Human Evolution and Dietary Ethanol
Abstract
1. Introduction
2. Vertebrate Responses to Naturally Occurring Ethanol
3. Evolutionary Consequences of Dietary Ethanol
4. Natural Ethanol Exposure in Chimpanzees
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dudley, R. Evolutionary Origins of Human Alcoholism in Primate Frugivory. Q. Rev. Biol. 2000, 75, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Dudley, R. The Drunken Monkey: Why We Drink and Abuse Alcohol; University of California Press: Berkeley, CA, USA, 2014. [Google Scholar]
- Yeomans, M.R. Effects of alcohol on food and energy intake in human subjects: Evidence for passive and active over-consumption of energy. Br. J. Nutr. 2004, 92, S31–S34. [Google Scholar] [CrossRef] [PubMed]
- Janzen, D.H. Why Fruits Rot, Seeds Mold, and Meat Spoils. Am. Nat. 1977, 111, 691–713. [Google Scholar] [CrossRef]
- Williams, G.C.; Nesse, R.M. Why We Get Sick: The New Science of Darwinian Medicine; Times Books: New York, NY, USA, 1994. [Google Scholar]
- Nesse, R.M.; Berridge, K.C. Psychoactive Drug Use in Evolutionary Perspective. Science 1997, 278, 63–66. [Google Scholar] [CrossRef]
- McGrew, W.C.; Baldwin, P.J.; Tutin, C.E.G. Diet of wild chimpanzees (Pan troglodytes verus) at Mt. Assirik, Senegal: I. Composition. Am. J. Primatol. 1998, 16, 213–226. [Google Scholar] [CrossRef]
- Wrangham, R.W.; Chapman, C.A.; Clark-Arcadi, A.P.; Isabirye-Basuta, G. Social ecology of Kanyawara chimpanzees: Impli-cations for understanding the costs of great ape groups. In The Great Ape Societies; McGrew, W.C., Marchant, L.F., Nishida, T., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 45–57. [Google Scholar]
- Andrews, P.; Martin, L. Hominoid dietary evolution. Philos. Trans. R. Soc. Lond. B 1991, 334, 199–209. [Google Scholar]
- Andrews, P. Palaeoecology and hominoid palaeoenvironments. Biol. Rev. Cam. Philos. Soc. 1996, 71, 257–300. [Google Scholar] [CrossRef]
- Roberts, P.; Boivin, N.; Lee-Thorp, J.; Petraglia, M.; Stock, J. Tropical forests and the genus Homo. Evol. Anthropol. 2016, 25, 306–317. [Google Scholar] [CrossRef]
- Dudley, R. Fermenting fruit and the historical ecology of ethanol ingestion: Is alcoholism in modern humans an evolutionary hangover? Addiction 2002, 97, 381–388. [Google Scholar] [CrossRef]
- Dominy, N.J. Fruits, Fingers, and Fermentation: The Sensory Cues Available to Foraging Primates. Integr. Comp. Biol. 2004, 44, 295–303. [Google Scholar] [CrossRef]
- Wiens, F.; Zitzmann, A.; Lachance, M.-A.; Yegles, M.; Pragst, F.; Wurst, F.M.; von Holst, D.; Guan, S.L.; Spanagel, R. Chronic intake of fermented floral nectar by wild treeshrews. Proc. Natl. Acad. Sci. USA 2008, 105, 10426–10431. [Google Scholar] [CrossRef]
- Schiel, N.; Sanz, C.M.; Schülke, O.; Shanee, S.; Souto, A.; Souza-Alves, J.P.; Stewart, F.; Stewart, K.M.; Stone, A.; Sun, B.; et al. Fermented food consumption in wild nonhuman primates and its ecological drivers. Am. J. Phys. Anthr. 2021, 175, 513–530. [Google Scholar] [CrossRef]
- Simmen, B. Taste discrimination and diet differentiation among New World primates. In The Digestive System in Mammals: Food, Form, and Function; Chivers, D.J., Langer, P., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 150–165. [Google Scholar]
- Laska, M.; Seibt, A. Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. J. Exp. Biol. 2002, 205, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- Gochman, S.R.; Brown, M.B.; Dominy, N.J. Alcohol discrimination and preferences in two species of nectar-feeding primate. R. Soc. Open Sci. 2016, 3, 160217. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, D.D.; Salazar, L.T.H.; Laska, M. Taste Responsiveness of Spider Monkeys to Dietary Ethanol. Chem. Senses 2019, 44, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Hockings, K.J.; Bryson-Morrison, N.; Carvalho, S.; Fujisawa, M.; Humle, T.; McGrew, W.C.; Nakamura, M.; Ohashi, G.; Yamanashi, Y.; Yamakoshi, G.; et al. Tools to tipple: Ethanol ingestion by wild chimpanzees using leaf-sponges. R. Soc. Open Sci. 2015, 2, 150150. [Google Scholar] [CrossRef]
