The Impact of Highly Effective CFTR Modulators on Growth and Nutrition Status
Abstract
:1. CFTR Mutations and Cystic Fibrosis
2. CFTR Modulators and Cystic Fibrosis
3. Anthropometrics and Nutritional Status in Cystic Fibrosis
3.1. Effects of Ivacaftor on Anthropometrics and Nutritional Status in Cystic Fibrosis
3.2. Effects of Elexacaftor/Tezacaftor/Ivacaftor on Anthropometrics and Nutritional Status in Cystic Fibrosis
4. Body Composition in Cystic Fibrosis
Changes in Body Composition with Ivacaftor
5. Bile Acid Metabolism and Hepatobiliary Disease in Cystic Fibrosis
Changes in Bile Acid Metabolism and Hepatobiliary Disease with Ivacaftor
6. Exocrine Pancreatic Dysfunction in Cystic Fibrosis
Changes in Exocrine Pancreatic Dysfunction with Ivacaftor
7. Bicarbonate Secretion in Cystic Fibrosis
Changes in Bicarbonate Secretion with Ivacaftor
8. Energy Expenditure in Cystic Fibrosis
Changes in Energy Expenditure with Ivacaftor
9. Intestinal Microbiota and Inflammation in Cystic Fibrosis
Changes in Intestinal Microbiota and Inflammation with Ivacaftor
10. Future Directions
10.1. Linear Growth
10.2. CF Legacy Diet
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rowe, S.M.; Miller, S.; Sorscher, E.J. Cystic fibrosis. N. Engl. J. Med. 2005, 352, 1992–2001. [Google Scholar] [CrossRef]
- Zeitlin, P.L. Pharmacologic restoration of αδF508 CFTR-mediated chloride current. Kidney Int. 2000, 57, 832–837. [Google Scholar] [CrossRef] [Green Version]
- McKone, E.F.; Emerson, S.S.; Edwards, K.L.; Aitken, M.L. Effect of genotype on phenotype and mortality in cystic fibrosis: A retrospective cohort study. Lancet 2003, 361, 1671–1676. [Google Scholar] [CrossRef]
- Cystic Fibrosis Foundation. Patient Registry 2019 Annual Data Report; Cystic Fibrosis Foundation: Bethesda, MD, USA, 2020. [Google Scholar]
- Cuevas-Ocaña, S.; LaSelva, O.; Avolio, J.; Nenna, R. The era of CFTR modulators: Improvements made and remaining challenges. Breathe 2020, 16, 200016. [Google Scholar] [CrossRef]
- Rowe, S.M.; Daines, C.; Ringshausen, F.C.; Kerem, E.; Wilson, J.; Tullis, E.; Nair, N.; Simard, C.; Han, L.; Ingenito, E.P.; et al. Tezacaftor—Ivacaftor in residual-function heterozygotes with cystic fibrosis. N. Engl. J. Med. 2017, 377, 2024–2035. [Google Scholar] [CrossRef] [Green Version]
- Vertex Pharmaceuticals Incorporated. Kalydeco (Ivacaftor) [Package Insert]; Vertex Pharmaceuticals Incorporated: Boston, MA, USA, 2020. [Google Scholar]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Dřevínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR potentiator in patients with cystic fibrosis and the G551DMutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.C.; Wainwright, C.; Canny, G.J.; Chilvers, M.; Howenstine, M.S.; Munck, A.; Mainz, J.G.; Rodriguez, S.; Li, H.; Yen, K.; et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am. J. Respir. Crit. Care Med. 2013, 187, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.M.; Heltshe, S.L.; Gonska, T.; Donaldson, S.H.; Borowitz, D.; Gelfond, D.; Sagel, S.D.; Khan, U.; Mayer-Hamblett, N.; van Dalfsen, J.M.; et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 175–184. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Elborn, J.S.; Ramsey, B.W.; Marigowda, G.; Huang, X.; Cipolli, M.; Colombo, C.; Davies, J.C.; de Boeck, K.; Flume, P.A.; et al. Lumacaftor—Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 2015, 373, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Cousar, J.L.; Munck, A.; McKone, E.F.; van der Ent, C.K.; Moeller, A.; Simard, C.; Wang, L.T.; Ingenito, E.P.; McKee, C.; Lu, Y.; et al. Tezacaftor—Ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N. Engl. J. Med. 2017, 377, 2013–2023. [Google Scholar] [CrossRef]
