Effects of Vitamin D Supplementation on Surrogate Markers of Fertility in PCOS Women: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
Healthy Women
2.2. Intervention
2.3. Outcome Measures
2.4. Procedures
2.5. Statistical Analyses
3. Results
3.1. Cross-Sectional Analyses
3.2. Outcome Analyses
3.2.1. PCOS Women
3.2.2. Non-PCOS Women
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Wehr, E.; Pilz, S.; Schweighofer, N.; Giuliani, A.; Kopera, D.; Pieber, T.R.; Obermayer-Pietsch, B. Association of hypovitaminosis D with metabolic disturbances in polycystic ovary syndrome. Eur. J. Endocrinol. 2009, 161, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Trummer, C.; Pilz, S.; Schwetz, V.; Obermayer-Pietsch, B.; Lerchbaum, E. Vitamin D, PCOS and androgens in men: A systematic review. Endocr. Connect. 2018, 7, R95–R113. [Google Scholar] [CrossRef]
- Pilz, S.; März, W.; Wellnitz, B.; Seelhorst, U.; Fahrleitner-Pammer, A.; Dimai, H.P.; Boehm, B.O.; Dobnig, H. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J. Clin. Endocrinol. Metab. 2008, 93, 3927–3935. [Google Scholar] [CrossRef] [Green Version]
- Lerchbaum, E.; Pilz, S.; Trummer, C.; Rabe, T.; Schenk, M.; Heijboer, A.C.; Obermayer-Pietsch, B. Serum vitamin D levels and hypogonadism in men. Andrology 2014, 2, 748–754. [Google Scholar] [CrossRef]
- Mu, Y.; Cheng, D.; Yin, T.L.; Yang, J. Vitamin D and polycystic ovary syndrome: A narrative review. Reprod. Sci. 2020. [Google Scholar] [CrossRef]
- Lerchbaum, E.; Rabe, T. Vitamin D and female fertility. Curr. Opin. Obstet. Gynecol. 2014, 26, 145–150. [Google Scholar] [CrossRef]
- Irani, M.; Merhi, Z. Role of vitamin D in ovarian physiology and its implication in reproduction: A systematic review. Fertil. Steril. 2014, 102, 460–468. [Google Scholar] [CrossRef]
- Kinuta, K.; Tanaka, H.; Moriwake, T.; Aya, K.; Kato, S.; Seino, Y. Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 2000, 141, 1317–1324. [Google Scholar] [CrossRef]
- Chu, J.; Gallos, I.; Tobias, A.; Tan, B.; Eapen, A.; Coomarasamy, A. Vitamin D and assisted reproductive treatment outcome: A systematic review and meta-analysis. Hum. Reprod. 2018, 33, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Savastano, S.; Barrea, L.; Savanelli, M.C.; Nappi, F.; Di Somma, C.; Orio, F.; Colao, A. Low vitamin D status and obesity: Role of nutritionist. Rev. Endocr. Metab. Disord. 2017, 18, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Frias-Toral, E.; Pugliese, G.; Garcia-Velasquez, E.; De Los Angeles Carignano, M.; Savastano, S.; Colao, A.; Muscogiuri, G. Vitamin D in obesity and obesity-related diseases: An overview. Minerva Endocrinol. 2020. [Google Scholar] [CrossRef]
- Goodarzi, M.O.; Dumesic, D.A.; Chazenbalk, G.; Azziz, R. Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 2011, 7, 219–231. [Google Scholar] [CrossRef]