- Peris, J.E.; Rodríguez, A.; Peña, L.; Fedriani, J.M. Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Sci. Rep. 2017, 7, 5646. [Google Scholar] [CrossRef]
- Sánchez, F.; Korine, C.; Steeghs, M.; Laarhoven, L.-J.; Harren, F.J.M.; Cristescu, S.M.; Dudley, R.; Pinshow, B. Ethanol and Methanol as Possible Odor Cues for Egyptian Fruit Bats (Rousettus aegyptiacus). J. Chem. Ecol. 2006, 32, 1289–1300. [Google Scholar] [CrossRef]
- Mazeh, S.; Korine, C.; Pinshow, B.; Dudley, R. Does ethanol in fruit influence feeding in the frugivorous yellow-vented bulbul (Pycnonotus xanthopygos)? Behav. Process. 2008, 77, 369–375. [Google Scholar] [CrossRef]
- Fitzgerald, S.D.; Sullivan, J.M.; Everson, R.J. Suspected Ethanol Toxicosis in Two Wild Cedar Waxwings. Avian Dis. 1990, 34, 488–490. [Google Scholar] [CrossRef]
- Kinde, H.; Foate, E.; Beeler, E.; Uzal, F.; Moore, J.; Poppenga, R. Strong circumstantial evidence for ethanol toxicosis in Cedar Waxwings (Bombycilla cedrorum). J. Ornithol. 2012, 153, 995–998. [Google Scholar] [CrossRef]
- Carrigan, M.A.; Uryasev, O.; Frye, C.B.; Eckman, B.L.; Myers, C.R.; Hurley, T.D.; Benner, S.A. Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc. Natl. Acad. Sci. USA 2015, 112, 458–463. [Google Scholar] [CrossRef]
- Janiak, M.C.; Pinto, S.L.; Duytschaever, G.; Carrigan, M.A.; Melin, A.D. Genetic evidence of widespread variation in ethanol metabolism among mammals: Revisiting the ‘myth’ of natural intoxication. Biol. Lett. 2020, 16, 20200070. [Google Scholar] [CrossRef]
- Starmer, W.T.; Heed, W.B.; Rockwood-Sluss, E.S. Extension of longevity in Drosophila mojavensis by environmental ethanol: Differences between subraces. Proc. Natl. Acad. Sci. USA 1977, 74, 387–391. [Google Scholar] [CrossRef]
- Etges, W.J.; Klassen, C.S. Influences of atmospheric ethanol on adult Drosophila mojavensis: Altered metabolic rates and increases in fitnesses among populations. Physiol. Zool. 1989, 62, 170–193. [Google Scholar] [CrossRef]
- Parsons, P.A. Acetaldehyde utilization in Drosophila: An example of hormesis. Biol. J. Linn. Soc. 1989, 37, 183–189. [Google Scholar] [CrossRef]
- Diao, Y.; Nie, J.; Tan, P.; Zhao, Y.; Tu, J.; Ji, H.; Cao, Y.; Wu, Z.; Liang, H.; Huang, H.; et al. Long-term low-dose ethanol intake improves healthspan and resists high-fat diet-induced obesity in mice. Aging 2020, 12, 13128–13146. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Marangoni, F.; Avogaro, A.; Barba, G.; Bellentani, S.; Bucci, M.; Cambieri, R.; Catapano, A.; Costanzo, S.; Cricelli, C.; et al. Moderate alcohol use and health: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Chiva-Blanch, G.; Badimon, L. Benefits and risks of moderate alcohol consumption on cardiovascular disease: Current findings and controversies. Nutrients 2020, 12, 108. [Google Scholar] [CrossRef]
- Last, F.T.; Price, D. Yeasts associated with living plants and their environs. In The Yeasts; Rose, A.H., Harrison, J.S., Eds.; Academic Press: London, UK, 1969; Volume 1, pp. 183–218. [Google Scholar]
- Spencer, J.F.T.; Spencer, D.M. Ecology: Where yeasts live. In Yeasts in Natural and Artificial Habitats; Spencer, J.F.T., Spencer, D.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 33–58. [Google Scholar]
- Benner, S.A.; Caraco, M.D.; Thomson, J.M.; Gaucher, E.A. Planetary biology–paleontological, geological, and molecular his-tories of life. Science 2002, 296, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Ingram, L.O.; Buttke, T.M. Effects of Alcohols on Micro-Organisms. Adv. Microb. Physiol. 1984, 25, 253–300. [Google Scholar] [CrossRef]
- Devineni, A.V.; Heberlein, U. The evolution of Drosophila melanogaster as a model for alcohol research. Annu. Rev. Neurosci. 2013, 36, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Cadieu, N.; Cadieu, J.-C.; El Ghadraoui, L.; Grimal, A.; Lamboeuf, Y. Conditioning to ethanol in the fruit fly—A study using an inhibitor of ADH. J. Insect Physiol. 1999, 45, 579–586. [Google Scholar] [CrossRef]