- Heijerman, H.G.M.; McKone, E.F.; Downey, D.G.; van Braeckel, E.; Rowe, S.M.; Tullis, E.; Mall, M.A.; Welter, J.J.; Ramsey, B.W.; McKee, C.M.; et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: A double-blind, randomised, phase 3 trial. Lancet 2019, 394, 1940–1948. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor—Tezacaftor—Ivacaftor for cystic fibrosis with a single Phe508del allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- Stalvey, M.S.; Pace, J.; Niknian, M.; Higgins, M.N.; Tarn, V.; Davis, J.; Heltshe, S.L.; Rowe, S.M. Growth in prepubertal children with cystic fibrosis treated with ivacaftor. Pediatrics 2017, 139. [Google Scholar] [CrossRef] [Green Version]
- Borowitz, D.; Lubarsky, B.; Wilschanski, M.; Munck, A.; Gelfond, D.; Bodewes, F.A.J.A.; Schwarzenberg, S.J. Nutritional status improved in cystic fibrosis patients with the G551D mutation after treatment with ivacaftor. Dig. Dis. Sci. 2016, 61, 198–207. [Google Scholar] [CrossRef]
- Ratjen, F.; Hug, C.; Marigowda, G.; Tian, S.; Huang, X.; Stanojevic, S.; Milla, C.E.; Robinson, P.D.; Waltz, D.; Davies, J.C.; et al. Efficacy and safety of lumacaftor and ivacaftor in patients aged 6–11 years with cystic fibrosis homozygous for F508del-CFTR: A randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2017, 5, 557–567. [Google Scholar] [CrossRef]
- Singh, V.K.; Schwarzenberg, S.J. Pancreatic insufficiency in cystic fibrosis. J. Cyst. Fibros. 2017, 16, S70–S78. [Google Scholar] [CrossRef] [Green Version]
- Brownell, J.N.; Bashaw, H.; Stallings, V.A. Growth and nutrition in cystic fibrosis. Semin. Respir. Crit. Care Med. 2019, 40, 775–791. [Google Scholar] [CrossRef]
- Kraemer, R.; Rüdeberg, A.; Hadorn, B.; Rossi, E. Relative underweight in cystic fibrosis and its prognostic value. Acta Paediatr. 1978, 67, 33–37. [Google Scholar] [CrossRef]
- Richardson, I.; Nyulasi, I.; Cameron, K.; Ball, M.; Wilson, J. Nutritional status of an adult cystic fibrosis population. Nutrition 2000, 16, 255–259. [Google Scholar] [CrossRef]
- Navarro, J.; Rainisio, M.; Harms, H.; Hodson, M.; Koch, C.; Mastella, G.; Strandvik, B.; McKenzie, S. Factors associated with poor pulmonary function: Cross-sectional analysis of data from the ERCF. Eur. Respir. J. 2001, 18, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Steinkamp, G. Relationship between nutritional status and lung function in cystic fibrosis: Cross sectional and longitudinal analyses from the German CF quality assurance (CFQA) project. Thorax 2002, 57, 596–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkenazi, M.; Nathan, N.; Sarouk, I.; Bar Aluma, B.E.; Dagan, A.; Bezalel, Y.; Keler, S.; Vilozni, D.; Efrati, O. Nutritional status in childhood as a prognostic factor in patients with cystic fibrosis. Lung 2019, 197, 371–376. [Google Scholar] [CrossRef]
- Zemel, B.S.; Jawad, A.F.; FitzSimmons, S.; Stallings, V.A. Longitudinal relationship among growth, nutritional status, and pulmonary function in children with cystic fibrosis: Analysis of the Cystic Fibrosis Foundation National CF Patient Registry. J. Pediatr. 2000, 137, 374–380. [Google Scholar] [CrossRef]
- Mansell, A.L.; Andersen, J.C.; Muttart, C.R.; Ores, C.N.; Loeff, D.S.; Levy, J.S.; Heird, W.C. Short-term pulmonary effects of total parenteral nutrition in children with cystic fibrosis. J. Pediatr. 1984, 104, 700–705. [Google Scholar] [CrossRef]
- Levy, L.D.; Durie, P.R.; Pencharz, P.B.; Corey, M.L. Effects of long-term nutritional rehabilitation on body composition and clinical status in malnourished children and adolescents with cystic fibrosis. J. Pediatr. 1985, 107, 225–230. [Google Scholar] [CrossRef]
