Effects of Bovine Colostrum with or without Egg on In Vitro Bacterial-Induced Intestinal Damage with Relevance for SIBO and Infectious Diarrhea
Abstract
1. Introduction
2. Materials and Methods
2.1. Bovine Colostrum (BC) and Egg Samples
2.2. Cell Line
2.3. Bacterial Strains and Culture
2.4. Study Series 1: Effect of BC, Egg, or the Combination on Bacterial Growth
2.5. Study Series 2: Effect of BC, Egg, or the Combination on Transepithelial Passage of Bacteria and Transepithelial Electrical Resistance (TEER)
2.6. Study Series 3: Mechanisms of Action of BC, Egg, or the Combination for Maintaining Epithelial Integrity
2.6.1. Cell Lysate Preparation
2.6.2. Tight Junction Proteins
2.6.3. Cell Apoptosis Assays
2.6.4. ICAM-1, VEGF, and Hsp70
2.7. Statistical Analyses
3. Results
3.1. Study Series 1: Effect of BC, Egg or the Combination on Bacterial Growth
3.2. Study Series 2: Effect of BC, Egg, or the Combination on Transepithelial Passage of Bacteria and TEER
3.2.1. Bacterial Translocation
3.2.2. TEER
3.3. Study Series 3: Mechanisms of Action of BC, Egg, or the Combination for Maintaining Epithelial Integrity
3.3.1. Tight Junction Proteins
3.3.2. Cell Apoptosis Assays
3.3.3. ICAM-1, VEGF, and Hsp70
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BC | Bovine colostrum |
EGF | Epidermal growth factor |
EPEC | Enteropathogenic Escherichia coli |
IGF | Insulin-like growth factor |
SIBO | Small intestinal bacterial overgrowth |
TEER | Transepithelial electrical resistance |
TGF | Transforming growth factor |
References
- Middleton, S.J.; Playford, R.J. Bacterial overgrowth of the small intestine. In Oxford Textbook of Medicine, 6th ed.; Oxford University Press: Oxford, UK, 2020; pp. 2879–2883. [Google Scholar]
- Ghoshal, U.C.; Shukla, R.; Ghoshal, U. Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome: A Bridge between Functional Organic Dichotomy. Gut Liver 2017, 11, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Dukowicz, A.C.; Lacy, B.E.; Levine, G.M. Small intestinal bacterial overgrowth: A comprehensive review. Gastroenterol. Hepatol. 2007, 3, 112–122. [Google Scholar]
- Pimentel, M.; Chow, E.J.; Lin, H.C. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am. J. Gastroenterol. 2000, 95, 3503–3506. [Google Scholar] [CrossRef]
- Mello, C.S.; Rodrigues, M.S.D.C.; Filho, H.B.D.A.; Melli, L.C.F.L.; Tahan, S.; Pignatari, A.C.C.; De Morais, M.B. Fecal microbiota analysis of children with small intestinal bacterial overgrowth among residents of an urban slum in Brazil. J. Pediatr. 2018, 94, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, C.; Adame, E.C.; Attaluri, A.; Valestin, J.; Rao, S.S.C. Dysmotility and proton pump inhibitor use are independent risk factors for small intestinal bacterial and/or fungal overgrowth. Aliment. Pharmacol. Ther. 2013, 37, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Haboubi, N.Y.; Lee, G.S.; Montgomery, R.D. Duodenal Mucosal Morphometry of Elderly Patients with Small Intestinal Bacterial Overgrowth: Response to Antibiotic Treatment. Age Ageing 1991, 20, 29–32. [Google Scholar] [CrossRef]
