Breakfast Consumption Habits at Age 6 and Cognitive Ability at Age 12: A Longitudinal Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measures
2.2.1. Breakfast Consumption at Age 6 and 12
2.2.2. Cognition (IQ) at Age 6 and 12
2.2.3. Academic Performance at Age 12
2.2.4. Covariates
2.2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics and Breakfast Consumption Profiles
3.2. The Longitudinal Association between Breakfast Consumption and Cognition
3.3. Change in Frequency of Breakfast Consumption and IQ at Age 12
3.4. Dose-Response Relationship between Breakfast Consumption Frequency and Cognitive Ability
3.5. Associations between Breakfast Type and Cognitive Ability
3.6. Association between Breakfast Consumption Frequency and Academic Achievement
4. Discussion
4.1. Longitudinal Effects of Age 6 Breakfast Consumption on Cognition at Age 12
4.2. Effect of Breakfast Composition on Cognition at Age 12
4.3. Strengths, Limitations, and Future Directions
4.4. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rampersaud, G.C.; Pereira, M.A.; Girard, B.L.; Adams, J.; Metzl, J.D. Breakfast habits, nutritional status, body weight, and academic performance in children and adolescents. J. Am. Diet. Assoc. 2005, 105, 743–760. [Google Scholar] [CrossRef]
- Raaijmakers, L.G.; Bessems, K.M.; Kremers, S.P.; van Assema, P. Breakfast consumption among children and adolescents in the Netherlands. Eur. J. Public Health 2010, 20, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hwang, W.T.; Dickerman, B.; Compher, C. Regular breakfast consumption is associated with increased IQ in kindergarten children. Early Hum. Dev. 2013, 89, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Hussein, R.A.E.H. Socioeconomic status and dietary habits as predictors of home breakfast skipping in young women. J. Egypt. Public Health Assoc. 2014, 89, 100–104. [Google Scholar] [CrossRef]
- Tin, S.P.P.; Ho, S.Y.; Mak, K.H.; Wan, K.L.; Lam, T.H. Lifestyle and socioeconomic correlates of breakfast skipping in Hong Kong primary 4 schoolchildren. Prev. Med. 2011, 52, 250–253. [Google Scholar] [CrossRef] [Green Version]
- Adolphus, K.; Lawton, C.L.; Champ, C.L.; Dye, L. The effects of breakfast and breakfast composition on cognition in children and adolescents: A systematic review. Adv. Nutr. 2016, 7, 590S–612S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zipp, A.; Eissing, G. Studies on the influence of breakfast on the mental performance of school children and adolescents. J. Public Health 2019, 27, 103–110. [Google Scholar] [CrossRef]
- Sámano, R.; Hernández-Chávez, C.; Chico-Barba, G.; Córdova-Barrios, A.; Morales-del-Olmo, M.; Sordo-Figuero, H.; Martínez-Rojano, H. Breakfast Nutritional Quality and Cognitive Interference in University Students from Mexico City. Int. J. Environ. Res. Public Health 2019, 16, 2671. [Google Scholar] [CrossRef] [Green Version]