- Steinkamp, G.; von der Hardt, H. Improvement of nutritional status and lung function after long-term nocturnal gastrostomy feedings in cystic fibrosis. J. Pediatr. 1994, 124, 244–249. [Google Scholar] [CrossRef]
- Siret, D.; Bretaudeau, G.; Branger, B.; Dabadie, A.; Dagorne, M.; David, V.; de Braekeleer, M.; Moisan-Petit, V.; Picherot, G.; Rault, G.; et al. Comparing the clinical evolution of cystic fibrosis screened neonatally to that of cystic fibrosis diagnosed from clinical symptoms: A 10-year retrospective study in a French region (Brittany). Pediatr. Pulmonol. 2003, 35, 342–349. [Google Scholar] [CrossRef]
- Leung, D.H.; Heltshe, S.L.; Borowitz, D.; Gelfond, D.; Kloster, M.; Heubi, J.E.; Stalvey, M.; Ramsey, B.W. Effects of diagnosis by newborn screening for cystic fibrosis on weight and length in the first year of life. JAMA Pediatr. 2017, 171, 546–554. [Google Scholar] [CrossRef]
- Davies, J.C.; Cunningham, S.; Harris, W.T.; Lapey, A.; Regelmann, W.E.; Sawicki, G.S.; Southern, K.W.; Robertson, S.; Green, Y.; Cooke, J.; et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): An open-label, single-arm study. Lancet Respir. Med. 2016, 4, 107–115. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Wainwright, C.; Higgins, M.; Wang, L.T.; McKee, C.; Campbell, D.; Tian, S.; Schneider, J.; Cunningham, S.; Davies, J.C.; et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): A phase 3 single-arm study. Lancet Respir. Med. 2018, 6, 545–553. [Google Scholar] [CrossRef]
- Ionescu, A.A.; Evans, W.D.; Pettit, R.J.; Nixon, L.S.; Stone, M.D.; Shale, D.J. Hidden depletion of fat-free mass and bone mineral density in adults with cystic fibrosis. Chest 2003, 124, 2220–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, S.; Zemel, B.S.; Stallings, V.A.; Rubenstein, R.C.; Kelly, A. Body composition and pulmonary function in cystic fibrosis. Front. Pediatr. 2014, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Calella, P.; Valerio, G.; Thomas, M.; McCabe, H.; Taylor, J.; Brodlie, M.; Siervo, M. Association between body composition and pulmonary function in children and young people with cystic fibrosis. Nutrition 2018, 48, 73–76. [Google Scholar] [CrossRef]
- Stallings, V.A.; Sainath, N.; Oberle, M.; Bertolaso, C.; Schall, J.I. Energy balance and mechanisms of weight gain with ivacaftor treatment of cystic fibrosis gating mutations. J. Pediatr. 2018, 201, 229–237.e4. [Google Scholar] [CrossRef] [PubMed]
- Kolpen, M.; Ravnholt, C.; Qvist, T.; Kragh, K.N.; Fritz, B.G.; Bjarnsholt, T.; Høiby, N.; Jensen, P. Poster session abstracts. Pediatr. Pulmonol. 2017, 52, S214–S516. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Ahn, S.-H.; Inagaki, T.; Choi, M.; Ito, S.; Guo, G.L.; Kliewer, S.A.; Gonzalez, F.J. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res. 2007, 48, 2664–2672. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.; Mulcahy, H.; Fenlon, H.; O’Broin, A.; Casey, M.; Burke, A.; Fitzgerald, M.X.; Hegarty, J.E. Intestinal bile acid malabsorption in cystic fibrosis. Gut 1993, 34, 1137–1141. [Google Scholar] [CrossRef] [Green Version]
- Van de Peppel, I.P.; Bodewes, F.A.; Verkade, H.J.; Jonker, J.W. Bile acid homeostasis in gastrointestinal and metabolic complications of cystic fibrosis. J. Cyst. Fibros. 2019, 18, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Feranchak, A.P.; Sokol, R.J. Cholangiocyte biology and cystic fibrosis liver disease. Semin. Liver Dis. 2001, 21, 471–488. [Google Scholar] [CrossRef]
- Cheng, K.; Ashby, D.; Smyth, R.L. Ursodeoxycholic acid for cystic fibrosis-related liver disease. Cochrane Database Syst. Rev. 2017, 9, CD000222. [Google Scholar] [CrossRef] [Green Version]
