Milk-Fat Intake and Differences in Abdominal Adiposity and BMI: Evidence Based on 13,544 Randomly-Selected Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Instrumentation and Measurement Methods
2.2.1. Milk Consumption
2.2.2. Body Mass Index
2.2.3. Sagittal Abdominal Diameter
2.3. Covariates
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 17 May 2021).
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief 2020, 360, 1–8. [Google Scholar]
- Li, Z.P.; Bowerman, S.; Heber, D. Health ramifications of the obesity epidemic. Surg. Clin. N. Am. 2005, 85, 681–701. [Google Scholar] [CrossRef] [PubMed]
- Corley, D.; Kubo, A.; Zhao, W. Abdominal Obesity and the Risk of Esophageal and Gastric Cardia Carcinomas. Cancer Epi Biomark. Prev. 2008, 17, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Abate, N.; Garg, A.; Peshock, R.; Stray-Gunderson, J.; Adams-Huet, B.; Grundy, S. Relationship of Generalized and Regional Adiposity to Insulin Sensitivity in Men With NIDDM. Diabetes 1996, 45, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Despres, J.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 88–887. [Google Scholar] [CrossRef]
- Ferreira, I.; Henry, R.; Twisk, J.; Mechelen, W.; Kemper, H.; Stehouwer, C. The Metabolic Syndrome, Cardiopulmonary Fitness, and Subcutaneous Trunk Fat as Independent Determinants of Arterial Stiffness. Arch. Intern. Med. 2005, 165, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Blair, S.; Jackson, A. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am. J. Clin. Nutr. 1999, 69, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Vikram, N. Insulin resistance syndrome (metabolic syndrome) and obesity in Asian Indians: Evidence and implications. Nutrition 2004, 20, 482–491. [Google Scholar] [CrossRef]
- Wang, Y.; Rimm, E.; Stampfer, M.; Willett, W.; Hu, F.B. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 2005, 81, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Rexrode, K.M.; van Dam, R.M.; Li, T.Y.; Hu, F.B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality. Circulation 2008, 117, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Indicator Details: Percentage with Abdominal Obesity by Survey Year. Available online: https://nccd.cdc.gov/ckd/detail.aspx?Qnum=Q146 (accessed on 17 May 2021).
- Aragon, A.A.; Schoenfeld, B.J.; Wildman, R.; Kleiner, S.; VanDusseldo, T.; Taylor, L.; Earnest, C.P.; Arciero, P.J.; Wilborn, C.; Kalman, D.S.; et al. International society of sports nutrition position stand: Diets and body composition. J. Int. Soc. Sports Nutr. 2017, 14, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Healthy Eating for a Healthy Weight. Available online: https://www.cdc.gov/healthyweight/healthy_eating/index.html (accessed on 17 May 2021).