- Hisam, A.; Rahman, M.U.; Mashhadi, S.F.; Bilal, A.; Anam, T. Regular breakfast consumption associated with high intelligence quotient: Myth or Reality? Pak. J. Med Sci. 2015, 31, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Iovino, I.; Stuff, J.; Liu, Y.; Brewton, C.; Dovi, A.; Kleinman, R.; Nicklas, T. Breakfast consumption has no effect on neuropsychological functioning in children: A repeated-measures clinical trial. Am. J. Clin. Nutr. 2016, 104, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brindal, E.; Baird, D.; Danthiir, V.; Wilson, C.; Bowen, J.; Slater, A.; Noakes, M. Ingesting breakfast meals of different glycaemic load does not alter cognition and satiety in children. Eur. J. Clin. Nutr. 2012, 66, 1166–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fossati, N.; Karnes, R.J.; Colicchia, M.; Boorjian, S.A.; Bossi, A.; Seisen, T.; Di Muzio, N.; Cozzarini, C.; Chiorda, B.N.; Fiorino, C.; et al. The effect of breakfast composition and energy contribution on cognitive and academic performance: A systematic review. Am. J. Clin. Nutr. 2014, 100, 626–656. [Google Scholar]
- Taki, Y.; Hashizume, H.; Sassa, Y.; Takeuchi, H.; Asano, M.; Asano, K.; Kawashima, R. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children. PLoS ONE 2010, 5, e15213. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, S.; Chen, Z.; Raine, A.; Hanlon, A.; Ai, Y.; Zhou, G.; Yan, C.; Leung, P.W.; McCauley, L.; et al. Cohort profile update: The China Jintan child cohort study. Int. J. Epidemiol. 2015, 44, 1548–1548l. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; McCauley, L.; Leung, P.; Wang, B.; Needleman, H.; Pinto-Martin, J.; Group, J.C. Community-based participatory research (CBPR) approach to study children’s health in China: Experiences and reflections. Int. J. Nurs. Stud. 2011, 48, 904–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; McCauley, L.A.; Zhao, Y.; Zhang, H.; Pinto-Martin, J.; Group, J.C.S. Cohort profile: The China Jintan child cohort study. Int. J. Epidemiol. 2010, 39, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. WPPSI-R: Wechsler Preschool and Primary Scale of Intelligence-Revised; Psychological Corporation: San Antonio, TX, USA, 1989. [Google Scholar]
- Liu, J.; Lynn, R. Factor structure and sex differences on the Wechsler Preschool and Primary Scale of Intelligence in China, Japan and United States. Personal. Individ. Differ. 2011, 50, 1222–1226. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.L.; Liu, M.L.; Townes, B.D. Neuropsychological and behavioral status of Chinese children with acyanotic congenital heart disease. Int. J. Neurosci. 1994, 74, 109–115. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Lu, S.Y.; Tang, C.H.; Song, J.; Gao, E.; Gu, X. The employment of the Wechsler Pre-school and Primary Scale of Intelligence in urban Shanghai. Inf. Psychol. Sci. 1984, 5, 22–29. [Google Scholar]
- Yue, M.; Gao, E. School-age children Intelligence Scale, Wechsler the National Urban norm formulation. Pract. Pediatr. 1987, 2, 327–328. [Google Scholar]
- Liu, J.; Lynn, R. An increase of intelligence in China 1986–2012. Intelligence 2013, 41, 479–481. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lynn, R. Chinese sex differences in intelligence: Some new evidence. Personal. Individ. Differ. 2015, 75, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, X.; Ji, X.; Wang, Y.; Zhou, G.; Chen, X. Sleep disordered breathing symptoms and daytime sleepiness are associated with emotional problems and poor school performance in children. Psychiatry Res. 2016, 242, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Feng, R.; Ji, X.; Cui, N.; Raine, A.; Mednick, S.C. Midday napping in children: Associations between nap frequency and duration across cognitive, positive psychological well-being, behavioral, and metabolic health outcomes. Sleep 2019, 42. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; Loret de Mola, C.; Victora, C.G. Breastfeeding and intelligence: A systematic review and meta-analysis. Acta Paediatrica 2015, 104, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Vora, M. Breakfast consumption pattern and its association with academic performance. Indian Res. J. Ext. Educ. 2016, 15, 51–55. [Google Scholar]
- Littlecott, H.J.; Moore, G.F.; Moore, L.; Lyons, R.A.; Murphy, S. Association between breakfast consumption and educational outcomes in 9–11-year-old children. Public Health Nutr. 2016, 19, 1575–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, J.N.; Dominguez, S.I.; Peña, M.R.; Montiel, M.C. Evaluation of the effects of a school breakfast program on attention and memory. Archivos Latinoamericanos de Nutrición. 2000, 50, 35–41. [Google Scholar]
- Shemilt, I.; Harvey, I.; Shepstone, L.; Swift, L.; Reading, R.; Mugford, M.; Belderson, P.; Norris, N.; Thoburn, J.; Robinson, J. A national evaluation of school breakfast clubs: Evidence from a cluster randomized controlled trial and an observational analysis. Child Care Health Dev. 2004, 30, 413–427. [Google Scholar] [CrossRef]
- Drewnowski, A.; Rehm, C.D.; Vieux, F. Breakfast in the United States: Food and nutrient intakes in relation to diet quality in National Health and Examination Survey 2011–2014. A study from the International Breakfast Research Initiative. Nutrients 2018, 10, 1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chugani, H.T. A critical period of brain development: Studies of cerebral glucose utilization with PET. Prev. Med. 1998, 27, 184–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenroot, R.K.; Giedd, J.N. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 2006, 30, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Snow, C.E.; Beals, D.E. Mealtime talk that supports literacy development. New Dir. Child Adolesc. Dev. 2006, 2006, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.K.; Kang, S.Y.; Kim, Y. Effects of family meals on eating behavior, academic achievement and quality of life-Based on the students of middle school at Goyangsi, Gyeonggido. J. Korean Home Econ. Educ. Assoc. 2017, 29, 149–159. [Google Scholar] [CrossRef]
- Fiese, B.H.; Schwartz, M. Reclaiming the family table: Mealtimes and child health and wellbeing. Soc. Policy Rep. 2008, 22, 1–20. [Google Scholar] [CrossRef]
- Wesnes, K.A.; Pincock, C.; Richardson, D.; Helm, G.; Hails, S. Breakfast reduces declines in attention and memory over the morning in schoolchildren. Appetite 2003, 41, 329–331. [Google Scholar] [CrossRef]
- Gilsenan, M.B.; de Bruin, E.A.; Dye, L. The influence of carbohydrate on cognitive performance: A critical evaluation from the perspective of glycaemic load. Br. J. Nutr. 2009, 101, 941–949. [Google Scholar] [CrossRef] [Green Version]
