Fruit and Vegetable Intake and Telomere Length in a Random Sample of 5448 U.S. Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.1.1. Fruits and Vegetables
2.1.2. Energy Intake
2.1.3. Telomere Length
2.1.4. Weight and Height
2.1.5. Sociodemographic Covariates
2.1.6. Lifestyle Covariates
2.2. Statistical Analysis
3. Results
3.1. Age and Telomere Length
3.2. Intake of Fruits and Vegetables Combined and Telomeres
3.3. Fruit Intake and Telomeres
3.4. Vegetable Intake and Telomeres
3.5. Fruit and Vegetable Intake
3.6. Intake of Legumes and Potatoes and Telomeres
3.7. Fruits, Vegetables, and Telomeres in U.S. Women Only
3.8. Fruits, Vegetables, and Telomeres in U.S. Men Only
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Health and Human Services; The U.S. Department Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; U.S. Department of Health and Human Services: Washington, DC, USA; The U.S. Department Agriculture: Washington, DC, USA, 2015.
- World Health Organization, Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 10 March 2021).
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.; Bauman, A.; Gale, J.; Banks, E.; Kritharides, L.; Ding, D. Fruit and vegetable consumption and all-cause mortality: Evidence from a large Australian cohort study. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 9. [Google Scholar] [CrossRef]
- Aviv, A. Leukocyte telomere length: The telomere tale continues. Am. J. Clin. Nutr. 2009, 89, 1721–1722. [Google Scholar] [CrossRef] [Green Version]
- Tucker, L.A. Dietary Fiber and Telomere Length in 5674 U.S. Adults: An NHANES Study of Biological Aging. Nutrients 2018, 10, 400. [Google Scholar] [CrossRef] [Green Version]
- Harley, C.B.; Vaziri, H.; Counter, C.M.; Allsopp, R.C. The telomere hypothesis of cellular aging. Exp. Gerontol. 1992, 27, 375–382. [Google Scholar] [CrossRef]
- Kimura, M.; Hjelmborg, J.V.; Gardner, J.P.; Bathum, L.; Brimacombe, M.; Lu, X.; Christiansen, L.; Vaupel, J.W.; Aviv, A.; Christensen, K. Telomere length and mortality: A study of leukocytes in elderly Danish twins. Am. J. Epidemiol. 2008, 167, 799–806. [Google Scholar] [CrossRef]
- Mather, K.A.; Jorm, A.F.; Parslow, R.A.; Christensen, H. Is telomere length a biomarker of aging? A review. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 202–213. [Google Scholar] [CrossRef]
- Mather, K.A.; Jorm, A.F.; Milburn, P.J.; Tan, X.; Easteal, S.; Christensen, H. No associations between telomere length and age-sensitive indicators of physical function in mid and later life. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 792–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Ruiz, C.M.; Gussekloo, J.; van Heemst, D.; von Zglinicki, T.; Westendorp, R.G. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: A population-based study. Aging Cell 2005, 4, 287–290. [Google Scholar] [CrossRef]
- Cawthon, R.M.; Smith, K.R.; O’Brien, E.; Sivatchenko, A.; Kerber, R.A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003, 361, 393–395. [Google Scholar] [CrossRef]