- Gatta, L.; Scarpignato, C. Systematic review with meta-analysis: Rifaximin is effective and safe for the treatment of small intestine bacterial overgrowth. Aliment. Pharmacol. Ther. 2017, 45, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, E.C.; Gabrielli, M.; Scarpellini, E.; Lupascu, A.; Novi, M.; Sottili, S.; Vitale, G.; Cesario, V.; Serricchio, M.; Cammarota, G.; et al. Small Intestinal Bacterial Overgrowth Recurrence After Antibiotic Therapy. Am. J. Gastroenterol. 2008, 103, 2031–2035. [Google Scholar] [CrossRef]
- Pimentel, M.; Saad, R.J.; Long, M.D.; Rao, S.S.C. ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am. J. Gastroenterol. 2020, 115, 165–178. [Google Scholar] [CrossRef]
- Panahi, Y.; Falahi, G.; Falahpour, M.; Moharamzad, Y.; Khorasgani, M.R.; Beiraghdar, F.; Naghizadeh, M.M. Bovine Colostrum in the Management of Nonorganic Failure to Thrive: A Randomized Clinical Trial. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Macdonald, C.E.; Calnan, D.P.; Floyd, D.N.; Podas, T.; Johnson, W.; Wicks, A.C.; Bashir, O.; Marchbank, T. Co-administration of the health food supplement, bovine colostrum, reduces the acute non-steroidal anti-inflammatory drug-induced increase in intestinal permeability. Clin. Sci. 2001, 100, 627–633. [Google Scholar] [CrossRef]
- Buckley, J.D.; Brinkworth, G.D.; Abbott, M.J. Effect of bovine colostrum on anaerobic exercise performance and plasma insu-lin-like growth factor I. J. Sports Sci. 2003, 21, 577–588. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Phillips, M.; Mine, Y. Advances in the Value of Eggs and Egg Components for Human Health. J. Agric. Food Chem. 2005, 53, 8421–8431. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, L.; Tan, W.; Zhao, W. Clinical efficacy of oral immunoglobulin Y in infant rotavirus enteritis: Systematic re-view and meta-analysis. Medicine 2019, 98, e16100. [Google Scholar] [CrossRef]
- Playford, R.J.; Garbowsky, M.; Marchbank, T. Pasteurized Chicken Egg Powder Stimulates Proliferation and Migration of AGS, RIE1, and Caco-2 Cells and Reduces NSAID-Induced Injury in Mice and Colitis in Rats. J. Nutr. 2020, 150, 1434–1442. [Google Scholar] [CrossRef]
- Gaensbauer, J.T.; Melgar, M.A.; Calvimontes, D.M.; Lamb, M.M.; Asturias, E.J.; Contreras-Roldan, I.L.; Dominguez, S.R.; Rob-inson, C.C.; Berman, S. Efficacy of a bovine colostrum and egg-based intervention in acute childhood diarrhoea in Guatemala: A randomised, double-blind, placebo-controlled trial. BMJ Glob. Health 2017, 2, e000452. [Google Scholar] [CrossRef]
- Playford, R.J.; Cattell, M.; Marchbank, T. Marked variability in bioactivity between commercially available bovine colostrum for human use; implications for clinical trials. PLoS ONE 2020, 15, e0234719, Erratum in 2020, 15, e0240392. [Google Scholar]
- Lee, J.; Paik, H.-D. Anticancer and immunomodulatory activity of egg proteins and peptides: A review. Poult. Sci. 2019, 98, 6505–6516. [Google Scholar] [CrossRef]