- Philippou, E.; Constantinou, M. The influence of glycemic index on cognitive functioning: A systematic review of the evidence. Adv. Nutr. 2014, 5, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Benton, D.; Ruffin, M.-P.; Lassel, T.; Nabb, S.; Messaoudi, M.; Vinoy, S.; Desor, D.; Lang, V. The delivery rate of dietary carbohydrates affects cognitive performance in both rats and humans. Psychopharmacology 2003, 166, 86–90. [Google Scholar] [CrossRef]
- Micha, R.; Rogers, P.J.; Nelson, M. Glycaemic index and glycaemic load of breakfast predict cognitive function and mood in school children: A randomised controlled trial. Br. J. Nutr. 2011, 106, 1552–1561. [Google Scholar] [CrossRef]
- Benton, D.; Parker, P.Y. Breakfast, blood glucose, and cognition. Am. J. Clin. Nutr. 1998, 67, 772S–778S. [Google Scholar] [CrossRef] [Green Version]
- Biessels, G.J.; Bravenboer, B.; Gispen, W.H. Glucose, insulin and the brain: Modulation of cognition and synaptic plasticity in health and disease: A preface. Eur. J. Pharmacol. 2004, 490, 1–4. [Google Scholar] [CrossRef]
- Sünram-Lea, S.I.; Owen, L. The impact of diet-based glycaemic response and glucose regulation on cognition: Evidence across the lifespan. Proc. Nutr. Soc. 2017, 76, 466–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, K.A.; Gold, P.E. Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: Relationships to age-related memory impairments. Exp. Gerontol. 2013, 48, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Taras, H. Nutrition and student performance at school. J. Sch. Health. 2005, 75, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Kar, B.R.; Rao, S.L.; Chandramouli, B.A. Cognitive development in children with chronic protein energy malnutrition. Behav. Brain Funct. 2008, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Valadares, C.T.; Fukuda, M.T.H.; Françolin-Silva, A.L.; Hernandes, A.S.; Almeida, S.S. Effects of postnatal protein malnutrition on learning and memory procedures. Nutr. Neurosci. 2010, 13, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, H.R.; Agarwal, S.; Fulgoni, V.L., III. Tryptophan intake in the US adult population is not related to liver or kidney function but is associated with depression and sleep outcomes. J. Nutr. 2016, 146, 2609S–2615S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, T.A.; Nguyen, J.C.; Polglaze, K.E.; Bertrand, P.P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef]
- Strasser, B.; Gostner, J.M.; Fuchs, D. Mood, food, and cognition: Role of tryptophan and serotonin. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 55–61. [Google Scholar] [CrossRef]
- Dewald, J.F.; Meijer, A.M.; Oort, F.J.; Kerkhof, G.A.; Bögels, S.M. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: A meta-analytic review. Sleep Med. Rev. 2010, 14, 179–189. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, G.; Wang, Y.; Ai, Y.; Pinto-Martin, J.; Liu, X. Sleep problems, fatigue, and cognitive performance in Chinese kindergarten children. J. Pediatrics 2012, 161, 520–525. [Google Scholar] [CrossRef] [Green Version]
- Reynaud, E.; Vecchierini, M.F.; Heude, B.; Charles, M.A.; Plancoulaine, S. Sleep and its relation to cognition and behaviour in preschool-aged children of the general population: A systematic review. J. Sleep Res. 2018, 27, e12636. [Google Scholar] [CrossRef] [Green Version]