- Bakaysa, S.L.; Mucci, L.A.; Slagboom, P.E.; Boomsma, D.I.; McClearn, G.E.; Johansson, B.; Pedersen, N.L. Telomere length predicts survival independent of genetic influences. Aging Cell 2007, 6, 769–774. [Google Scholar] [CrossRef]
- Ehrlenbach, S.; Willeit, P.; Kiechl, S.; Willeit, J.; Reindl, M.; Schanda, K.; Kronenberg, F.; Brandstatter, A. Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: Introduction of a well-controlled high-throughput assay. Int. J. Epidemiol. 2009, 38, 1725–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, F.; Wang, J.; Huang, X.; Wu, Y.; Cao, Y.; Tan, X.; Xu, X.; Hong, Y.; Yang, L.; Gao, X. Effect of vegetable consumption on the association between peripheral leucocyte telomere length and hypertension: A case-control study. BMJ Open 2015, 5, e009305. [Google Scholar] [CrossRef] [Green Version]
- Marcon, F.; Siniscalchi, E.; Crebelli, R.; Saieva, C.; Sera, F.; Fortini, P.; Simonelli, V.; Palli, D. Diet-related telomere shortening and chromosome stability. Mutagenesis 2012, 27, 49–57. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jun, N.R.; Yoon, D.; Shin, C.; Baik, I. Association between dietary patterns in the remote past and telomere length. Eur. J. Clin. Nutr. 2015, 69, 1048–1052. [Google Scholar] [CrossRef]
- Bethancourt, H.J.; Kratz, M.; Beresford, S.A.A.; Hayes, M.G.; Kuzawa, C.W.; Duazo, P.L.; Borja, J.B.; Eisenberg, D.T.A. No association between blood telomere length and longitudinally assessed diet or adiposity in a young adult Filipino population. Eur. J. Nutr. 2017, 56, 295–308. [Google Scholar] [CrossRef] [Green Version]
- NHANES. The National Health and Nutrition Examination Survey: Sample Design, 1999–2006; U.S. Department of Health and Human Services: Washington, DC, USA, 1999–2006.
- Ruan, D. Intelligent Data Mining: Techniques and Applications; Springer: Berlin, Germany; New York, NY, USA, 2005; 517p. [Google Scholar]
- Bertges, D.J.; Zwolak, R.M.; Deaton, D.H.; Teigen, C.; Tapper, S.; Koslow, A.R.; Makaroun, M.S. Current hospital costs and medicare reimbursement for endovascular abdominal aortic aneurysm repair. J. Vasc. Surg. 2003, 37, 272–279. [Google Scholar] [CrossRef] [Green Version]
- McCann, S.J. Personality and American state differences in obesity prevalence. J. Psychol. 2011, 145, 419–433. [Google Scholar] [CrossRef]
- Takeda, K.; Mishiba, M.; Sugiura, H.; Nakajima, A.; Kohama, M.; Hiramatsu, S. Evaluated reference intervals for serum free thyroxine and thyrotropin using the conventional outliner rejection test without regard to presence of thyroid antibodies and prevalence of thyroid dysfunction in Japanese subjects. Endocr. J. 2009, 56, 1059–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NHANES. National Center of Health Statistics Research Ethics Review Board (ERB) Approval. Available online: http://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 8 April 2021).
- NHANES. MEC in-Person Dietary Interviewers Procedures Manual; U.S. Department of Health and Human Services, Center for Disease Control and Prevention: Washington, DC, USA, 2002.
- NHANES. Dietary Interview, Individual Foods. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/DRXIFF_B.htm (accessed on 8 April 2021).