- Fogh, J.; Fogh, J.M.; Orfeo, T. One Hundred and Twenty-Seven Cultured Human Tumor Cell Lines Producing Tumors in Nude Mice23. J. Natl. Cancer Inst. 1977, 59, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER Measurement Techniques for In Vitro Barrier Model Systems. J. Lab. Autom. 2015, 20, 107–126. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, N.; Scott, F.; Edgar, M.; Sanger, G.J.; Kelly, P. Reversal of Pathogen-Induced Barrier Defects in Intestinal Epithelial Cells by Contra-pathogenicity Agents. Dig. Dis. Sci. 2021, 66, 88–104. [Google Scholar] [CrossRef]
- Marchbank, T.; Davison, G.; Oakes, J.R.; Ghatei, M.A.; Patterson, M.; Moyer, M.P.; Playford, R.J. The nutriceutical bovine colostrum truncates the increase in gut permeability caused by heavy exercise in athletes. Am. J. Physiol. Liver Physiol. 2011, 300, G477–G484. [Google Scholar] [CrossRef]
- Playford, R.; Weiser, M. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Ebina, T.; Ohta, M.; Kanamaru, Y.; Yamamoto-Osumi, Y.; Baba, K. Passive immunizations of suckling mice and infants with bovine colostrum containing antibodies to human rotavirus. J. Med. Virol. 1992, 38, 117–123. [Google Scholar] [CrossRef]
- Rump, J.; Arndt, R.; Arnold, A.; Bendick, C.; Dichtelmüller, H.; Franke, M.; Helm, E.; Jäger, H.; Kampmann, B.; Kolb, P.; et al. Treatment of diarrhoea in human immunodeficiency virus-infected patients with immunoglobulins from bovine colostrum. J. Mol. Med. 1992, 70, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Brooks, H.J.; McConnell, M.A.; Corbett, J.; Buchan, G.S.; Fitzpatrick, C.E.; Broadbent, R.S. Potential prophylactic value of bovine colostrum in necrotizing enterocolitis in neonates: An in vitro study on bacterial attachment, antibody levels and cytokine production. FEMS Immunol. Med. Microbiol. 2006, 48, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Lissner, R.; Thürmann, P.A.; Merz, G.; Karch, H. Antibody reactivity and fecal recovery of bovine immunoglobulins follow-ing oral administration of a colostrum concentrate from cows (Lactobin) to healthy volunteers. Int. J. Clin. Pharmacol. Ther. 1998, 36, 239–245. [Google Scholar] [PubMed]
- Mahdavi, A.; Rahmani, H.; Nili, N.; Samie, A.; Soleimania, S. Chicken Egg Yolk Antibody (IgY) Powder Against Escherichia coli O78:K80. J. Anim. Veter Adv. 2010, 9, 366–373. [Google Scholar] [CrossRef][Green Version]
- Rokutan, K. Role of heat shock proteins in gastric mucosal protection. J. Gastroenterol. Hepatol. 2000, 15, 12–19. [Google Scholar] [CrossRef]
- Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2004; pp. 133–144. [Google Scholar]
- Hsu, C.-R.; Chang, I.-W.; Hsieh, P.-F.; Lin, T.-L.; Liu, P.-Y.; Huang, C.-H.; Li, K.-T.; Wang, J.-T. A Novel Role for the Klebsiella pneumoniae Sap (Sensitivity to Antimicrobial Peptides) Transporter in Intestinal Cell Interactions, Innate Immune Responses, Liver Abscess, and Virulence. J. Infect. Dis. 2019, 219, 1294–1306. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.-K.; Vikström, E.; Magnusson, K.-E.; Vécsey-Semjén, B.; Colque-Navarro, P.; Möllby, R. The Staphylococcus aureus Alpha-Toxin Perturbs the Barrier Function in Caco-2 Epithelial Cell Monolayers by Altering Junctional Integrity. Infect. Immun. 2012, 80, 1670–1680. [Google Scholar] [CrossRef]