- O’Dea, J.A.; Mugridge, A.C. Nutritional quality of breakfast and physical activity independently predict the literacy and numeracy scores of children after adjusting for socioeconomic status. Health Educ. Res. 2012, 27, 975–985. [Google Scholar] [CrossRef] [Green Version]
- MacInerney, E.K.; Swatzyna, R.J.; Roark, A.J.; Gonzalez, B.C.; Kozlowski, G.P. Breakfast choices influence brainwave activity: Single case study of a 12-year-old female. NeuroRegulation 2017, 4, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Adolphus, K.; Lawton, C.L.; Dye, L. The relationship between habitual breakfast consumption frequency and academic performance in British adolescents. Front. Public Health 2015, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Compher, C.W.; Irving, S.Y.; Kim, J.; Dinges, D.F.; Liu, J. Serum Micronutrient Status, Sleep Quality and Neurobehavioral function among Early Adolescents. Public Health Nutr. 2021, 1–27. [Google Scholar] [CrossRef]
- Liu, J.; Cui, Y.; Li, L.; Wu, L.; Hanlon, A.; Pinto-Martin, J.; Raine, A.; Hibbeln, J.R. The mediating role of sleep in the fish consumption—Cognitive functioning relationship: A cohort study. Sci. Rep. 2017, 7, 17961. [Google Scholar] [CrossRef]
Longitudinal Analysis | Cross-Sectional Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|
No. of Children (N = 511) | Breakfast Consumption at Age 6 | p-Value | No. of Children (N = 835) | Breakfast Consumption at Age 12 | p-Value | ||||
≤3 d/w (n = 27) | ≥ 4 d/w (n = 484) | 0–2 d/w (n = 32) | 3–5 d/w (n = 110) | 6–7 d/w (n= 693) | |||||
Sex | 0.405 | 0.531 | |||||||
Male | 263 (51.5) | 16 (59.3) | 247 (51.0) | 445 (53.3) | 20 (62.5) | 60 (54.6) | 365 (52.7) | ||
Female | 248 (48.5) | 11 (40.7) | 237 (49.0) | 390 (46.7) | 12 (37.5) | 50 (45.5) | 328 (47.3) | ||
Fathers’ education | 0.011 | 0.072 | |||||||
Less than high school | 176 (35.0) | 6 (23.1) | 170 (35.7) | 271 (34.0) | 7 (23.3) | 39 (37.5) | 225 (33.9) | ||
High school | 173 (34.5) | 16 (61.5) | 157 (33.0) | 274 (34.3) | 16 (53.3) | 40 (38.5) | 218 (32.8) | ||
College or higher | 153 (30.5) | 4 (15.4) | 149 (31.3) | 253 (31.7) | 7 (23.3) | 25 (24.0) | 221 (33.3) | ||
Mothers’ education | 0.862 | 0.322 | |||||||
Less than high school | 249 (49.5) | 13 (50.0) | 236 (49.5) | 376 (47.2) | 15 (50.0) | 58 (55.8) | 303 (45.7) | ||
High school | 155 (30.8) | 7 (26.9) | 148 (31.0) | 254 (31.9) | 9 (30.0) | 31 (29.8) | 214 (32.3) | ||
College or higher | 99 (19.7) | 6 (23.1) | 93 (19.5) | 167 (20.9) | 6 (20.0) | 15(14.4) | 146 (22.0) | ||
Fathers’ occupation | 0.646 | 0.253 | |||||||
Unemployed | 21 (4.4) | 1 (4.4) | 20 (4.4) | 28 (3.6) | 2 (6.9) | 4 (4.0) | 22 (3.4) | ||
Labor Worker | 269 (56.0) | 15 (65.2) | 254 (55.6) | 424 (54.8) | 18 (62.1) | 63 (62.4) | 343 (53.3) | ||
Professional | 190 (39.6) | 7 (30.4) | 183 (40.0) | 322 (41.6) | 9 (31.0) | 34 (33.7) | 279 (43.3) | ||
Mothers’ occupation | 0.275 | 0.528 | |||||||
Unemployed | 130 (26.6) | 3 (13.1) | 127 (27.3) | 200 (25.7) | 5 (17.9) | 32 (31.1) | 163 (25.2) | ||
Worker | 216 (44.3) | 11 (47.8) | 205 (44.1) | 324 (41.7) | 13 (46.4) | 43 (41.8) | 268 (41.4) | ||
Professional | 142 (29.1) | 9 (39.1) | 133 (28.6) | 254 (32.7) | 10 (35.7) | 28 (27.2) | 216 (33.4) | ||
Parents divorced or separated * | 0.105 | 0.197 | |||||||