- Haddad, E.H.; Tanzman, J.S. What do vegetarians in the United States eat? Am. J. Clin. Nutr. 2003, 78, 626S–632S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kant, A.K.; Graubard, B.I.; Mattes, R.D. Association of food form with self-reported 24-h energy intake and meal patterns in US adults: NHANES 2003–2008. Am. J. Clin. Nutr. 2012, 96, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Tucker, L.A. Caffeine consumption and telomere length in men and women of the National Health and Nutrition Examination Survey (NHANES). Nutr. Metab. 2017, 14, 10. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.; Lawler, T.; Mares, J. Dietary Carotenoids and Non-Alcoholic Fatty Liver Disease among US Adults, NHANES 2003–2014. Nutrients 2019, 11, 1101. [Google Scholar] [CrossRef] [Green Version]
- Kappeler, R.; Eichholzer, M.; Rohrmann, S. Meat consumption and diet quality and mortality in NHANES III. Eur. J. Clin. Nutr. 2013, 67, 598–606. [Google Scholar] [CrossRef]
- Wolffenbuttel, B.H.R.; Heiner-Fokkema, M.R.; Green, R.; Gans, R.O.B. Relationship between serum B12 concentrations and mortality: Experience in NHANES. BMC Med. 2020, 18, 307. [Google Scholar] [CrossRef]
- Deng, F.E.; Shivappa, N.; Tang, Y.; Mann, J.R.; Hebert, J.R. Association between diet-related inflammation, all-cause, all-cancer, and cardiovascular disease mortality, with special focus on prediabetics: Findings from NHANES III. Eur. J. Nutr. 2017, 56, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Cooper, R.S.; McGee, D.L. Iron status and coronary heart disease: Negative findings from the NHANES I epidemiologic follow-up study. Am. J. Epidemiol. 1994, 139, 704–712. [Google Scholar] [CrossRef]
- Schulze, M.B.; Fung, T.T.; Manson, J.E.; Willett, W.C.; Hu, F.B. Dietary patterns and changes in body weight in women. Obesity 2006, 14, 1444–1453. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halton, T.L.; Willett, W.C.; Liu, S.; Manson, J.E.; Stampfer, M.J.; Hu, F.B. Potato and french fry consumption and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 2006, 83, 284–290. [Google Scholar] [CrossRef]
- National Health Service. The Eatwell Plate. Available online: http://www.nhs.uk/Livewell/Goodfood/Pages/eatwell-plate.aspx (accessed on 8 April 2021).
- Archer, E.; Hand, G.A.; Blair, S.N. Validity of U.S. nutritional surveillance:National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS ONE 2013, 8, e76632. [Google Scholar] [CrossRef] [PubMed]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- NHANES. Data Documentation, Codebook, and Frequencies: Physical Activity (PAQ). Available online: https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/PAQ.htm#PAQ180 (accessed on 8 April 2021).
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Tucker, L.A. Fiber Intake and Insulin Resistance in 6374 Adults: The Role of Abdominal Obesity. Nutrients 2018, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, 5609. [Google Scholar] [CrossRef]
- Needham, B.L.; Adler, N.; Gregorich, S.; Rehkopf, D.; Lin, J.; Blackburn, E.H.; Epel, E.S. Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc. Sci. Med. 2013, 85, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- NHANES. 2001-2002 Data documentation, Codebook, and Frequencies. Telomere Mean and Standard Deviation. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/TELO_B.htm (accessed on 8 April 2021).
- NHANES. NHANES Anthropometry Procedures Manual. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_13_14/2013_Anthropometry.pdf (accessed on 8 April 2021).
- ACSM. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; American College of Sports Medicine: Baltimore, MD, USA, 2014. [Google Scholar]
- NHANES. Data Documentation, Codebook, and Frequencies: Alcohol Use. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/ALQ_B.htm (accessed on 8 April 2021).
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [Green Version]
- NHANES. Data Documentation, Codebook, and Frequencies: Smoking, Cigarette, Tobacco Use. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/SMQ_B.htm (accessed on 8 April 2021).
- SAS Institute. SAS/STAT User’s Guide, The SurveyReg Procedure. Available online: https://support.sas.com/documentation/onlinedoc/stat/142/surveyreg.pdf (accessed on 8 April 2021).