- Benetar, J.; Sidhu, K.; Stewart, R. Effects of high and low-fat dairy food on cardiometabolic risk factors- a meta-analysis of randomized studies. PLoS ONE 2013, 8, e76480. [Google Scholar]
- Geng, T.; Qi, L.; Huang, T. Effects of Dairy Products Consumption on Body Weight and Body Composition Among Adults: An Updated Meta-Analysis of 37 Randomized Control Trials. Mol. Nutr. Food Res. 2018, 62, 1700410. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Schwedhelm, C.; Kalle-Uhlmann, T.; Missbach, B.; Knuppel, S.; Boeing, H. Consumption of Dairy Products in Relation to Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Cohort Studies. PLoS ONE 2016, 11, e0157461. [Google Scholar] [CrossRef] [PubMed]
- Stonehouse, W.; Wycherley, T.; Luscombe-Marsh, N.; Taylor, P.; Brinkworth, G.; Riley, M. Dairy Intake Enhances Body Weight and Composition Changes during Energy Restriction in 18-50-Year-Old Adults-A Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abargouei, A.; Janghorbani, M.; Salehi-Marzijarani, M. Effect of dairy consumption on weight and body composition in adults: A systematic review and meta-analysis of rcts. Int. J. Obes. 2012, 36, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.; Chaput, J.-P.; Gilbert, J.-A.; Lorenzen, J.K. Dairy beverages and energy balance. Physiol. Behav. 2010, 100, 67–75. [Google Scholar] [CrossRef]
- Chen, M.; Pan, A.; Malik, V.S.; Hu, F.B. Effects of dairy intake on body weight and fat: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Dougkas, A.; Reynolds, C.K.; Givens, I.D.; Elwood, P.C.; Minihane, A.M. Associations between dairy consumption and body weight: A review of the evidence and underlying mechanisms. Nutr. Res. Rev. 2011, 24, 72–95. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Ostrowska, E.; Ferrari, J.M.; Gill, H.S. Dairy proteins and the regulation of satiety and obesity. Aust. J. Exp. Agric. 2007, 47, 1051–1058. [Google Scholar] [CrossRef]
- Elwood, P.; Hughes, J.; Fehily, A. Milk, heart disease and obesity: An examination of the evidence. Br. J. Cardiol. 2005, 12, 283–290. [Google Scholar]
- Wang, W.; Wu, Y.; Zhang, D. Association of dairy products consumption with risk of obesity in children and adults: A meta-analysis of mainly cross-sectional studies. Ann. Epidemiol. 2016, 26, 870–882.e2. [Google Scholar] [CrossRef] [PubMed]
- Barba, G.; Russo, P. Dairy foods, dietary calcium and obesity: A short review of the evidence. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Louie, J.C.Y.; Flood, V.M.; Hector, D.J.; Rangan, A.M.; Gill, T.P. Dairy consumption and overweight and obesity: A systematic review of prospective cohort studies. Obes. Rev. 2011, 12, e582–e592. [Google Scholar] [CrossRef]
- Kratz, M.; Baars, T.; Guyenet, S. The relationship between high-fat dairy consumption and obesity, cv, and met disease. Eur. J. Nutr. 2012, 52, 1–24. [Google Scholar] [CrossRef]
- Zemel, M.B.; Thompson, W.; Milstead, A.; Morris, K.; Campbell, P. Calcium and dairy acceleration of weight and fat loss during energy restriction in obese adults. Obes. Res. 2004, 12, 582–590. [Google Scholar] [CrossRef]
- NHANES. NCHS Ethics Review Board Approval. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 17 May 2021).
- Centers for Disease Control and Prevention. NHANES Questionnaire, Datasets, and Related Documentation. Available online: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed on 17 May 2021).
- NHANES. Diet Behavior and Nutrition. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2013-2014/questionnaires/DBQ_H.pdf (accessed on 17 May 2021).
- American College of Sports Medicine. ACSM Guidelines for Exercise Testing and Prescription, 9th ed.; Wolters Kluwer: Baltimore, MD, USA, 2014. [Google Scholar]
- NHANES. Anthropometry Procedures Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/Anthropometry_Procedures_Manual.pdf (accessed on 17 May 2021).