No | 456 (97.6) | 22 (91.7) | 434 (98.0) | 719 (97.2) | 27 (93.1) | 95 (99.0) | 597 (97.1) | ||
Yes | 11 (2.4) | 2 (8.3) | 9 (2.0) | 21 (2.8) | 2 (6.9) | 1 (1.0) | 18 (2.9) | ||
Maternal age at childbirth | 26 (24, 27) | 24 (23, 26) | 26 (24, 27) | 0.016 | 26 (24, 27) | 25(23, 27) | 25 (24, 27) | 26 (24, 27) | 0.023 |
Infant feeding method | 0.457 | 0.377 | |||||||
Breastfeeding | 467 (94.9) | 22 (91.7) | 445 (95.1) | 730 (93.1) | 29 (96.7) | 93 (90.3) | 608 (93.4) | ||
Formula feeding | 25 (5.1) | 2 (8.3) | 23 (4.9) | 54 (6.9) | 1 (3.3) | 10 (9.7) | 43 (6.6) | ||
Breastfeeding duration (months) | 8.8 ± 3.1 | 9.3 ± 2.4 | 8.8 ± 3.1 | 0.463 | 8.8 ± 3.1 | 8.9 ± 2.7 | 8.6 ± 3.5 | 8.8 ± 2.9 | 0.797 |
Home location* | 0.527 | 0.223 | |||||||
Rural | 61 (12.1) | 5 (19.2) | 56 (11.7) | 104 (13.0) | 7 (22.6) | 67 (64.4) | 82 (12.4) | ||
Small Town | 84 (16.7) | 4 (15.4) | 80 (16.8) | 128 (16.0) | 4 (12.9) | 22 (21.2) | 102 (15.4) | ||
City | 358 (71.2) | 17 (65.4) | 341 (71.5) | 566 (70.9) | 20 (64.5) | 67 (64.4) | 479 (72.3) | ||
Living space per person (m2) | 30.0 (23.5,36.7) | 29.0 (24.5, 33.3) | 30.0 (23.3, 36.7) | 0.896 | 30.0 (23.3, 38.0) | 28.6 (24.0, 46.7) | 32.0 (26.7, 40.0) | 30.0 (23.3,37.5) | 0.331 |
Siblings | 0.279 | 0.763 | |||||||
No siblings | 375 (81.7) | 22 (91.7) | 353 (81.2) | 593 (81.3) | 25 (83.3) | 74 (78.7) | 494 (81.7) | ||
At least one sibling | 84 (18.3) | 2 (8.3) | 82 (18.8) | 136 (18.7) | 5 (16.7) | 20 (21.3) | 111 (18.4) | ||
Breakfast consumption during wave 2 data collection & | 0.013 | ||||||||
≤3 d/w | 29 (5.8) | 5 (19.2) | 24 (5.0) | ||||||
≥4 d/w | 475 (94.3) | 21 (80.8) | 454 (95.0) | ||||||
IQ during wave 2 data collection | |||||||||
VIQ | 101.6 ± 11.5 | 94.7 ± 12.2 | 101.9 ± 11.4 | 0.002 | 101.0 ± 12.0 | 94.5 ± 11.5 | 99.4 ± 9.8 | 102.2± 11.6 | 0.003 |
PIQ | 106.5 ± 12.3 | 105.0 ± 12.7 | 106.6 ± 12.2 | 0.503 | 105.4 ± 12.0 | 105.8 ± 12.1 | 105.3 ± 11.3 | 106.6 ± 12.3 | 0.720 |
FIQ | 104.7 ± 12.0 | 99.6 ± 12.9 | 105.0 ± 11.9 | 0.021 | 103.9 ± 12.9 | 99.8 ± 11.8 | 102.6 ± 10.0 | 105.2 ± 12.1 | 0.041 |
Academic achievement | 4.0 (3.0, 4.7) | 3.0 (2.0, 4.0) | 3.7 (3.0, 4.5) | 4.0 (3.0, 4.7) | <0.001 |
VIQ | PIQ | FIQ | ||||
---|---|---|---|---|---|---|
Coefficient (SE) | p-Value | Coefficient (SE) | p-Value | Coefficient (SE) | p-Value | |
Wave | ||||||
First | 2.837 (0.63) | <0.001 | −1.105 (0.57) | 0.054 | 0.377 (0.55) | 0.494 |
Second | 1 | Ref | 1 | Ref | 1 | Ref |
Breakfast consumption | ||||||
Always or often | 5.537 (1.42) | <0.001 | 2.195 (1.38) | 0.113 | 4.349 (1.31) | 0.001 |
Sometimes or rarely | 1 | Ref | 1 | Ref | 1 | Ref |
Sex | ||||||
Female | −2.433 (0.70) | <0.001 | −3.048 (0.73) | <0.001 | −3.059 (0.68) | <0.001 |
Male | 1 | Ref | 1 | ref | 1 | ref |
Fathers’ education | ||||||
College or higher | 4.368 (1.08) | <0.001 | 4.254 (1.12) | <0.001 | 4.946 (1.05) | <0.001 |
High school | 2.490 (0.90) | 0.006 | 1.428 (0.94) | 0.128 | 2.297 (0.88) | 0.009 |
Less than high school | 1 | Ref | 1 | Ref | 1 | Ref |
Mothers’ education | ||||||
College or higher | 3.534 (1.32) | 0.008 | 2.948 (1.37) | 0.032 | 3.570 (1.29) | 0.006 |
High school | 1.128 (0.89) | 0.206 | 2.641 (0.93) | 0.005 | 2.026 (0.87) | 0.020 |
Less than high school | 1 | Ref | 1 | Ref | 1 | Ref |