- Leung, C.W.; Laraia, B.A.; Needham, B.L.; Rehkopf, D.H.; Adler, N.E.; Lin, J.; Blackburn, E.H.; Epel, E.S. Soda and cell aging: Associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys. Am. J. Public Health 2014, 104, 2425–2431. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A. Consumption of Nuts and Seeds and Telomere Length in 5582 Men and Women of the National Health and Nutrition Examination Survey (NHANES). J. Nutr. Health Aging 2017, 21, 233–240. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y. Dietary fiber intake and total mortality: A meta-analysis of prospective cohort studies. Am. J. Epidemiol. 2014, 180, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhao, Q.; Guo, W.; Bao, W.; Wang, X. Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: A systematic review and dose-response meta-analysis from prospective cohort studies. Eur. J. Clin. Nutr. 2018, 72, 57–65. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Rafie, N.; Golpour Hamedani, S.; Barak, F.; Safavi, S.M.; Miraghajani, M. Dietary patterns, food groups and telomere length: A systematic review of current studies. Eur. J. Clin. Nutr. 2017, 71, 151–158. [Google Scholar] [CrossRef]
- Kordinas, V.; Ioannidis, A.; Chatzipanagiotou, S. The Telomere/Telomerase System in Chronic Inflammatory Diseases. Cause or Effect? Genes 2016, 7, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Rane, G.; Dai, X.; Shanmugam, M.K.; Arfuso, F.; Samy, R.P.; Lai, M.K.; Kappei, D.; Kumar, A.P.; Sethi, G. Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res. Rev. 2016, 25, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Jurk, D.; Wilson, C.; Passos, J.F.; Oakley, F.; Correia-Melo, C.; Greaves, L.; Saretzki, G.; Fox, C.; Lawless, C.; Anderson, R.; et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2014, 2, 4172. [Google Scholar] [CrossRef] [PubMed]
- Babizhayev, M.A.; Savel’yeva, E.L.; Moskvina, S.N.; Yegorov, Y.E. Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. Am. J. Ther. 2011, 18, e209–e226. [Google Scholar] [CrossRef] [PubMed]
- Houben, J.M.; Moonen, H.J.; van Schooten, F.J.; Hageman, G.J. Telomere length assessment: Biomarker of chronic oxidative stress? Free Radic Biol. Med. 2008, 44, 235–246. [Google Scholar] [CrossRef] [PubMed]
- von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002, 27, 339–344. [Google Scholar] [CrossRef]
- Garcia-Calzon, S.; Moleres, A.; Martinez-Gonzalez, M.A.; Martinez, J.A.; Zalba, G.; Marti, A. Dietary total antioxidant capacity is associated with leukocyte telomere length in a children and adolescent population. Clin. Nutr. 2015, 34, 694–699. [Google Scholar] [CrossRef]