- Tang, X.; Liu, H.; Yang, S.; Li, Z.; Zhong, J.; Fang, R. Epidermal Growth Factor and Intestinal Barrier Function. Mediat. Inflamm. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McEntee, C.P.; Gunaltay, S.; Travis, M.A. Regulation of barrier immunity and homeostasis by integrin-mediated transforming growth factor β activation. Immunology 2019, 160, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, T.; Shinoda, I.; Fukuwatari, Y.; Shimamura, S. Effects of Lactoferrin and Its Peptides on Proliferation of Rat Intestinal Epithelial Cell Line, IEC-18, in the Presence of Epidermal Growth Factor. Biosci. Biotechnol. Biochem. 1995, 59, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Otani, K.; Tanigawa, T.; Watanabe, T.; Shimada, S.; Nadatani, Y.; Nagami, Y.; Tanaka, F.; Kamata, N.; Yamagami, H.; Shiba, M.; et al. Microbiota Plays a Key Role in Non-Steroidal Anti-Inflammatory Drug-Induced Small Intestinal Damage. Digestion 2017, 95, 22–28. [Google Scholar] [CrossRef] [PubMed]
+Bacteria | Bacteria + BC | Bacteria + Egg | Bacteria + BC + Egg | |
---|---|---|---|---|
TEER (Ohm/cm2) Baseline without bacteria control value = 346 ± 5.9 | ||||
E. coli K12 (-ve control) | 336 ± 10 | 353 ± 7 | 374 ± 12 | 356 ± 11 |
EPEC | 167 ± 6 ++ | 201 ± 3 ++ ** | 220 ± 2 ++ ** | 195 ± 5 ++ ** |
Salmonella | 173 ± 2 ++ | 197 ± 6 ++ ** | 229.5 ± 4 ++ ** | 186 ± 1 ++ ** |
Klebsiella | 236 ± 10 ++ | 230 ± 6 ++ | 259 ± 1 ++ ** | 216 ± 9 ++ |
Enterococcus | 219 ± 3 ++ | 219 ± 5 ++ | 231 ± 2 ++ ** | 220 ± 2 ++ |
Proteus | 213 ± 8 ++ | 227 ± 2 ++ | 229.8 ± 1 ++ | 223 ± 1 ++ |
Staphylococcus | 281 ± 5 ++ | 306 ± 14 ++ | 325 ± 6.8 ** | 291 ± 3 ++ |
Streptococcus | 279 ± 6 ++ | 326 ± 16 * | 323 ± 19 * | 290 ± 3 ++ |
ZO1 (pg/μg protein) Baseline without bacteria control value = 207 ± 5 | ||||
E. coli K12 | 206 ± 3.5 | 205 ± 3 | 206 ± 1 | 204 ± 1 |
EPEC | 156 ± 6 ++ | 205 ± 1 ++ ** | 201 ± 2 ++ ** | 183 ± 3 ++ ** |
Salmonella | 177 ± 8 ++ | 205 ± 2 ++ ** | 201 ± 2 ++ ** | 171 ± 27 ++ |
Klebsiella | 151 ± 1 ++ | 175 ± 0.5 ++ ** | 163 ± 4 ++ ** | 153 ± 2 ++ |
Enterococcus | 71 ± 21.5 ++ | 190 ± 2 ++ ** | 183 ± 0.1 ++ ** | 175 ± 3 ++ ** |
Proteus | 95 ± 1 ++ | 146 ± 1 ++ ** | 132 ± 5 ++ ** | 133 ± 4 ++ ** |
Staphylococcus | 161 ± 2 ++ | 162 ± 1 ++ | 171 ± 1 ++ | 155 ± 30 ++ |
Streptococcus | 173 ± 1 ++ | 156 ± 5 ++ | 175 ± 1 ++ | 165 ± 28 ++ |
+Bacteria | Bacteria + BC | Bacteria + Egg | Bacteria + BC + Egg | |
---|---|---|---|---|
Baxα (pg/μg protein) Baseline without bacteria control value = 12.17 ± 1.67 | ||||
E. coli K12 | 14.2 ± 1.67 | 12.8 ± 2 | 14.67 ± 1.5 | 12.3 ± 1.5 |
EPEC | 49.8 ± 0.33 ++ | 36.7 ± 1.17 ++ ** | 36.5 ± 0.33 ++ ** | 44.3 ± 1.16 ++ ** |
Salmonella | 44.3 ± 1.17 ++ | 36.5 ± 1 ++ ** | 36.5 ± 1 ++ ** | 44 ± 0.5 ++ |
Klebsiella | 63.3 ± 1.17 ++ | 61.2 ± 1.33 ++ | 63.5 ± 1.76 ++ | 63.8 ± 3 ++ |
Enterococcus | 67 ± 0.83 ++ | 37.7 ± 0.83 ++ ** | 39.3 ± 2.5 ++ ** | 46.2 ± 2.3 ++ ** |
Proteus | 66 ± 0.17 ++ | 58.8 ± 0.33 ++ ** | 59.7 ± 0.5 ++ ** | 64.7 ± 0.8 ++ |
Staphylococcus | 55.3 ± 0.83 ++ | 39.2 ± 1 ++ ** | 45.8 ± 2.7 ++ ** | 53.3 ± 3.5 ++ |
Streptococcus | 66.8 ± 0.33 ++ | 64.5 ± 3.3 ++ | 73.6 ± 2.7 ++ | 69.3 ± 1.17 ++ |
Bcl2 (pg/μg protein) Baseline without bacteria control value = 61.5 ± 0.87 | ||||
E. coli K12 | 59.5 ± 0.3 | 61.5 ± 0.3 | 54.2 ± 1.7 | 56 ± 5.2 |