Mothers’ occupation | ||||||
Unemployed | −1.191 (1.15) | 0.300 | −1.159 (1.19) | 0.332 | −1.359 (1.12) | 0.225 |
Worker | −2.413 (1.05) | 0.023 | −2.766 (1.10) | 0.011 | −2.939 (1.03) | 0.004 |
Professional | 1 | Ref | 1 | Ref | 1 | Ref |
Infant feeding method | ||||||
Breastfeeding | 1.444 (1.36) | 0.290 | 3.110 (1.40) | 0.027 | 2.324 (1.32) | 0.079 |
Formula | 1 | Ref | 1 | Ref | 1 | Ref |
Home location | ||||||
Rural | −4.490 (1.04) | <0.001 | −5.987 (1.08) | <0.001 | −5.887 (1.01) | <0.001 |
Small Town | −3.744 (0.95) | <0.001 | −6.042 (0.98) | <0.001 | −5.476 (0.92) | <0.001 |
City | 1 | Ref | 1 | Ref | 1 | Ref |
Breakfast Variation | No. of Children (Total n = 504) $ | VIQ | PIQ | FIQ | |||
---|---|---|---|---|---|---|---|
Coefficient (SE) | p-Value | Coefficient (SE) | p-Value | Coefficient (SE) | p-Value | ||
Univariable GLM | |||||||
More w1 + more w2 | 454 (90.1) | 16.822 (5.10) | 0.001 | −0.632 (5.57) | 0.910 | 10.570 (5.38) | 0.050 |
Fewer w1 + more w2 | 24 (4.7) | 11.808 (5.57) | 0.035 | −3.575 (6.09) | 0.557 | 6.150 (5.88) | 0.297 |
More w1 + fewer w2 | 21 (4.2) | 11.695 (5.64) | 0.039 | −1.914 (6.16) | 0.756 | 6.638 (5.96) | 0.266 |
Fewer w1 + fewer w2 | 5 (1.0) | 1 | Ref | 1 | Ref | 1 | Ref |
Multivariable GLM * | |||||||
More w1 + more w2 | 454 (90.1) | 19.809 (5.46) | <0.001 | 0.304 (6.05) | 0.960 | 12.947 (5.71) | 0.024 |
Fewer w1 + more w2 | 24 (4.7) | 17.662 (5.93) | 0.003 | 0.330 (6.57) | 0.960 | 11.986 (6.21) | 0.054 |
More w1 + fewer w2 | 21 (4.2) | 15.900 (6.01) | 0.008 | −0.900 (6.66) | 0.893 | 9.872 (6.29) | 0.117 |
Fewer w1 + fewer w2 | 5 (1.0) | 1 | ref | 1 | ref | 1 | ref |
Breakfast Frequency * | VIQ | PIQ | FIQ | Academic Achievement | ||||
---|---|---|---|---|---|---|---|---|
Coefficient (SE) | p-Value | Coefficient (SE) | p-Value | Coefficient (SE) | p-Value | Coefficient (SE) | p-Value | |
Univariate model I | ||||||||
Breakfast frequency (numeric) | 1.420 (0.369) | <0.001 | 0.383 (0.396) | 0.334 | 1.125 (0.386) | 0.004 | 0.126 (0.025) | <0.001 |
Univariate model II | ||||||||
6–7 d/w | 7.752 (2.544) | 0.002 | 0.741 (2.721) | 0.785 | 5.438 (2.655) | 0.041 | 0.730 (0.179) | <0.001 |
3–5 d/w | 4.952 (2.872) | 0.085 | −0.540 (3.072) | 0.861 | 2.810 (2.996) | 0.349 | 0.485 (0.199) | 0.015 |
0–2 d/w | Ref | Ref | Ref | Ref | ||||
Multivariable model I $ | ||||||||
Breakfast frequency (numeric) | 1.131 (0.400) | 0.005 | 0.180 (0.679) | 0.904 | 0.829 (0.414) | 0.046 | 0.134 (0.027) | <0.001 |
Multivariable model II $ | ||||||||
6–7 d/w | 6.760 (2.817) | 0.017 | 0.062 (3.061) | 0.984 | 4.437 (2.922) | 0.130 | 0.831(0.195) | <0.001 |
3–5 d/w | 5.307 (3.144) | 0.092 | 0.222 (3.416) | 0.948 | 3.422 (3.261) | 0.295 | 0.575 (0.213) | 0.007 |
0–2 d/w | Ref | Ref | Ref | Ref |
VIQ | PIQ | FIQ | Academic Achievement | |||||
---|---|---|---|---|---|---|---|---|
Adj Coef (SE) | p-Value | Adj Coef (SE) | p-Value | Adj Coef (SE) | p-Value | Adj Coef (SE) | p-Value | |
Section I * | ||||||||
Fruit/vegetables | ||||||||
6–7 d/w | −0.409(1.302) | 0.754 | 0.650(1.351) | 0.631 | 0.232(1.301) | 0.859 | 0.143(0.090) | 0.111 |
3–5 d/w | −1.768(1.437) | 0.219 | −1.517(1.491) | 0.309 | −1.771(1.435) | 0.218 | 0.012(0.098) | 0.903 |
Grain/rice | ||||||||
