Impact of Inadequate Calorie Intake on Mortality and Hospitalization in Stable Patients with Chronic Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Study Protocol
2.4. Anthropometric Measurements
2.5. Laboratory Measurements
2.6. Assessment of Dietary Calorie Intake
2.7. Estimation of the Dietary Calorie Requirement
2.8. Assessment of Nutritional Status
2.9. Statistical Analyses
3. Results
3.1. Characteristics of the Total Chronic HF Cohort
3.2. Characteristics of the Chronic HF Patients with and without Adequate Calorie Intake
3.3. Adverse Clinical Events
3.4. Predictors of Adverse Clinical Events in Patients with Chronic HF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metra, M.; Teerlink, J.R. Heart failure. Lancet 2017, 390, 1981–1995. [Google Scholar] [CrossRef]
- Sharma, A.; Lavie, C.J.; Borer, J.S.; Vallakati, A.; Goel, S.; Lopez-Jimenez, F.; Arbab-Zadeh, A.; Mukherjee, D.; Lazar, J.M. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am. J. Cardiol. 2015, 115, 1428–1434. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, S.; Tsuchihashi-Makaya, M.; Kinugawa, S.; Goto, D.; Yokota, T.; Goto, K.; Yamada, S.; Yokoshiki, H.; Takeshita, A.; Tsutsui, H. Body mass index is an independent predictor of long-term outcomes in patients hospitalized with heart failure in Japan. Circ. J. 2010, 74, 2605–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wawrzenczyk, A.; Anaszewicz, M.; Budzynski, J. Clinical significance of nutritional status in patients with chronic heart failure-a systematic review. Heart Fail. Rev. 2019, 24, 671–700. [Google Scholar] [CrossRef]
- Pasini, E.; Opasich, C.; Pastoris, O.; Aquilani, R. Inadequate nutritional intake for daily life activity of clinically stable patients with chronic heart failure. Am. J. Cardiol. 2004, 93, 41A–43A. [Google Scholar] [CrossRef]
- Doehner, W.; Frenneaux, M.; Anker, S.D. Metabolic impairment in heart failure: The myocardial and systemic perspective. J. Am. Coll. Cardiol. 2014, 64, 1388–1400. [Google Scholar] [CrossRef]
- Springer, J.; Springer, J.I.; Anker, S.D. Muscle wasting and sarcopenia in heart failure and beyond: Update 2017. ESC Heart Fail. 2017, 4, 492–498. [Google Scholar] [CrossRef]
- Vest, A.R.; Chan, M.; Deswal, A.; Givertz, M.M.; Lekavich, C.; Lennie, T.; Litwin, S.E.; Parsly, L.; Rodgers, J.E.; Rich, M.W.; et al. Nutrition, obesity, and cachexia in patients with heart failure: A consensus statement from the Heart Failure Society of America Scientific Statements Committee. J. Card. Fail. 2019, 25, 380–400. [Google Scholar] [CrossRef] [PubMed]
- Nakano, I.; Tsuda, M.; Kinugawa, S.; Fukushima, A.; Kakutani, N.; Takada, S.; Yokota, T. Loop diuretic use is associated with skeletal muscle wasting in patients with heart failure. J. Cardiol. 2020, 76, 109–114. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, M.; Hills, A.P. Preoccupation with body weight and under-reporting of energy intake in female Japanese nutrition students. Nutrients 2020, 12, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komada, Y.; Narisawa, H.; Ueda, F.; Saito, H.; Sakaguchi, H.; Mitarai, M.; Suzuki, R.; Tamura, N.; Inoue, S.; Inoue, Y. Relationship between self-reported dietary nutrient intake and self-reported sleep duration among Japanese adults. Nutrients 2017, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S. Living status and frequency of eating out-of-home foods in relation to nutritional adequacy in 4,017 Japanese female dietetic students aged 18-20 years: A multicenter cross-sectional study. J. Epidemiol. 2017, 27, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Hatamoto, Y.; Masumoto, A.; Sakamoto, A.; Ikemoto, S. Mothers’ nutrition knowledge is unlikely to be related to adolescents’ habitual nutrient intake inadequacy in Japan: A cross-sectional study of Japanese junior high school students. Nutrients 2020, 12, 2801. [Google Scholar] [CrossRef]