- Hosseini, B.; Berthon, B.S.; Saedisomeolia, A.; Starkey, M.R.; Collison, A.; Wark, P.A.B.; Wood, L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of Fruits and Vegetables with Major Cardiometabolic Risk Factors, Markers of Oxidation, and Inflammation. Nutrients 2019, 11, 2381. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef]
- Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Fruit Polyphenols: A Review of Anti-inflammatory Effects in Humans. Crit. Rev. Food Sci. Nutr. 2016, 56, 419–444. [Google Scholar] [CrossRef]
Percentile | |||||
---|---|---|---|---|---|
Variable | Mean | SE | 25th | 50th | 75th |
Age (years) | 46.5 | 0.4 | 33.0 | 44.4 | 58.0 |
Telomere length (base pairs) | 5824 | 38.9 | 5380 | 5743 | 6185 |
Body mass index (BMI) | 28.3 | 0.2 | 23.7 | 27.1 | 31.6 |
Fruit intake (g) | 78.9 | 2.8 | 0 | 0 | 130.9 |
Fruit intake (g per 1000 kcal) | 35.0 | 1.4 | 0 | 0 | 55.3 |
Vegetable intake (g) † | 93.7 | 3.2 | 0 | 43.1 | 146.0 |
Vegetable intake (g per 1000 kcal) † | 40.9 | 1.4 | 0 | 18.2 | 61.7 |
Fruit and vegetable intake (g) | 169.3 | 5.1 | 0 | 117.8 | 264.0 |
F&V intake (g per 1000 kcal) | 74.9 | 2.2 | 0 | 47.3 | 113.6 |
Potato intake (g) | 50.6 | 1.4 | 0 | 0 | 74.9 |
Potato intake (g per 1000 kcal) | 20.7 | 0.6 | 0 | 0 | 30.1 |
Legume intake (g) ‡ | 24.2 | 1.7 | 0 | 0 | 0 |
Legume intake (g per 1000 kcal) ‡ | 10.3 | 0.7 | 0 | 0 | 0 |
Veg, potato, and legume intake (g) | 169.4 | 3.7 | 22.3 | 120.5 | 252.9 |
Veg, potato, and legume intake (g per 1000 kcal) | 72.2 | 1.7 | 9.2 | 49.9 | 109.8 |
Body weight (kg) | 80.6 | 0.5 | 65.8 | 78.1 | 91.9 |
Physical activity (MET-min) | 132.9 | 11.7 | 0 | 0 | 135.8 |
Energy intake (kilocalories) | 2410 | 11.9 | 2035 | 2383 | 2742 |
Smoking (pack-years) | 2.9 | 0.2 | 0 | 0 | 0 |
Exposure Variable | Model | Regression Coefficient | SE | R2 (%) | F | p |
---|---|---|---|---|---|---|
Fruit and vegetable intake (100 g) † | 1 | 27.8 | 5.8 | 16.8 | 22.7 | <0.0001 |
2 | 24.7 | 5.5 | 17.5 | 20.3 | <0.0001 | |
Fruit a vegetable intake (100 g per 1000 kcal) † | 1 | 66.9 | 13.1 | 16.8 | 25.9 | <0.0001 |
2 | 57.6 | 11.9 | 17.4 | 23.3 | <0.0001 | |
Fruit intake (100 g) | 1 | 26.9 | 10.1 | 16.4 | 7.2 | 0.0121 |
2 | 23.1 | 9.5 | 17.2 | 6.0 | 0.0206 | |
Fruit intake (100 g per 1000 kcal) | 1 | 74.9 | 22.8 | 16.6 | 10.8 | 0.0027 |
2 | 63.1 | 21.5 | 17.3 | 8.7 | 0.0063 | |
Vegetable intake (100 g) † | 1 | 32.5 | 8.3 | 16.6 | 15.4 | 0.0005 |
2 | 28.9 | 8.0 | 17.4 | 13.2 | 0.0011 | |
Vegetable intake (100 g per 1000 kcal) † | 1 | 71.4 | 14.0 | 16.6 | 25.9 | <0.0001 |