- Norman, R.J.; Dewailly, D.; Legro, R.S.; Hickey, T.E. Polycystic ovary syndrome. Lancet 2007, 370, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Palomba, S.; Falbo, A.; Chiossi, G.; Muscogiuri, G.; Fornaciari, E.; Orio, F.; Tolino, A.; Colao, A.; La Sala, G.B.; Zullo, F. Lipid profile in nonobese pregnant women with polycystic ovary syndrome: A prospective controlled clinical study. Steroids 2014, 88, 36–43. [Google Scholar] [CrossRef]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean diet, dietary patterns and body composition in women with Polycystic Ovary Syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Marzullo, P.; Muscogiuri, G.; Di Somma, C.; Scacchi, M.; Orio, F.; Aimaretti, G.; Colao, A.; Savastano, S. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr. Res. Rev. 2018, 31, 291–301. [Google Scholar] [CrossRef]
- Qi, X.; Pang, Y.; Qiao, J. The role of anti-Müllerian hormone in the pathogenesis and pathophysiological characteristics of polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 199, 82–87. [Google Scholar] [CrossRef]
- Moridi, I.; Chen, A.; Tal, O.; Tal, R. The Association between Vitamin D and Anti-Müllerian Hormone: A systematic review and meta-analysis. Nutrients 2020, 12, 1567. [Google Scholar] [CrossRef] [PubMed]
- Dastorani, M.; Aghadavod, E.; Mirhosseini, N.; Foroozanfard, F.; Zadeh Modarres, S.; Amiri Siavashani, M.; Asemi, Z. The effects of vitamin D supplementation on metabolic profiles and gene expression of insulin and lipid metabolism in infertile polycystic ovary syndrome candidates for in vitro fertilization. Reprod. Biol. Endocrinol. 2018, 16, 94. [Google Scholar] [CrossRef] [Green Version]
- Trummer, C.; Schwetz, V.; Kollmann, M.; Wölfler, M.; Münzker, J.; Pieber, T.R.; Pilz, S.; Heijboer, A.C.; Obermayer-Pietsch, B.; Lerchbaum, E. Effects of vitamin D supplementation on metabolic and endocrine parameters in PCOS: A randomized-controlled trial. Eur. J. Nutr. 2019, 58, 2019–2028. [Google Scholar] [CrossRef] [Green Version]
- Trummer, C.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Münzker, J.; Pilz, S.; Pieber, T.R.; Heijboer, A.C.; Obermayer-Pietsch, B.; Lerchbaum, E. Effects of vitamin D supplementation on metabolic and endocrine parameters in healthy premenopausal women: A randomized controlled trial. Clin. Nutr. 2020, 39, 718–726. [Google Scholar] [CrossRef]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Naderi, Z.; Kashanian, M.; Chenari, L.; Sheikhansari, N. Evaluating the effects of administration of 25-hydroxyvitamin D supplement on serum anti-mullerian hormone (AMH) levels in infertile women. Gynecol. Endocrinol. 2018, 34, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Wehr, E.; Pieber, T.R.; Obermayer-Pietsch, B. Effect of vitamin D3 treatment on glucose metabolism and menstrual frequency in polycystic ovary syndrome women: A pilot study. J. Endocrinol. Investig. 2011, 34, 757–763. [Google Scholar] [PubMed]
