | 0.030 | 4.38 | <.0001 | 0.030 | 0.125 | 0.031 | 4.09 | <0.0001 | |
DM | 0.287 | 0.200 | 1.44 | 0.1510 | 0.003 | 0.120 | 0.215 | 0.56 | 0.5762 | |
PUD | −0.242 | 0.522 | −0.46 | 0.6432 | 0.000 | −0.143 | 0.518 | −0.28 | 0.7832 | |
CLD | 0.021 | 0.571 | 0.04 | 0.9702 | 0.000 | 0.060 | 0.567 | 0.11 | 0.9158 | |
BUN | −0.006 | 0.003 | −2.06 | 0.0397 | 0.007 | −0.005 | 0.003 | −1.75 | 0.0807 | |
Albumin | 0.012 | 0.175 | 0.07 | 0.9477 | 0.000 | 0.041 | 0.187 | 0.22 | 0.8265 |
Quintile 1 (N = 126) | Quintile 2 (N = 125) | Quintile 4 (N = 127) | Quintile 5 (N = 125) | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Model 1 | 1.12 (0.71–1.77) | 0.616 | 0.99 (0.62–1.57) | 0.953 | 0.97 (0.61–1.53) | 0.888 | 1.74 (1.09–2.76) | 0.786 |
Model 2 | 0.94 (0.59–1.49) | 0.793 | 0.92 (0.58–1.46) | 0.722 | 0.91 (0.57–1.44) | 0.683 | 0.87 (0.55–1.40) | 0.570 |
Model 3 | 0.76 (0.47–1.24) | 0.271 | 0.90 (0.56–1.45) | 0.664 | 0.79 (0.49–1.26) | 0.315 | 0.73 (0.45–1.17) | 0.188 |
Model 4 | 0.77 (0.47–1.24) | 0.278 | 0.90 (0.56–1.45) | 0.678 | 0.79 (0.50–1.27) | 0.331 | 0.73 (0.45–1.18) | 0.198 |
Quintile 1 (N = 126) | Quintile 2 (N = 125) | Quintile 4 (N = 127) | Quintile 5 (N= 125) | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Model 1 | 1.39 (0.90–2.15) | 0.136 | 0.79 (0.49–1.27) | 0.328 | 1.24 (0.80–1.93) | 0.345 | 0.70 (0.42–1.17) | 0.170 |
Model 2 | 1.32 (0.85–2.06) | 0.214 | 0.87 (0.53–1.42) | 0.586 | 1.28 (0.82–2.01) | 0.273 | 0.80 (0.47–1.34) | 0.392 |
Model 3 | 1.23 (0.78–1.94) | 0.371 | 0.81 (0.49–1.33) | 0.405 | 1.17 (0.74–1.85) | 0.497 | 0.70 (0.41–1.18) | 0.175 |
Model 4 | 1.21 (0.77–1.93) | 0.398 | 0.80 (0.49–1.33) | 0.393 | 1.17 (0.74–1.84) | 0.506 | 0.69 (0.41–1.17) | 0.171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, H.-W.; Jeon, Y.; Kim, J.-H.; Lee, G.-Y.; Jeon, S.-J.; Kim, K.-Y.; Lim, J.-H.; Jung, H.-Y.; Choi, J.-Y.; Park, S.-H.; et al. Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients. Nutrients 2022, 14, 144. https://doi.org/10.3390/nu14010144
Noh H-W, Jeon Y, Kim J-H, Lee G-Y, Jeon S-J, Kim K-Y, Lim J-H, Jung H-Y, Choi J-Y, Park S-H, et al. Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients. Nutrients. 2022; 14(1):144. https://doi.org/10.3390/nu14010144
Chicago/Turabian StyleNoh, Hee-Won, Yena Jeon, Ji-Hye Kim, Ga-Young Lee, Soo-Jee Jeon, Kyu-Yeun Kim, Jeong-Hoon Lim, Hee-Yeon Jung, Ji-Young Choi, Sun-Hee Park, and et al. 2022. "Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients" Nutrients 14, no. 1: 144. https://doi.org/10.3390/nu14010144
APA StyleNoh, H.-W., Jeon, Y., Kim, J.-H., Lee, G.-Y., Jeon, S.-J., Kim, K.-Y., Lim, J.-H., Jung, H.-Y., Choi, J.-Y., Park, S.-H., Kim, C.-D., Kim, Y.-L., & Cho, J.-H. (2022). Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients. Nutrients, 14(1), 144. https://doi.org/10.3390/nu14010144