- Van de Peppel, I.; Doktorova, M.; Berkers, G.; de Jonge, H.R.; Houwen, R.H.; Verkade, H.J.; Jonker, J.W.; Bodewes, F.A. IVACAFTOR restores FGF19 regulated bile acid homeostasis in cystic fibrosis patients with an S1251N or a G551D gating mutation. J. Cyst. Fibros. 2019, 18, 286–293. [Google Scholar] [CrossRef]
- Hayes, D.; Warren, P.S.; McCoy, K.S.; Sheikh, S.I. Improvement of hepatic steatosis in cystic fibrosis with ivacaftor therapy. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 578–579. [Google Scholar] [CrossRef] [PubMed]
- Durie, P.R.; Forstner, G.G. Pathophysiology of the exocrine pancreas in cystic fibrosis. J. R. Soc. Med. 1989, 82, 2–10. [Google Scholar]
- Wilschanski, M.; Durie, P.R. Pathology of pancreatic and intestinal disorders in cystic fibrosis. J. R. Soc. Med. 1998, 91, 40–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerem, E.; Corey, M.; Kerem, B.-S.; Rommens, J.; Markiewicz, D.; Levison, H.; Tsui, L.-C.; Durie, P. The relation between genotype and phenotype in cystic fibrosis—Analysis of the most common mutation (ΔF508). N. Engl. J. Med. 1990, 323, 1517–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littlewood, J.M.; Wolfe, S.P.; Conway, S.P. Diagnosis and treatment of intestinal malabsorption in cystic fibrosis. Pediatr. Pulmonol. 2006, 41, 35–49. [Google Scholar] [CrossRef]
- Baker, S.S.; Borowitz, D.; Duffy, L.; Fitzpatrick, L.; Gyamfi, J.; Baker, R.D. Pancreatic enzyme therapy and clinical outcomes in patients with cystic fibrosis. J. Pediatr. 2005, 146, 189–193. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Cunningham, S.; Harris, W.T.; Lapey, A.; Regelmann, W.E.; Sawicki, G.S.; Southern, K.W.; Chilvers, M.; Higgins, M.; Tian, S.; et al. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2–5 years (KLIMB). J. Cyst. Fibros. 2019, 18, 838–843. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Yi, Y.; Yan, Z.; Rosen, B.H.; Liang, B.; Winter, M.C.; Evans, T.I.A.; Rotti, P.G.; Yang, Y.; Gray, J.; et al. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci. Transl. Med. 2019, 11, eaau7531. [Google Scholar] [CrossRef] [Green Version]
- Trang, T.; Chan, J.; Graham, D.Y. Pancreatic enzyme replacement therapy for pancreatic exocrine insufficiency in the 21st century. World J. Gastroenterol. 2014, 20, 11467–11485. [Google Scholar] [CrossRef]
- Delchier, J.; Vidon, N.; Girardin, M.-F.S.-M.; Soule, J.-C.; Moulin, C.; Huchet, B.; Zylberberg, P. Fate of orally ingested enzymes in pancreatic insufficiency: Comparison of two pancreatic enzyme preparations. Aliment. Pharmacol. Ther. 2007, 5, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Gelfond, D.; Heltshe, S.; Ma, C.; Rowe, S.M.; Frederick, C.; Uluer, A.; Sicilian, L.; Konstan, M.; Tullis, E.; Roach, C.R.N.; et al. Impact of CFTR modulation on intestinal pH, motility, and clinical outcomes in patients with cystic fibrosis and the G551D mutation. Clin. Transl. Gastroenterol. 2017, 8, e81. [Google Scholar] [CrossRef]
- Vaisman, N.; Pencharz, P.B.; Corey, M.; Canny, G.J.; Hahn, E. Energy expenditure of patients with cystic fibrosis. J. Pediatr. 1987, 111, 496–500. [Google Scholar] [CrossRef]
- Stallings, V.A.; Tomezsko, J.L.; Schall, J.I.; Mascarenhas, M.R.; Stettler, N.; Scanlin, T.F.; Zemel, B.S. Adolescent development and energy expenditure in females with cystic fibrosis. Clin. Nutr. 2005, 24, 737–745. [Google Scholar] [CrossRef]
- Moudiou, T.; Galli-Tsinopoulou, A.; Nousia-Arvanitakis, S. Effect of exocrine pancreatic function on resting energy expenditure in cystic fibrosis. Acta Paediatr. 2007, 96, 1521–1525. [Google Scholar] [CrossRef]
- Magoffin, A.; Allen, J.R.; McCauley, J.; Gruca, M.A.; Peat, J.; van Asperen, P.; Gaskin, K. Longitudinal analysis of resting energy expenditure in patients with cystic fibrosis. J. Pediatr. 2008, 152, 703–708. [Google Scholar] [CrossRef]