- Trummer, O.; Schweighofer, N.; Haudum, C.W.; Trummer, C.; Pilz, S.; Theiler-Schwetz, V.; Keppel, M.H.; Grübler, M.; Pieber, T.R.; Renner, W.; et al. Genetic components of 25-Hydroxyvitamin D increase in three randomized controlled trials. J. Clin. Med. 2020, 9, 570. [Google Scholar] [CrossRef] [Green Version]
- Yen, S.S. The polycystic ovary syndrome. Clin. Endocrinol. 1980, 12, 177–207. [Google Scholar] [CrossRef]
- McKenna, T.J. Pathogenesis and treatment of polycystic ovary syndrome. N. Engl. J. Med. 1988, 318, 558–562. [Google Scholar] [CrossRef]
- Johansson, J.; Stener-Victorin, E. Polycystic ovary syndrome: Effect and mechanisms of acupuncture for ovulation induction. Evid. Based Complement. Alternat. Med. 2013, 2013, 762615. [Google Scholar] [CrossRef] [Green Version]
- Behmanesh, N.; Abedelahi, A.; Charoudeh, H.N.; Alihemmati, A. Effects of vitamin D supplementation on follicular development, gonadotropins and sex hormone concentrations, and insulin resistance in induced polycystic ovary syndrome. Turk. J. Obstet. Gynecol. 2019, 16, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Butts, S.F.; Seifer, D.B.; Koelper, N.; Senapati, S.; Sammel, M.D.; Hoofnagle, A.N.; Kelly, A.; Krawetz, S.A.; Santoro, N.; Zhang, H.; et al. Eunice kennedy shriver national institute of child health and human development reproductive medicine network. Vitamin D deficiency is associated with poor ovarian stimulation outcome in PCOS but not unexplained infertility. J. Clin. Endocrinol. Metab. 2019, 104, 369–378. [Google Scholar] [CrossRef]
- Pilz, S.; Zittermann, A.; Obeid, R.; Hahn, A.; Pludowski, P.; Trummer, C.; Lerchbaum, E.; Pérez-López, F.R.; Karras, S.N.; März, W. The role of Vitamin D in fertility and during pregnancy and lactation: A review of clinical data. Int. J. Environ. Res. Public Health 2018, 15, 2241. [Google Scholar] [CrossRef] [Green Version]
- Firouzabadi, R.D.; Rahmani, E.; Rahsepar, M.; Firouzabadi, M.M. Value of follicular fluid vitamin D in predicting the pregnancy rate in an IVF program. Arch. Gynecol. Obstet. 2014, 289, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Malloy, P.J.; Peng, L.; Wang, J.; Feldman, D. Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: Regulation of MIS expression by calcitriol in prostate cancer cells. Endocrinology 2009, 150, 1580–1587. [Google Scholar] [CrossRef] [Green Version]
- Merhi, Z.; Doswell, A.; Krebs, K.; Cipolla, M. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells. J. Clin. Endocrinol. Metab. 2014, 99, E1137–E1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irani, M.; Minkoff, H.; Seifer, D.B.; Merhi, Z. Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J. Clin. Endocrinol. Metab. 2014, 99, E886–E890. [Google Scholar] [CrossRef] [Green Version]
- Dennis, N.A.; Houghton, L.A.; Pankhurst, M.W.; Harper, M.J.; McLennan, I.S. Acute supplementation with high dose Vitamin D3 Increases serum anti-müllerian hormone in young women. Nutrients 2017, 9, 719. [Google Scholar] [CrossRef] [PubMed]