- Ignacio de Ulibarri, J.; Gonzalez-Madrono, A.; de Villar, N.G.; Gonzalez, P.; Gonzalez, B.; Mancha, A.; Rodriguez, F.; Fernandez, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Kinugasa, Y.; Kato, M.; Sugihara, S.; Hirai, M.; Yamada, K.; Yanagihara, K.; Yamamoto, K. Geriatric nutritional risk index predicts functional dependency and mortality in patients with heart failure with preserved ejection fraction. Circ. J. 2013, 77, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Argiles, J.M.; Fontes-Oliveira, C.C.; Toledo, M.; Lopez-Soriano, F.J.; Busquets, S. Cachexia: A problem of energetic inefficiency. J. Cachexia Sarcopenia Muscle 2014, 5, 279–286. [Google Scholar] [CrossRef]
- Witte, K.K.; Clark, A.L.; Cleland, J.G. Chronic heart failure and micronutrients. J. Am. Coll. Cardiol. 2001, 37, 1765–1774. [Google Scholar] [CrossRef] [Green Version]
- Sciatti, E.; Lombardi, C.; Ravera, A.; Vizzardi, E.; Bonadei, I.; Carubelli, V.; Gorga, E.; Metra, M. Nutritional deficiency in patients with heart failure. Nutrients 2016, 8, 442. [Google Scholar] [CrossRef] [Green Version]
- Shirakawa, R.; Yokota, T.; Nakajima, T.; Takada, S.; Yamane, M.; Furihata, T.; Maekawa, S.; Nambu, H.; Katayama, T.; Fukushima, A.; et al. Mitochondrial reactive oxygen species generation in blood cells is associated with disease severity and exercise intolerance in heart failure patients. Sci. Rep. 2019, 9, 14709. [Google Scholar] [CrossRef]
- Tang, W.H.; Tong, W.; Troughton, R.W.; Martin, M.G.; Shrestha, K.; Borowski, A.; Jasper, S.; Hazen, S.L.; Klein, A.L. Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J. Am. Coll. Cardiol. 2007, 49, 2364–2370. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.; Wu, Y.; Mann, S.; Pepoy, M.; Shrestha, K.; Borowski, A.G.; Hazen, S.L. Diminished antioxidant activity of high-density lipoprotein-associated proteins in systolic heart failure. Circ. Heart Fail. 2011, 4, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Yokota, T.; Kinugawa, S.; Hirabayashi, K.; Yamato, M.; Takada, S.; Suga, T.; Nakano, I.; Fukushima, A.; Matsushima, S.; Okita, K.; et al. Systemic oxidative stress is associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in heart failure patients. Sci. Rep. 2021, 11, 2272. [Google Scholar] [CrossRef]
- Valentova, M.; von Haehling, S.; Bauditz, J.; Doehner, W.; Ebner, N.; Bekfani, T.; Elsner, S.; Sliziuk, V.; Scherbakov, N.; Murin, J.; et al. Intestinal congestion and right ventricular dysfunction: A link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur. Heart J. 2016, 37, 1684–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennie, T.A.; Moser, D.K.; Heo, S.; Chung, M.L.; Zambroski, C.H. Factors influencing food intake in patients with heart failure: A comparison with healthy elders. J. Cardiovasc. Nurs. 2006, 21, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Colin-Ramirez, E.; McAlister, F.A.; Zheng, Y.; Sharma, S.; Ezekowitz, J.A. Changes in dietary intake and nutritional status associated with a significant reduction in sodium intake in patients with heart failure. A sub-analysis of the SODIUM-HF pilot study. Clin. Nutr. ESPEN 2016, 11, e26–e32. [Google Scholar] [CrossRef]
Demographic Findings: | |
---|---|
Age, year | 67 (60–77) |
Female | 45 (31%) |
BMI, kg/m2 | 22.9 (20.5–25.7) |
Upper arm circumference, cm | 27.5 (24.9–29.7) |
Thigh circumference, cm | 44.4 (40.8–47.0) |
NYHA functional class: | |
I–II | 130 (90%) |
III | 15 (10%) |
Primary cause of HF: | |
Ischemic cause | 46 (32%) |
Dilated cardiomyopathy | 45 (31%) |
Others | 54 (37%) |
Hypertension | 80 (55%) |
Diabetes | 38 (26%) |
Dyslipidemia | 100 (69%) |
Echocardiographic findings: | |
LVEF, % | 45 (30–56) |
Laboratory measurements: | |
Hemoglobin, g/dL | 13.3 (11.9–14.3) |
Serum albumin, g/dL | 4.2 (3.9–4.4) |
eGFR, mL/min/1.73 m2 | 54.2 (40.3–67.7) |
HbA1c, % | 5.8 (5.6–6.2) |