- Lee, J.M.; Leach, S.; Katz, T.; Day, A.S.; Jaffe, A.; Ooi, C. Update of faecal markers of inflammation in children with cystic fibrosis. Mediat. Inflamm. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Nielsen, S.; Needham, B.; Leach, S.T.; Day, A.S.; Jaffe, A.; Thomas, T.; Ooi, C. Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis. Sci. Rep. 2016, 6, 24857. [Google Scholar] [CrossRef] [Green Version]
- Flass, T.; Tong, S.; Frank, D.N.; Wagner, B.; Robertson, C.; Kotter, C.V.; Sokol, R.J.; Zemanick, E.; Accurso, F.; Hoffenberg, E.; et al. Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis. PLoS ONE 2015, 10, e0116967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooi, C.Y.; Syed, S.A.; Rossi, L.; Garg, M.; Needham, B.; Avolio, J.; Young, K.; Surette, M.G.; Gonska, T. Impact of CFTR modulation with ivacaftor on gut microbiota and intestinal inflammation. Sci. Rep. 2018, 8, 17834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, D.B.; Slaven, J.E.; Maguiness, K.; Chmiel, J.F.; Ren, C.L. Early life height attainment in cystic fibrosis is associated with pulmonary function at age 6 years. Ann. Am. Thorac. Soc. 2021, 8, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Stalvey, M.S.; Clines, K.L.; Havasi, V.; McKibbin, C.R.; Dunn, L.K.; Chung, W.J.; Clines, G.A. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS ONE 2013, 8, e80098. [Google Scholar] [CrossRef] [PubMed]
- Zysman-Colman, Z.N.; Kilberg, M.J.; Harrison, V.S.; Chesi, A.; Grant, S.F.A.; Mitchell, J.; Sheikh, S.; Hadjiliadis, D.; Rickels, M.R.; Rubenstein, R.C.; et al. Genetic potential and height velocity during childhood and adolescence do not fully account for shorter stature in cystic fibrosis. Pediatr. Res. 2021, 89, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Turck, D.; Braegger, C.P.; Colombo, C.; Declercq, D.; Morton, A.; Pancheva, R.; Robberecht, E.; Stern, M.; Strandvik, B.; Wolfe, S.; et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016, 35, 557–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Outcome | Ivacaftor | ELEX-TEZ-IVA |
---|---|---|
Weight-Z | Increased | Increased |
Height-Z | Increased in youth | To be determined |
BMI-Z | Increased | Increased |
Fat Mass | Increased | To be determined |
Fat-Free Mass | Unchanged to increased | To be determined |
Bile Acid Metabolism | Increased FGF-19 and decreased C4 | To be determined |
CF Liver Disease | To be determined, case reports of improved steatosis | To be determined |
Exocrine Pancreatic Insufficiency | Increased fecal elastase at younger ages | To be determined |
Bicarbonate Secretion | Decreased time to reach pH 5.5 | To be determined |
Energy Expenditure | Decreased | To be determined |
GI Microbiome | Changes in intestinal flora and decreased calprotectin | To be determined |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bass, R.; Brownell, J.N.; Stallings, V.A. The Impact of Highly Effective CFTR Modulators on Growth and Nutrition Status. Nutrients 2021, 13, 2907. https://doi.org/10.3390/nu13092907
Bass R, Brownell JN, Stallings VA. The Impact of Highly Effective CFTR Modulators on Growth and Nutrition Status. Nutrients. 2021; 13(9):2907. https://doi.org/10.3390/nu13092907
Chicago/Turabian StyleBass, Rosara, Jefferson N. Brownell, and Virginia A. Stallings. 2021. "The Impact of Highly Effective CFTR Modulators on Growth and Nutrition Status" Nutrients 13, no. 9: 2907. https://doi.org/10.3390/nu13092907
APA StyleBass, R., Brownell, J. N., & Stallings, V. A. (2021). The Impact of Highly Effective CFTR Modulators on Growth and Nutrition Status. Nutrients, 13(9), 2907. https://doi.org/10.3390/nu13092907