- Kahn, H.S.; Bullard, K.M. Beyond Body Mass Index: Advantages of Abdominal Measurements for Recognizing Cardiometabolic Disorders. Am. J. Med. 2016, 129, 74–81.e72. [Google Scholar] [CrossRef] [Green Version]
- Vasques, A.C.J.; Cassani, R.S.L.; Forti, A.C.; Vilela, B.S.; Pareja, J.C.; Tambascia, M.A.; Geloneze, B.; Investigators, B. Sagittal Abdominal Diameter as a Surrogate Marker of Insulin Resistance in an Admixtured Population—Brazilian Metabolic Syndrome Study (BRAMS). PLoS ONE 2015, 10, e0125365. [Google Scholar] [CrossRef]
- Snijder, M.B.; Visser, M.; Dekker, J.M.; Seidell, J.C.; Fuerst, T.; Tylavsky, F.; Cauley, J.; Lang, T.; Nevitt, M.; Harris, T.B. The prediction of visceral fat by dual-energy X-ray absorptiometry in the elderly: A comparison with computed tomography and anthropometry. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 984–993. [Google Scholar] [CrossRef] [Green Version]
- Kvist, H.; Chowdhury, B.; Grangard, U.; Tylen, U. Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: Predictive equations. Am. J. Clin. Nutr. 1988, 48, 1351–1361. [Google Scholar] [CrossRef]
- Swift, D.; Johannsen, N.; Lavie, C.; Eearnest, C.; Church, T. The role of exercise and physical activity in weight loss and maintenance. Prog. Cardiovasc. Dis. 2014, 56, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, B.; Rana, J.; Lemieux, I.; Despres, J.-P.; Kastelein, J.; Boekholdt, S.; Wareham, N.; Khaw, K.-T. Physical inactivity, abdominal obesity and risk of coronary heart disease in apparently healthy men and women. Int. J. Obes. 2009, 34, 340–347. [Google Scholar] [CrossRef] [Green Version]
- NHANES. Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SMQ_H.htm#SMD650 (accessed on 17 May 2021).
- Slentz, C.A.; Houmard, J.A.; Kraus, W.E. Exercise, abdominal obesity, skeletal muscle, and metabolic risk: Evidence for a dose response. Obesity 2012, 17, S27–S33. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.J.; Singh, M.A. The influence of physical activity on abdominal fat: A systematic review of the literature. Obes. Rev. 2006, 7, 183–200. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Esliger, D.W.; Tremblay, A. Incidental movement, lifestyle-embedded activity and sleep: New frontiers in physical activity assessment. Appl. Physiol. Nutr. Metab. 2007, 32, S208–S217. [Google Scholar] [CrossRef]
- Fotheringham, M.J.; Wonnacott, R.L. Computer use and physical inactivity in young adults: Public health perils and potentials of new information technologies. Ann. Behav. Med. 2000, 22, 269–275. [Google Scholar] [CrossRef]
- Kenney, E.L.; Gortmaker, S.L. United States Adolescents’ Television, Computer, Videogame, Smartphone, and Tablet Use: Associations with Sugary Drinks, Sleep, Physical Activity, and Obesity. J. Pediatr. 2017, 182, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandelanotte, C.; Sugiyama, T.; Gardiner, P.; Owen, N. Associations of leisure-time internet and computer use with overweight and obesity, physical activity and sedentary behaviors: Cross-sectional study. J. Med. Internet Res. 2009, 11, e28. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, J.A.; Zimmerman, F.J.; Christakis, D.A. Television viewing, computer use, obesity, and adiposity in US preschool children. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 44. [Google Scholar] [CrossRef]
- Hesketh, K.; Wake, M.; Graham, M.; Waters, E. Stability of television viewing and electronic game/computer use in a prospective cohort study of Australian children: Relationship with body mass index. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q. Smoking and body weight: Evidence from China health and nutrition survey. BMC Public Health 2015, 15, 1238. [Google Scholar] [CrossRef] [Green Version]
- Akbartabartoori, M.; Lean, M.E.J.; Hankey, C.R. Relationships between cigarette smoking, body size and body shape. Int. J. Obes. 2005, 29, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albanes, D.; Jones, D.Y.; Micozzi, M.S. Associations between smoking and body weight in the US population: Analysis of NHANES II. Am. J. Public Health 1987, 77, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Traversy, G.; Chaput, J.P. Alcohol Consumption and Obesity: An Update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Department of Health and Human Services and United States Department of Agriculture. Dietary Guidelines for Americans 2015–2020, 8th ed.; HHS/USDA: Washington, DC, USA, 2015.