Plasma BNP, pg/mL | 154 (76–368) |
Medications: | |
ACE inhibitor or ARB | 110 (76%) |
β-blocker | 128 (88%) |
MRA | 83 (57%) |
Statin | 69 (48%) |
6-min walk test, m | 433 (349–499) |
Nutritional assessments: | |
CONUT score | 2 (1–2) |
GNRI | 106 (100–113) |
Dietary calorie intake, kcal/day | 1628 (1274–1996) |
Estimated calorie requirement, kcal/day | 2300 (1956–2425) |
Dietary calorie intake adequacy, % | 75 (58–91) |
Adequate Calorie Intake (N = 101) | Inadequate Calorie Intake (N = 44) | p-Value | |
---|---|---|---|
Demographic findings: | |||
Age, yrs | 68 (61–78) | 65 (55–73) | 0.04 |
Female | 35 (35%) | 9 (20%) | 0.07 |
BMI, kg/m2 | 22.8 (20.3–26.1) | 23.4 (20.7–25.4) | 0.74 |
Upper arm circumference, cm | 27.8 (24.7–30.0) | 26.8 (24.9–29.4) | 0.61 |
Thigh circumference, cm | 44.4 (40.4–47.2) | 43.9 (41.5–46.9) | 0.99 |
NYHA functional class: | 0.07 | ||
I–II | 94 (93%) | 36 (82%) | |
III | 7 (7%) | 8 (18%) | |
Primary cause of HF: | |||
Ischemic cause | 33 (33%) | 13 (30%) | 0.71 |
Dilated cardiomyopathy | 28 (28%) | 17 (39%) | 0.19 |
Others | 40 (40%) | 14 (32%) | 0.37 |
Hypertension | 55 (54%) | 25 (57%) | 0.79 |
Diabetes | 21 (21%) | 17 (39%) | 0.02 |
Dyslipidemia | 68 (67%) | 32 (73%) | 0.52 |
Echocardiographic findings: | |||
LVEF, % | 49 (37–59) | 34 (25–48) | <0.01 |
Laboratory measurements: | |||
Hemoglobin, g/dL | 12.9 (11.7–14.2) | 13.6 (12.4–14.4) | 0.09 |
Serum albumin, g/dL | 4.1(4.0–4.3) | 4.3 (3.9–4.5) | 0.39 |
eGFR, mL/min/1.73 m2 | 57.5 (42.9–71.1) | 45.7 (34.5–56.5) | <0.01 |
HbA1c, % | 5.8 (5.5–6.2) | 5.9 (5.7–6.5) | 0.17 |
Plasma BNP, pg/mL | 153 (78–346) | 156 (57–431) | 0.88 |
Medications: | |||
ACE inhibitor or ARB | 75 (74%) | 35 (80%) | 0.49 |
β-blocker | 87 (86%) | 41 (93%) | 0.23 |
MRA | 53 (52%) | 30 (68%) | 0.08 |
Statin | 47 (47%) | 22 (50%) | 0.7 |
6-min walk test, m | 435 (364–502) | 424 (335–456) | 0.15 |
Nutritional assessments: | |||
CONUT score | 2 (1–2) | 2 (1–3) | 0.86 |
GNRI | 106 (99–113) | 107 (102–111) | 0.54 |
Dietary calorie intake, kcal/day | 1824 (1566–2276) | 1145 (950–1308) | <0.01 |
Estimated calorie requirement, kcal/day | 2238 (1913–2419) | 2350 (2200–2469) | 0.02 |
Dietary calorie intake adequacy, % | 83 (73–99) | 51 (42–57) | <0.01 |
Dietary Calorie IntakeAdequacy | OR | 95% CI | p-Value | |
---|---|---|---|---|
Inadequate calorie intake | <80% | 2.16 | 0.33–14.2 | 0.42 |
<70% | 4.89 | 0.68–35.1 | 0.11 | |
<60% | 7.39 | 1.02–53.5 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obata, Y.; Kakutani, N.; Kinugawa, S.; Fukushima, A.; Yokota, T.; Takada, S.; Ono, T.; Sota, T.; Kinugasa, Y.; Takahashi, M.; et al. Impact of Inadequate Calorie Intake on Mortality and Hospitalization in Stable Patients with Chronic Heart Failure. Nutrients 2021, 13, 874. https://doi.org/10.3390/nu13030874
Obata Y, Kakutani N, Kinugawa S, Fukushima A, Yokota T, Takada S, Ono T, Sota T, Kinugasa Y, Takahashi M, et al. Impact of Inadequate Calorie Intake on Mortality and Hospitalization in Stable Patients with Chronic Heart Failure. Nutrients. 2021; 13(3):874. https://doi.org/10.3390/nu13030874
Chicago/Turabian StyleObata, Yoshikuni, Naoya Kakutani, Shintaro Kinugawa, Arata Fukushima, Takashi Yokota, Shingo Takada, Taisuke Ono, Takeshi Sota, Yoshiharu Kinugasa, Masashige Takahashi, and et al. 2021. "Impact of Inadequate Calorie Intake on Mortality and Hospitalization in Stable Patients with Chronic Heart Failure" Nutrients 13, no. 3: 874. https://doi.org/10.3390/nu13030874
APA StyleObata, Y., Kakutani, N., Kinugawa, S., Fukushima, A., Yokota, T., Takada, S., Ono, T., Sota, T., Kinugasa, Y., Takahashi, M., Matsuo, H., Matsukawa, R., Yoshida, I., Yokota, I., Yamamoto, K., & Tsuchihashi-Makaya, M. (2021). Impact of Inadequate Calorie Intake on Mortality and Hospitalization in Stable Patients with Chronic Heart Failure. Nutrients, 13(3), 874. https://doi.org/10.3390/nu13030874