EPEC | 45 ± 4 ++ | 61.5 ± 0.9 ** | 69.5 ± 1.4 ++ ** | 53 ± 2.9 ++ ** |
Salmonella | 38 ± 4.6 ++ | 59.5 ± 0.9 ** | 57 ± 3.5 ** | 54 ± 5.2 ** |
Klebsiella | 66 ± 3.5 | 55 ± 2.6 | 61.5 ± 2 | 57 ± 0.6 |
Enterococcus | 37.5 ± 0.9 ++ | 36 ± 0.6 ++ | 38.5 ± 3.2 ++ | 35 ± 3.5 ++ |
Proteus | 31.5 ± 0.3 ++ | 61.5 ± 0.3 ** | 53 ± 4 ** | 67 ± 3.5 ** |
Staphylococcus | 54 ± 7.5 | 62 ± 5.8 | 72.5 ± 3.7 ++ * | 79.5 ± 6.6 ++ ** |
Streptococcus | 63 ± 3.5 | 51.5 ± 2.6 | 66.5 ± 0.9 ++ ** | 81.8 ± 2.2 ++ ** |
+Bacteria | Bacteria + BC | Bacteria + Egg | Bacteria + BC + Egg | |
---|---|---|---|---|
VEGF (pg/μg protein) Baseline without bacteria control value = 2.45 ± 0.03 | ||||
E. coli K12 | 2.67 ± 0.55 | 2.57 ± 0.004 | 2.56 ± 0.01 | 2.79 ± 0.24 |
EPEC | 2.52 ± 0.05 | 3.72 ± 0.03 ++ ** | 3.49 ± 0.01 ++ ** | 3.41 ± 0.04 ++ ** |
Salmonella | 4.4 ± 0.03 ++ | 5.56 ± 0.01 ++ ** | 5.2 ± 0.02 ++ ** | 4.5 ± 0.07 ++ ** |
Klebsiella | 2.31 ± 0.36 | 2.57 ± 0.3 | 2.62 ± 0.27 | 3.59 ± 0.26 ++ ** |
Enterococcus | 5.11 ± 0.14 ++ | 5.48 ± 0.15 ++ ** | 5 ± 0.2 ++ | 4.8 ± 0.01 ++ |
Proteus | 3.16 ± 0.01 ++ | 3.69 ± 0.14 ++ ** | 3.21 ± 0.19 ++ | 3.15 ± 0.01 ++ |
Staphylococcus | 4.51 ± 0.06 ++ | 4.59 ± 0.11 ++ | 4.53 ± 0.04 ++ | 4.29 ± 0.29 ++ |
Streptococcus | 4.96 ± 0.04 ++ | 4.58 ± 0.12 ++ | 4.46 ± 0.01 ++ | 4.75 ± 0.18 ++ |
Hsp70 (pg/μg protein) Baseline without bacteria control value = 566 ± 90 | ||||
E. coli K12 | 675 ± 57 | 682 ± 30 | 694 ± 72 | 677 ± 65 |
EPEC | 492 ± 60 | 867 ± 87 ++ ** | 792 ± 40 ++ ** | 782 ± 4 ++ ** |
Salmonella | 642 ± 40 | 966 ± 12 ++ ** | 1091 ± 23 ++ ** | 923 ± 119 ++ ** |
Klebsiella | 1396 ± 10 ++ | 1167 ± 25 ++ | 1422 ± 28 ++ | 1234 ± 2 ++ |
Enterococcus | 1195 ± 129 ++ | 1589 ± 15 ++ ** | 1599 ± 67 ++ ** | 1425 ± 5 ++ ** |
Proteus | 860 ± 28 ++ | 1083 ± 27 ++ ** | 1135 ± 11 ++ ** | 963 ± 21 ++ ** |
Staphylococcus | 1172 ± 82 ++ | 1165 ± 185 ++ | 1031 ± 101 ++ | 1185 ± 147 ++ |
Streptococcus | 1280 ± 86 ++ | 1540 ± 10 ++ ** | 1333 ± 97 ++ | 1157 ± 235 ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Playford, R.J.; Choudhry, N.; Kelly, P.; Marchbank, T. Effects of Bovine Colostrum with or without Egg on In Vitro Bacterial-Induced Intestinal Damage with Relevance for SIBO and Infectious Diarrhea. Nutrients 2021, 13, 1024. https://doi.org/10.3390/nu13031024
Playford RJ, Choudhry N, Kelly P, Marchbank T. Effects of Bovine Colostrum with or without Egg on In Vitro Bacterial-Induced Intestinal Damage with Relevance for SIBO and Infectious Diarrhea. Nutrients. 2021; 13(3):1024. https://doi.org/10.3390/nu13031024
Chicago/Turabian StylePlayford, Raymond J., Naheed Choudhry, Paul Kelly, and Tania Marchbank. 2021. "Effects of Bovine Colostrum with or without Egg on In Vitro Bacterial-Induced Intestinal Damage with Relevance for SIBO and Infectious Diarrhea" Nutrients 13, no. 3: 1024. https://doi.org/10.3390/nu13031024
APA StylePlayford, R. J., Choudhry, N., Kelly, P., & Marchbank, T. (2021). Effects of Bovine Colostrum with or without Egg on In Vitro Bacterial-Induced Intestinal Damage with Relevance for SIBO and Infectious Diarrhea. Nutrients, 13(3), 1024. https://doi.org/10.3390/nu13031024