- Tucker, L.A.; Tucker, J.M.; Bailey, B.W.; LeCheminant, J.D. Dietary patterns as predictors of body fat and BMI in women: A factor analytic study. Am. J. Health Promot. 2015, 29, e136–e146. [Google Scholar] [CrossRef]
- Josse, A.R.; Atkinson, S.A.; Tarnopolsky, M.A.; Phillips, S.M. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J. Nutr. 2011, 141, 1626–1634. [Google Scholar] [CrossRef] [Green Version]
- Zemel, M.B.; Richards, J.; Milstead, A.; Campbell, P. Effects of calcium and dairy on body composition and weight loss in African-American adults. Obes. Res. 2005, 13, 1218–1225. [Google Scholar] [CrossRef]
- Alonso, A.; Zozaya, C.; Vázquez, Z.; Alfredo Martínez, J.; Martínez-González, M.A. The effect of low-fat versus whole-fat dairy product intake on blood pressure and weight in young normotensive adults. J. Hum. Nutr. Diet. 2009, 22, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Faghih, S.; Abadi, A.R.; Hedayati, M.; Kimiagar, S.M. Comparison of the effects of cows’ milk, fortified soy milk, and calcium supplement on weight and fat loss in premenopausal overweight and obese women. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 499–503. [Google Scholar] [CrossRef]
- Rossi, F.; Alberto, B.; Capraro, J.; Simona, B. Diets containing dairy foods positively affects weight and fat loss and cytokines blood levels in premenopausal obese women. Mediterr. J. Nutr. Metab. 2015, 8, 165–174. [Google Scholar] [CrossRef]
- Crichton, G.E.; Alkerwi, A. Whole-fat dairy food intake is inversely associated with obesity prevalence: Findings from the Observation of Cardiovascular Risk Factors in Luxembourg study. Nutr. Res. 2014, 34, 936–943. [Google Scholar] [CrossRef]
- Holmberg, S.; Thelin, A. High dairy fat intake related to less central obesity: A male cohort study with 12 years’ follow-up. Scand. J. Prim. Health Care 2013, 31, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Di Somma, C.; Macchia, P.E.; Falco, A.; Savanelli, M.C.; Orio, F.; Colao, A.; Savastano, S. Influence of nutrition on somatotropic axis: Milk consumption in adult individuals with moderate-severe obesity. Clin. Nutr. 2017, 36, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Brouwer-Brolsma, E.M.; Sluik, D.; Singh-Povel, C.M.; Feskens, E.J.M. Dairy shows different associations with abdominal and BMI-defined overweight: Cross-sectional analyses exploring a variety of dairy products. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.J.; Crichton, G.E.; Dyer, K.A.; Coates, A.M.; Pettman, T.L.; Milte, C.; Thorp, A.A.; Berry, N.M.; Buckley, J.D.; Noakes, M.; et al. Dairy foods and dairy protein consumption is inversely related to markers of adiposity in obese men and women. Nutrients 2013, 5, 4665–4684. [Google Scholar] [CrossRef] [Green Version]
- Rosell, M.; Johansson, G.; Berglund, L.; Vessby, B.; de Faire, U.; Hellenius, M.L. Associations between the intake of dairy fat and calcium and abdominal obesity. Int. J. Obes. 2004, 28, 1427–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dugan, C.E.; Barona, J.; Fernandez, M.L. Increased dairy consumption differentially improves metabolic syndrome markers in male and female adults. Metab. Syndr. Relat. Disord. 2014, 12, 62–69. [Google Scholar] [CrossRef]