- Cains, S.; Blomeley, C.; Kollo, M.; Racz, R.; Burdakov, D. Agrp neuron activity is required for alcohol-induced overeating. Nat. Commun. 2017, 8, 14014. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gerber, L.M.; Williams, G.C. The nutrient-toxin dosage continuum in human evolution and modern health. Q. Rev. Biol. 1999, 74, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Forbes, V.E. Is hormesis an evolutionary expectation? Funct. Ecol. 2000, 14, 12–24. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. Toxicology rethinks its central belief. Nature 2003, 421, 691–692. [Google Scholar] [CrossRef]
- Oda, M.; Satta, Y.; Takenaka, O.; Takahata, N. Loss of Urate Oxidase Activity in Hominoids and its Evolutionary Implications. Mol. Biol. Evol. 2002, 19, 640–653. [Google Scholar] [CrossRef]
- Kratzer, J.T.; Lanaspa, M.A.; Murphy, M.N.; Cicerchi, C.; Graves, C.L.; Tipton, P.A.; Ortlund, E.A.; Johnson, R.J.; Gaucher, E.A. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc. Natl. Acad. Sci. USA 2014, 111, 3763–3768. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Titte, S.; Cade, J.R.; Rideout, B.A.; Oliver, W.J. Uric acid, evolution and primitive cultures. Semin. Nephrol. 2005, 25, 3–8. [Google Scholar] [CrossRef]
- Tapia, E.; Cristóbal, M.; Garcia, F.; Soto, V.; Monroy-Sánchez, F.; Pacheco, U.; Lanaspa, M.A.; Roncal-Jiménez, C.A.; Cruz-Robles, D.; Ishimoto, T.; et al. Synergistic effect of uricase blockade plus physiological amounts of fructose-glucose on glomerular hypertension and oxidative stress in rats. Am. J. Physiol. Renal. Physiol. 2013, 304, F727–F736. [Google Scholar] [CrossRef] [PubMed]
- Softic, S.; Meyer, J.G.; Wang, G.X.; Gupta, M.K.; Batista, T.M.; Lauritzen, H.; Fujisaka, S.; Serra, D.; Herrero, L.; Willoughby, J.; et al. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 2019, 30, 735–753.e734. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Lozada, L.G.; Andres-Hernando, A.; Garcia-Arroyo, F.E.; Cicerchi, C.; Li, N.; Kuwabara, M.; Roncal-Jimenez, C.; Johnson, R.J.; Lanaspa, M. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose production and fat accumulation in the development of fatty liver. J. Biol. Chem. 2019, 294, 4272–4281. [Google Scholar] [CrossRef]
- Wang, M.; Chen, W.Y.; Zhang, J.; Gobejishvili, L.; Barve, S.S.; McClain, C.J.; Joshi-Barve, S. Elevated fructose and uric acid through aldose reductase contribute to experimental and human alcoholic liver disease. Hepatology 2020, 72, 1617–1637. [Google Scholar] [CrossRef]
- Lustig, R.H. Fructose: It’s “alcohol without the buzz”. Adv. Nutr. 2013, 4, 226–235. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Fan, J.-H.; Edenberg, H.J.; Li, T.-K.; Cui, Y.-H.; Wang, Y.-F.; Tian, C.-H.; Zhou, C.-F.; Zhou, R.-L.; Wang, J.; et al. Polymorphism of ADH and ALDH genes among four ethnic groups in China and effects upon the risk for alcoholism. Alcohol. Clin. Exp. Res. 1997, 21, 1272–1277. [Google Scholar] [CrossRef]
- Osier, M.V.; Pakstis, A.J.; Soodyall, H.; Comas, D.; Goldman, D.; Odunsi, A.; Okonofua, F.; Parnas, J.; Schulz, L.O.; Bertranpetit, J.; et al. A Global Perspective on Genetic Variation at the ADH Genes Reveals Unusual Patterns of Linkage Disequilibrium and Diversity. Am. J. Hum. Genet. 2002, 71, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, D.P.; Goedde, H.W. Alcohol Metabolism, Alcohol Intolerance, and Alcoholism: Biochemical and Pharmacogenetic Approaches; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Helzer, J.E.; Canino, G.J. (Eds.) Alcoholism in North America, Europe, and Asia; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Li, T.-K. Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. J. Stud. Alcohol. Drugs 2000, 61, 5–12. [Google Scholar] [CrossRef]