2 | 59.1 | 12.8 | 17.3 | 21.3 | <0.0001 | |
Potato intake (100 g) | 1 | −5.8 | 8.6 | 16.2 | 0.5 | 0.5038 |
2 | −5.1 | 9.0 | 17.2 | 0.3 | 0.5732 | |
Potato intake (100 g per 1000 kcal) | 1 | −6.8 | 22.9 | 16.2 | 0.1 | 0.7688 |
2 | −9.8 | 24.0 | 17.1 | 0.2 | 0.6861 | |
Legume and pulse intake (100 g) | 1 | 2..4 | 12.8 | 16.2 | 0.0 | 0.8533 |
2 | −0.6 | 13.1 | 17.0 | 0.0 | 0.9629 | |
Legume and pulse intake (100 g per 1000 kcal) | 1 | 5.0 | 28.5 | 16.1 | 0.0 | 0.8627 |
2 | −5.6 | 29.2 | 17.0 | 0.0 | 0.8498 | |
Vegetable and potato intake (100 g) | 1 | 16.9 | 4.9 | 16.4 | 12.1 | 0.0016 |
2 | 14.9 | 4.6 | 17.2 | 10.6 | 0.0029 | |
Vegetable and potato intake (100 g per 1000 kcal) | 1 | 50.2 | 11.5 | 16.4 | 19.2 | 0.0001 |
2 | 41.1 | 10.5 | 17.2 | 15.3 | 0.0005 | |
Veg., potato, and legume intake (100 g) | 1 | 15.1 | 4.7 | 16.4 | 10.2 | 0.0033 |
2 | 12.4 | 4.5 | 17.2 | 7.5 | 0.0107 | |
Veg., potato, and legume intake (100 g per 1000 kcal) | 1 | 34.7 | 10.7 | 16.2 | 10.5 | 0.0030 |
2 | 25.5 | 10.7 | 17.1 | 5.7 | 0.0235 |
Exposure Variable | Model | Regression Coefficient | SE | R2 (%) | F | p |
---|---|---|---|---|---|---|
Fruit and vegetable intake (100 g) † | 1 | 33.6 | 7.8 | 15.3 | 18.7 | 0.0002 |
2 | 28.8 | 7.4 | 16.3 | 15.1 | 0.0005 | |
Fruit and vegetable intake (100 g per 1000 kcal) † | 1 | 75.5 | 16.7 | 15.5 | 20.5 | <0.0001 |
2 | 63.5 | 16.3 | 16.3 | 15.2 | 0.0005 | |
Fruit intake (100 g) | 1 | 45.3 | 13.9 | 15.2 | 10.6 | 0.0029 |
2 | 39.9 | 12.3 | 16.2 | 10.5 | 0.0030 | |
Fruit intake (100 g per 1000 kcal) | 1 | 100.8 | 28.3 | 15.4 | 12.7 | 0.0013 |
2 | 85.8 | 25.1 | 16.3 | 11.6 | 0.0019 | |
Vegetable intake (100 g) † | 1 | 27.7 | 13.2 | 14.7 | 4.4 | 0.0449 |
2 | 21.5 | 13.7 | 15.8 | 2.5 | 0.1274 | |
Vegetable intake (100 g per 1000 kcal) † | 1 | 50.6 | 17.6 | 14.8 | 8.3 | 0.0074 |
2 | 33.5 | 17.0 | 15.8 | 3.9 | 0.0583 | |
Potato intake (100 g) | 1 | 1.1 | 19.2 | 14.4 | 0.0 | 0.9525 |
2 | 4.2 | 21.0 | 15.6 | 0.0 | 0.8436 | |
Potato intake (100 g per 1000 kcal) | 1 | 22.0 | 42.7 | 14.4 | 0.3 | 0.6094 |
2 | 20.8 | 46.6 | 15.6 | 0.2 | 0.6588 | |
Legume and pulse intake (100 g) | 1 | 16.3 | 16.9 | 14.4 | 0.9 | 0.3424 |
2 | 13.7 | 18.2 | 15.6 | 0.6 | 0.4578 | |
Legume and pulse intake (100 g per 1000 kcal) | 1 | 28.2 | 33.7 | 14.4 | 0.7 | 0.4087 |
2 | 18.3 | 35.2 | 15.6 | 0.3 | 0.6065 | |
Vegetable and potato intake (100 g) | 1 | 21.2 | 7.9 | 14.7 | 7.1 | 0.0123 |
2 | 17.9 | 7.9 | 15.8 | 5.1 | 0.0315 | |
Vegetable and potato intake (100 g per 1000 kcal) | 1 | 54.9 | 17.6 | 14.7 | 9.8 | 0.0040 |
2 | 42.8 | 18.3 | 15.8 | 5.5 | 0.0267 | |