- Brooks, B.M.; Rajeshwari, R.; Nicklas, T.A.; Yang, S.J.; Berenson, G.S. Association of calcium intake, dairy product consumption with overweight status in young adults (1995–1996): The Bogalusa Heart Study. J. Am. Coll. Nutr. 2006, 25, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, M.S.; Salehi-Abargouei, A.; Mirzaei, M.; Fallahzadeh, H.; Nadjarzadeh, A. Dietary habits in association with general and abdominal obesity in central Iran: Results from Yazd Health Study (YaHS). Diabetes Metab. Syndr. 2019, 13, 2727–2732. [Google Scholar] [CrossRef]
- Krachler, B.; Eliasson, M.; Stenlund, H.; Johansson, I.; Hallmans, G.; Lindahl, B. Reported food intake and distribution of body fat: A repeated cross-sectional study. Nutr. J. 2006, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Dougkas, A.; Barr, S.; Reddy, S.; Summerbell, C.D. A critical review of the role of milk and other dairy products in the development of obesity in children and adolescents. Nutr. Res. Rev. 2019, 32, 106–127. [Google Scholar] [CrossRef] [Green Version]
- Abreu, S.; Santos, R.; Moreira, C.; Santos, P.C.; Vale, S.; Soares-Miranda, L.; Autran, R.; Mota, J.; Moreira, P. Relationship of milk intake and physical activity to abdominal obesity among adolescents. Pediatr. Obes. 2014, 9, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergholdt, H.K.; Nordestgaard, B.G.; Ellervik, C. Milk intake is not associated with low risk of diabetes or overweight-obesity: A Mendelian randomization study in 97,811 Danish individuals. Am. J. Clin. Nutr. 2015, 102, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Iribarren, C.; Darbinian, J.A.; Lo, J.C.; Fireman, B.H.; Go, A.S. Value of the sagittal abdominal diameter in coronary heart disease risk assessment: Cohort study in a large, multiethnic population. Am. J. Epidemiol. 2006, 164, 1150–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öhrvall, M.; Berglund, L.; Vessby, B. Sagittal abdominal diameter compared with other anthropometric measurements in relation to cardiovascular risk. Int. J. Obes. 2000, 24, 497–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DellaValle, D.M.; Roe, L.S.; Rolls, B.J. Does the consumption of caloric and non-caloric beverages with a meal affect energy intake? Appetite 2005, 44, 187–193. [Google Scholar] [CrossRef]
- Cassady, B.A.; Considine, R.V.; Mattes, R.D. Beverage consumption, appetite, and energy intake: What did you expect? Am. J. Clin. Nutr. 2012, 95, 587–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M. Contemporary nutritional transition: Determinants of diet and its impact on body composition. Proc. Nutr. Soc. 2011, 70, 82–91. [Google Scholar] [CrossRef] [Green Version]
Variable | n | Weighted % | SE |
---|---|---|---|
Gender | |||
Men | 6743 | 49.7 | 0.4 |
Women | 6801 | 50.3 | 0.4 |
Race | |||
Mexican American | 1957 | 9.0 | 1.2 |
Other Hispanic | 1497 | 6.3 | 0.8 |
White (single race) | 4893 | 65.1 | 2.2 |
Black (single race) | 3060 | 11.2 | 1.2 |
Asian (single race) | 1703 | 5.4 | 0.6 |