- Dorgan, J.F.; Spittle, C.S.; Egleston, B.L.; Shaw, C.M.; Kahle, L.L.; Brinton, L.A. Assay reproducibility and within-person variation of Müllerian inhibiting substance. Fertil. Steril. 2010, 94, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Tal, R.; Seifer, D.B. Ovarian reserve testing: A user’s guide. Am. J. Obstet. Gynecol. 2017, 217, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Muscogiuri, G.; Laudisio, D.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Influence of the Mediterranean diet on 25- Hydroxyvitamin D levels in adults. Nutrients 2020, 12, 1439. [Google Scholar] [CrossRef]
All PCOS Women (n = 180) | VD (n = 119) | PBO (n = 61) | p-Value | |
Age (years) | 26.0 ± 5.0 | 25.4 ± 4.6 | 27.2 ± 5.5 | 0.022 |
BMI (kg/m2) | 27.6 ± 7.5 | 27.3 ± 7.4 | 28.3 ± 7.8 | 0.453 |
25(OH)D * (nmol/L) | 50.4 ± 19.0 | 50.7 ± 19.5 | 49.9 ± 18.3 | 0.798 |
AMH (ng/mL) | 7.67 (4.09–15.0) | 7.62 (4.23–15.0) | 7.71 (3.15–15.0) | 0.547 |
FSH (µU/mL) | 5.97 ± 2.41 | 6.04 ± 2.59 | 5.94 ± 2.33 | 0.783 |
LH (µU/mL) | 8.88 (4.26–14.5) | 8.89 (4.20–15.34) | 8.86 (3.82–14.18) | 0.830 |
LH/FSH ratio | 1.48 (0.88–2.30) | 1.52 (0.88–2.54) | 1.38 (0.68–2.55) | 0.530 |
Estradiol (pg/mL) | 60.6 (41.0–122.0) | 59.1 (39.3–123.0) | 64.0 (43.5–158.0) | 0.311 |
DHEAS (µg/mL) | 1.90 (1.24–2.97) | 1.94 (1.16–3.22) | 1.9 (1.28–3.07) | 0.789 |
Androstenedione (ng/mL) | 3.36 (2.26–4.87) | 2.4 (1.48–4.24) | 2.61 (1.79–3.96) | 0.937 |
Vitamin D intake (IU/day) | 31 (14–76) | 31 (16–67) | 31 (13–78) | 0.582 |
Season of recruitment | ||||
Season 1 | 38.3% | 36.1% | 42.6% | 0.442 |
Season 2 | 26.1% | 26.1% | 26.2% | |
Season 3 | 17.8% | 21.0% | 11.5% | |
Season 4 | 17.8% | 16.8% | 19.7% | |
All Healthy Women (n = 150) | VD (n = 99) | PBO (n = 51) | ||
Age (years) | 35.8 ± 8.7 | 35.7 ± 8.9 | 36.1 ± 8.4 | 0.826 |
BMI (kg/m2) | 25.2 ± 5.5 | 25.5 ± 5.3 | 24.7 ± 5.8 | 0.398 |
25(OH)D * (nmol/L) | 55.4 ± 18.9 | 55.4 ± 18.9 | 55.3 ± 18.9 | 0.996 |
AMH (ng/mL) | 1.97 (0.32–4.38) | 1.89 (0.29–5.2) | 2.41 (0.32–5.30) | 0.546 |
FSH (µU/mL) | 9.86 ± 13.11 | 9.67 ± 12.05 | 9.96 ± 13.69 | 0.898 |
LH (µU/mL) | 6.28 (3.72–11.0) | 6.28 (3.24–11.50) | 6.48 (4.04–14.20) | 0.119 |
LH/FSH ratio | 0.93 (0.51–1.59) | 0.87 (0.48–1.57) | 1.12 (10.51–2.03) | 0.242 |
Estradiol (pg/mL) | 92.6 (50.5–156.0) | 83.4 (41.5–145) | 114 (61.1–212.0) | 0.006 |
DHEAS (µg/mL) | 1.21 (0.78–2.0) | 1.20 (0.75–2.03) | 1.23 (0.76–2.19) | 0.508 |
Androstenedione (ng/mL) | 2.50 (1.56–3.96) | 2.4 (1.48–4.24) | 2.61 (1.79–3.96) | 0.642 |
Vitamin D intake (IU/day) | 50 (26–77) | 50 (22–80) | 50 (27–72) | 0.471 |
Season of recruitment | ||||
Season 1 | 30.7% | 29.3% | 33.3% | 0.942 |
Season 2 | 32.7% | 32.3% | 33.3% | |
Season 3 | 10.0% | 10.1% | 9.8% | |
Season 4 | 26.7% | 28.3% | 23.5% |