Veg., potato, and legume intake (100 g) | 1 | 20.6 | 7.3 | 14.7 | 8.0 | 0.0083 |
2 | 16.9 | 7.0 | 15.8 | 5.9 | 0.0212 | |
Veg., potato, and legume intake (100 g per 1000 kcal) | 1 | 40.8 | 17.1 | 14.6 | 5.7 | 0.0239 |
2 | 30.0 | 16.3 | 15.7 | 3.4 | 0.0754 |
Exposure Variable | Model | Regression Coefficient | SE | R2 (%) | F | p |
---|---|---|---|---|---|---|
Fruit and vegetable intake (100 g) † | 1 | 22.4 | 7.0 | 19.0 | 10.1 | 0.0034 |
2 | 20.4 | 7.0 | 19.8 | 8.4 | 0.0070 | |
Fruit and vegetable intake (100 g per 1000 kcal) † | 1 | 53.2 | 15.2 | 18.8 | 12.3 | 0.0015 |
2 | 45.8 | 15.2 | 19.5 | 9.0 | 0.0054 | |
Fruit intake (100 g) | 1 | 9.3 | 10.4 | 18.7 | 0.8 | 0.3747 |
2 | 6.7 | 9.7 | 19.5 | 0.5 | 0.4925 | |
Fruit intake (100 g per 1000 kcal) | 1 | 34.4 | 24.2 | 18.7 | 2.0 | 0.1661 |
2 | 25.5 | 22.4 | 19.4 | 1.3 | 0.2649 | |
Vegetable intake (100 g) † | 1 | 37.3 | 10.5 | 19.3 | 12.8 | 0.0013 |
2 | 35.0 | 10.8 | 10.8 | 10.4 | 0.0031 | |
Vegetable intake (100 g per 1000 kcal) † | 1 | 102.7 | 25.4 | 19.3 | 16.2 | 0.0004 |
2 | 93.0 | 26.4 | 20.0 | 12.3 | 0.0015 | |
Potato intake (100 g) | 1 | −10.1 | 14.5 | 19.0 | 0.5 | 0.4909 |
2 | −9.7 | 14.2 | 19.8 | 0.5 | 0.5031 | |
Potato intake (100 g per 1000 kcal) | 1 | −35.3 | 43.0 | 18.9 | 0.7 | 0.4198 |
2 | −37.0 | 42.3 | 19.8 | 0.8 | 0.3893 | |
Legume and pulse intake (100 g) | 1 | −4.4 | 14.0 | 18.9 | 0.1 | 0.7570 |
2 | −7.3 | 14.6 | 19.6 | 0.3 | 0.6177 | |
Legume and pulse intake (100 g per 1000 kcal) | 1 | −16.0 | 34.5 | 18.8 | 0.2 | 0.6456 |
2 | −27.4 | 35.9 | 19.6 | 0.6 | 0.4514 | |
Vegetable and potato intake (100 g) | 1 | 13.5 | 7.9 | 18.9 | 2.9 | 0.0992 |
2 | 12.1 | 8.2 | 19.7 | 2.2 | 0.1517 | |
Vegetable and potato intake (100 g per 1000 kcal) | 1 | 43.3 | 20.9 | 18.8 | 4.3 | 0.0463 |
2 | 36.5 | 22.2 | 19.6 | 2.7 | 0.1107 | |
Veg., potato, and legume intake (100 g) | 1 | 11.2 | 7.1 | 19.0 | 2.5 | 0.1258 |
2 | 9.1 | 7.5 | 19.8 | 1.5 | 0.2309 | |
Veg., potato, and legume intake (100 g per 1000 kcal) | 1 | 28.6 | 18.6 | 18.7 | 2.4 | 0.1362 |
2 | 20.3 | 20.2 | 19.5 | 1.0 | 0.3239 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucker, L.A. Fruit and Vegetable Intake and Telomere Length in a Random Sample of 5448 U.S. Adults. Nutrients 2021, 13, 1415. https://doi.org/10.3390/nu13051415
Tucker LA. Fruit and Vegetable Intake and Telomere Length in a Random Sample of 5448 U.S. Adults. Nutrients. 2021; 13(5):1415. https://doi.org/10.3390/nu13051415
Chicago/Turabian StyleTucker, Larry A. 2021. "Fruit and Vegetable Intake and Telomere Length in a Random Sample of 5448 U.S. Adults" Nutrients 13, no. 5: 1415. https://doi.org/10.3390/nu13051415