Other or Multi-Racial | 434 | 3.0 | 0.3 |
Leisure computer use | |||
0 h/week | 4134 | 22.4 | 1.0 |
0.5 h/week | 3283 | 28.3 | 0.7 |
1 h/week | 2259 | 19.6 | 0.6 |
2 h/week | 1736 | 13.9 | 0.4 |
3 h/week | 815 | 6.1 | 0.3 |
4 or more | 1314 | 9.7 | 0.4 |
Alcohol Use | |||
Abstainer | 5089 | 30.3 | 0.9 |
Moderate Drinker | 4047 | 33.3 | 0.9 |
Heavy Drinker | 4408 | 36.4 | 0.7 |
Milk Intake Frequency | |||
Never/Rarely | 5547 | 39.6 | 0.8 |
Sometimes | 3803 | 27.9 | 0.6 |
Often | 4194 | 32.5 | 0.7 |
Milk-fat Consumed | |||
Full-Fat | 2435 | 15.0 | 1.4 |
2% Milk | 3588 | 25.8 | 1.3 |
1% Milk | 1025 | 9.2 | 1.1 |
Non-fat Milk | 949 | 10.4 | 1.2 |
Milk Abstainers | 5547 | 39.6 | 0.7 |
Variable | Percentile (±SE) | ||||
---|---|---|---|---|---|
5th | 25th | 50th | 75th | 95th | |
Body Mass Index (kg/m2) | 20.6 ± 0.1 | 24.4 ± 0.1 | 28.0 ± 0.1 | 32.6 ± 0.2 | 41.4 ± 0.3 |
Sagittal Diameter (cm) | 16.5 ± 0.1 | 19.4 ± 0.1 | 22.2 ± 0.1 | 25.5 ± 0.1 | 30.5 ± 0.2 |
Smoking (cigarettes/30 days) | 0 ± 3.3 | 0 ± 3.3 | 0 ± 3.3 | 0 ± 3.3 | 582.5 ± 36.0 |
MVPA (minutes/week) | 0 ± 8.3 | 0 ± 8.3 | 56.6 ± 7.4 | 236.4 ± 8.2 | 680.7 ± 27.6 |
Milk-Fat Content Typically Consumed | |||||||
---|---|---|---|---|---|---|---|
Milk Abstainer | Full-Fat | 2% | 1% | Non-Fat | |||
Model: | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | Mean ± SE | F | p |
Model 1 | |||||||
BMI | 29.1 ± 0.1 b | 28.2 ± 0.3 a | 29.1 ± 0.2 b | 29.2 ± 0.3 b | 28.1 ± 0.4 a | 4.5 | 0.0038 |
SAD | 22.6 ± 0.1 b | 22.4 ± 0.2 b | 22.8 ± 0.2 b | 22.7 ± 0.2 b | 21.7 ± 0.2 a | 5.4 | 0.0011 |
Model 2 | |||||||
BMI | 29.0 ± 0.1 b | 28.2 ± 0.3 a | 29.0 ± 0.2 b | 29.1 ± 0.3 b | 28.1 ± 0.4 a | 4.1 | 0.0061 |
SAD | 22.6 ± 0.1 b | 22.4 ± 0.2 b | 22.8 ± 0.2 b | 22.7 ± 0.2 b | 21.8 ± 0.2 a | 4.9 | 0.0023 |
Milk Consumers | Milk Abstainers | |||
---|---|---|---|---|
Model: | Mean ± SE | Mean ± SE | F | p |
Model 1 | ||||
BMI | 28.7 ± 0.2 | 29.1 ± 0.1 | 3.1 | 0.0851 |
SAD | 22.5 ± 0.1 | 22.7 ± 0.1 | 0.8 | 0.3916 |
Model 2 | ||||
BMI | 28.7 ± 0.2 | 29.0 ± 0.1 | 3.7 | 0.0609 |
SAD | 22.5 ± 0.1 | 22.6 ± 0.1 | 0.5 | 0.4712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkinson, K.R.; Tucker, L.A.; Davidson, L.E.; Bailey, B.W. Milk-Fat Intake and Differences in Abdominal Adiposity and BMI: Evidence Based on 13,544 Randomly-Selected Adults. Nutrients 2021, 13, 1832. https://doi.org/10.3390/nu13061832
Wilkinson KR, Tucker LA, Davidson LE, Bailey BW. Milk-Fat Intake and Differences in Abdominal Adiposity and BMI: Evidence Based on 13,544 Randomly-Selected Adults. Nutrients. 2021; 13(6):1832. https://doi.org/10.3390/nu13061832
Chicago/Turabian StyleWilkinson, Klarissa R., Larry A. Tucker, Lance E. Davidson, and Bruce W. Bailey. 2021. "Milk-Fat Intake and Differences in Abdominal Adiposity and BMI: Evidence Based on 13,544 Randomly-Selected Adults" Nutrients 13, no. 6: 1832. https://doi.org/10.3390/nu13061832
APA StyleWilkinson, K. R., Tucker, L. A., Davidson, L. E., & Bailey, B. W. (2021). Milk-Fat Intake and Differences in Abdominal Adiposity and BMI: Evidence Based on 13,544 Randomly-Selected Adults. Nutrients, 13(6), 1832. https://doi.org/10.3390/nu13061832