Baseline Visit | Study End | Treatment Effect (95% Confidence Interval) | p-Value | |
---|---|---|---|---|
AMH * (ng/mL) | ||||
VD (n = 80) | 7.6 (4.2–15.0) | 7.0 (4.2–15.5) | 0.097 (−0.081 to 0.276) | 0.282 |
PBO (n = 40) | 7.7 (3.2–15.0) | 7.6 (2.8–14.4) | ||
FSH (µU/mL) | ||||
VD (n = 81) | 6.04 ± 2.59 | 6.16 ± 2.46 | 0.94 (0.087 to 1.799) | 0.031 |
PBO (n = 41) | 5.94 ± 2.33 | 5.23 ± 1.78 | ||
LH * (µU/mL) | ||||
VD (n = 79) | 8.9 (4.2–15.3) | 9.4 (3.4–15.2) | −0.184 (−0.497 to 0.129) | 0.248 |
PBO (n = 41) | 8.9 (3.8–14.2) | 8.8 (4.1–14.7) | ||
Estradiol * (pg/mL) | ||||
VD (n = 81) | 59.1 (39.3–123.0) | 59.4 (33.9–169.0) | −0.096 (−0.351 to 0.159) | 0.460 |
PBO (n = 41) | 64.0 (43.5–158.0) | 73.8 (44.2–193.0) | ||
LH/FSH ratio * | ||||
VD (n = 79) | 1.52 (0.88–2.54) | 1.45 (0.79–2.73) | −0.335 (−0.621 to −0.050) | 0.022 |
PBO (n = 41) | 1.38 (0.69–2.55) | 1.73 (0.76–3.32) | ||
DHEAS * (µg/mL) | ||||
VD (n = 81) | 1.94 (1.16–3.22) | 1.96 (1.06–3.12) | −0.016 (−0.142 to 0.11) | 0.805 |
PBO (n = 41) | 1.9 (1.28–3.07) | 2.12 (1.31–3.23) | ||
Androstenedione * (ng/mL) | ||||
VD (n = 80) | 3.41 (2.24–4.95) | 3.68 (2.55–6.0) | 0 (−0.131 to 0.130) | 0.996 |
PBO (n = 40) | 3.32 (2.05–5.58) | 3.86 (2.33–7.11) |
Baseline | Follow-Up (24 Weeks) | Treatment Effect (95% Confidence Interval) | p-Value | |
---|---|---|---|---|
PCOS women | ||||
25(OH)D (nmol/L) | ||||
VD (n = 79) | 48.8 ± 16.8 | 90.2 ± 20.1 | 33.4 (24.5 to 42.2) | <0.001 |
PBO (n = 44) | 48.8 ± 17.5 | 56.8 ± 29.5 | ||
Healthy women | ||||
25(OH)D (nmol/L) | ||||
VD (n = 82) | 55.8 ± 19.9 | 95.3 ± 26.2 | 28.5 (19.3 to 37.7) | <0.001 |
PBO (n = 44) | 56.2 ± 19.3 | 67.0 ± 24.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lerchbaum, E.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Pilz, S.; Obermayer-Pietsch, B.; Trummer, C. Effects of Vitamin D Supplementation on Surrogate Markers of Fertility in PCOS Women: A Randomized Controlled Trial. Nutrients 2021, 13, 547. https://doi.org/10.3390/nu13020547
Lerchbaum E, Theiler-Schwetz V, Kollmann M, Wölfler M, Pilz S, Obermayer-Pietsch B, Trummer C. Effects of Vitamin D Supplementation on Surrogate Markers of Fertility in PCOS Women: A Randomized Controlled Trial. Nutrients. 2021; 13(2):547. https://doi.org/10.3390/nu13020547
Chicago/Turabian StyleLerchbaum, Elisabeth, Verena Theiler-Schwetz, Martina Kollmann, Monika Wölfler, Stefan Pilz, Barbara Obermayer-Pietsch, and Christian Trummer. 2021. "Effects of Vitamin D Supplementation on Surrogate Markers of Fertility in PCOS Women: A Randomized Controlled Trial" Nutrients 13, no. 2: 547. https://doi.org/10.3390/nu13020547
APA StyleLerchbaum, E., Theiler-Schwetz, V., Kollmann, M., Wölfler, M., Pilz, S., Obermayer-Pietsch, B., & Trummer, C. (2021). Effects of Vitamin D Supplementation on Surrogate Markers of Fertility in PCOS Women: A Randomized Controlled Trial. Nutrients, 13(2), 547. https://doi.org/10.3390/nu13020547