- Ezquer, F.; Quintanilla, M.E.; Moya-Flores, F.; Morales, P.; Munita, J.M.; Olivares, B.; Landskron, G.; Hermoso, M.A.; Ezquer, M.; Herrera-Marschitz, M.; et al. Innate gut microbiota predisposes to high alcohol consumption. Addict. Biol. 2021, 26, e13018. [Google Scholar] [CrossRef]
- Potts, K.B.; Baken, E.; Levang, A.; Watts, D.P. Ecological factors influencing habitat use by chimpanzees at Ngogo, Kibale National Park, Uganda. Am. J. Primatol. 2016, 78, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.P.; Potts, K.B.; Lwanga, J.S.; Mitani, J.C. Diet of chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 2. temporal variation and fallback foods. Am. J. Primatol. 2012, 74, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Pusey, A.E.; Oehlert, G.W.; Williams, J.M.; Goodall, J. Influence of ecological and social factors on body mass of wild chimpanzees. Int. J. Primatol. 2005, 26, 3–31. [Google Scholar] [CrossRef]
- Martínez, C.; Galván, S.; Garcia-Martin, E.; Ramos, M.I.; Gutiérrez-Martín, Y.; Agúndez, J.A. Variability in ethanol biodisposition in whites is modulated by polymorphisms in the ADH1B and ADH1C genes. Hepatology 2010, 51, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Bjerregaard, P.; Mikkelsen, S.S.; Becker, U.; Hansen, T.; Tolstrup, J.S. Genetic variation in alcohol metabolizing enzymes among Inuit and its relation to drinking patterns. Drug Alcohol Depend. 2014, 144, 239–244. [Google Scholar] [CrossRef]
- Dominy, N.J.; Yeakel, J.D.; Bhat, U.; Ramsden, L.; Wrangham, R.W.; Lucas, P.W. How chimpanzees integrate sensory information to select figs. Interface Focus 2016, 6, 20160001. [Google Scholar] [CrossRef]
- Houle, A.; Conklin-Brittain, N.L.; Wrangham, R.W. Vertical stratification of the nutritional value of fruit: Macronutrients and condensed tannins. Am. J. Primatol. 2014, 76, 1207–1232. [Google Scholar] [CrossRef]
Prediction | Supporting Evidence | References |
---|---|---|
Ethanol occurs naturally at low levels within many fruits and nectars. | A variety of tropical fruits, as well as some nectars, contain ethanol at low concentrations. | [12,13,14,15] |
Olfaction can be used to localize and preferentially select ethanol-containing nutritional resources. | Fruits consumed by primates produce numerous volatiles, including ethanol. Olfactory abilities are well-developed in primates, but have not been explicitly tested relative to use in fruit localization or selection. | [16,17] |
Ethanol at low concentrations is not aversive to frugivores and nectarivores. | Diverse vertebrates consume food items containing low-concentration ethanol. | [18,19,20,21,22,23,24,25] |
Ethanol acts as a feeding stimulant. | Modern humans increase caloric ingestion following consumption of an aperitif. Effects of dietary ethanol on ingestion rates for free-ranging primates have not yet been evaluated. | [3] |
Genetic variation in the ability to metabolize ethanol is correlated with the extent of dietary exposure. | Substantial variation in ADH tracks dietary inclusion of fruit and nectar among mammals. Ethanol catabolism was up-regulated in African apes ~10 Mya ago, in parallel with terrestrialization. | [26,27] |
Hormetic advantage derives from chronic consumption of ethanol. | Mortality is reduced at low levels of ethanol ingestion in modern humans and rodents, and also in Drosophila flies exposed to low-concentration ethanol vapor. | [28,29,30,31,32,33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudley, R.; Maro, A. Human Evolution and Dietary Ethanol. Nutrients 2021, 13, 2419. https://doi.org/10.3390/nu13072419
Dudley R, Maro A. Human Evolution and Dietary Ethanol. Nutrients. 2021; 13(7):2419. https://doi.org/10.3390/nu13072419
Chicago/Turabian StyleDudley, Robert, and Aleksey Maro. 2021. "Human Evolution and Dietary Ethanol" Nutrients 13, no. 7: 2419. https://doi.org/10.3390/nu13072419
APA StyleDudley, R., & Maro, A. (2021). Human Evolution and Dietary Ethanol. Nutrients, 13(7), 2419. https://doi.org/10.3390/nu13072419