6–7 d/w | 4.079(1.738) | 0.019 | 4.129(1.829) | 0.024 | 4.941(1.753) | 0.005 | 0.273(0.130) | 0.036 |
3–5 d/w | 0.029(1.982) | 0.988 | 0.721(2.087) | 0.730 | 1.141(1.995) | 0.568 | 0.043(0.144) | 0.764 |
Meat/egg | ||||||||
6–7 d/w | 4.043(1.626) | 0.013 | 3.781(1.694) | 0.026 | 3.919(1.627) | 0.016 | 0.301(0.110) | 0.007 |
3–5 d/w | 3.715(1.645) | 0.024 | 2.153(1.714) | 0.210 | 2.935(1.645) | 0.075 | 0.235(0.112) | 0.037 |
Dairy products | ||||||||
6–7 d/w | 1.736(1.505) | 0.249 | 2.123(1.569) | 0.177 | 2.102(1.504) | 0.163 | 0.112(0.099) | 0.260 |
3–5 d/w | 1.499(1.586) | 0.345 | 2.319(1.654) | 0.162 | 2.296(1.584) | 0.148 | 0.040(0.106) | 0.705 |
Soy products | ||||||||
6–7 d/w | 2.609(1.413) | 0.065 | 1.413(1.479) | 0.340 | 2.681(1.413) | 0.058 | 0.163(0.094) | 0.085 |
3–5 d/w | 2.362(1.184) | 0.047 | 0.731(1.239) | 0.556 | 1.863(1.185) | 0.117 | 0.205(0.081) | 0.012 |
Section II $ | ||||||||
Grain/rice | ||||||||
6–7 d/w | 3.562(1.768) | 0.045 | 3.687(1.860) | 0.048 | 4.559(1.767) | 0.010 | 0.201(0.134) | 0.133 |
3–5 d/w | −0.695(1.980) | 0.726 | 0.165(2.083) | 0.937 | 0.477(1.978) | 0.809 | −0.0001(0.146) | 0.999 |
Meat/egg | ||||||||
6–7 d/w | 2.548(1.660) | 0.126 | 2.406(1.746) | 0.169 | 2.307(1.658) | 0.165 | 0.232(0.114) | 0.043 |
3–5 d/w | 2.976(1.654) | 0.073 | 1.277(1.739) | 0.463 | 2.022(1.651) | 0.221 | 0.192(0.114) | 0.095 |
Model I | Model II | |||
---|---|---|---|---|
Coefficient (SE) | p-Value | Coefficient (SE) | p-Value | |
Models: AA = VIQ + breakfast frequency | ||||
Breakfast frequency | ||||
6–7 d/w | 0.822 (0.212) | <0.001 | 0.951 (0.244) | <0.001 |
3–5 d/w | 0.766 (0.236) | 0.001 | 0.822 (0.268) | 0.002 |
0–2 d/w | Ref | Ref | ||
VIQ | 0.021 (0.003) | <0.001 | 0.022 (0.004) | <0.001 |
Models: AA = PIQ + breakfast | ||||
Breakfast frequency | ||||
6–7 d/w | 0.988 (0.215) | <0.001 | 1.099 (0.248) | <0.001 |
3–5 d/w | 0.893 (0.241) | <0.001 | 0.947 (0.274) | 0.001 |
0–2 d/w | Ref | Ref | ||
PIQ | 0.008 (0.003) | 0.014 | 0.011 (0.004) | 0.002 |
Models: AA = FIQ + breakfast | ||||
Breakfast frequency | ||||
6–7 d/w | 0.890 (0.213) | <0.001 | 1.004 (0.245) | <0.001 |
3–5 d/w | 0.825 (0.238) | 0.001 | 0.868 (0.269) | 0.001 |
0–2 d/w | Ref | Ref | ||
FIQ | 0.017 (0.003) | <0.001 | 0.019 (0.004) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, L.; Um, P.; Wang, J.; Kral, T.V.E.; Hanlon, A.; Shi, Z. Breakfast Consumption Habits at Age 6 and Cognitive Ability at Age 12: A Longitudinal Cohort Study. Nutrients 2021, 13, 2080. https://doi.org/10.3390/nu13062080
Liu J, Wu L, Um P, Wang J, Kral TVE, Hanlon A, Shi Z. Breakfast Consumption Habits at Age 6 and Cognitive Ability at Age 12: A Longitudinal Cohort Study. Nutrients. 2021; 13(6):2080. https://doi.org/10.3390/nu13062080
Chicago/Turabian StyleLiu, Jianghong, Lezhou Wu, Phoebe Um, Jessica Wang, Tanja V. E. Kral, Alexandra Hanlon, and Zumin Shi. 2021. "Breakfast Consumption Habits at Age 6 and Cognitive Ability at Age 12: A Longitudinal Cohort Study" Nutrients 13, no. 6: 2080. https://doi.org/10.3390/nu13062080
APA StyleLiu, J., Wu, L., Um, P., Wang, J., Kral, T. V. E., Hanlon, A., & Shi, Z. (2021). Breakfast Consumption Habits at Age 6 and Cognitive Ability at Age 12: A Longitudinal Cohort Study. Nutrients, 13(6), 2080. https://doi.org/10.3390/nu13062080