Association of Serum Levels of Zinc, Copper, and Iron with Risk of Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Definition of Metabolic Syndrome
2.3. Blood Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Day, C. Metabolic syndrome, or what you will: Definitions and epidemiology. Diabetes Vasc. Dis. Res. 2007, 4, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.A.; Kim, S.M.; Lee, J.S.; Oh, H.J.; Han, J.H.; Song, Y.; Joung, H.; Park, H.S. Dietary Patterns and the Metabolic Syndrome in Korean Adolescents: 2001 Korean National Health and Nutrition Survey. Diabetes Care 2007, 30, 1904–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2018, 68, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Bo, S.; Durazzo, M.; Gambino, R.; Berutti, C.; Milanesio, N.; Caropreso, A.; Gentile, L.; Cassader, M.; Cavallo-Perin, P.; Pagano, G. Associations of dietary and serum copper with inflam-mation, oxidative stress, and metabolic variables in adults. J. Nutr. 2008, 138, 305–310. [Google Scholar] [CrossRef]
- Zhuang, T.; Han, H.; Yang, Z. Iron, Oxidative Stress and Gestational Diabetes. Nutrients 2014, 6, 3968–3980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadi, A.; Isikhan, S.Y.; Tinkov, A.A.; Lay, I.; Doşa, M.D.; Skalny, A.V.; Skalnaya, M.G.; Chirumbolo, S.; Bjørklund, G. Zinc, copper, and oxysterol levels in patients with type 1 and type 2 diabetes mellitus. Clin. Nutr. 2019, 39, 1849–1856. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, C.; Yang, Z.; Zhang, W.; Niu, Y.; Li, X.; Qin, L.; Su, Q. Alterations of serum trace elements in patients with type 2 diabetes. J. Trace Elements Med. Biol. 2017, 40, 91–96. [Google Scholar] [CrossRef]
- Wolide, A.D.; Zawdie, B.; Nigatu, T.A.; Tadesse, S. Association of trace metal elements with lipid profiles in type 2 diabetes mellitus patients: A cross sectional study. BMC Endocr. Disord. 2017, 17, 64. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Q.; Yang, Y.; Ma, L. Iron metabolism and type 2 diabetes mellitus: A meta-analysis and systematic review. J. Diabetes Investig. 2020, 11, 946–955. [Google Scholar] [CrossRef]
- Fernández-Cao, J.C.; Warthon-Medina, M.; HMoran, V.; Arija, V.; Doepking, C.; Serra-Majem, L.; Lowe, N.M. Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjeevi, N.; Freeland-Graves, J.; Beretvas, S.N.; Sachdev, P.K. Trace Element Status in Type 2 Diabetes: A Meta-Analysis. J. Clin. Diagn. Res. 2018, 12, OE01–OE08. [Google Scholar] [CrossRef] [PubMed]
- Eshak, E.S.; Iso, H.; Maruyama, K.; Muraki, I.; Tamakoshi, A. Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: A large population-based prospective cohort study. Clin. Nutr. 2018, 37, 667–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, R.; Jia, Y.; Liu, J.; Jin, S.; Han, T.; Na, L. Dietary Flavonoids, Copper Intake, and Risk of Metabolic Syndrome in Chinese Adults. Nutrients 2018, 10, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Otto, M.C.; Alonso, A.; Lee, D.H.; Delclos, G.L.; Bertoni, A.G.; Jiang, R.; Lima, J.A.; Symanski, E.; Jacobs, D.R., Jr.; Nettleton, J.A. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease. J. Nutr. 2012, 142, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Leiva, E.; Mujica, V.; Sepúlveda, P.; Guzmán, L.; Núñez, S.; Orrego, R.; Palomo, I.; Andrews, M.; Arredondo, M. High Levels of Iron Status and Oxidative Stress in Patients with Metabolic Syndrome. Biol. Trace Element Res. 2013, 151, 1–8. [Google Scholar] [CrossRef]
- Fang, C.; Wu, W.; Gu, X.; Dai, S.; Zhou, Q.; Deng, H.; Shen, F.; Chen, J. Association of serum copper, zinc and selenium levels with risk of metabolic syndrome: A nested case-control study of middle-aged and older Chinese adults. J. Trace Elements Med. Biol. 2019, 52, 209–215. [Google Scholar] [CrossRef]
- Seo, J.-A.; Song, S.-W.; Han, K.; Lee, K.-J.; Kim, H.-N. The Associations between Serum Zinc Levels and Metabolic Syndrome in the Korean Population: Findings from the 2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2014, 9, e105990. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Sobczak, A.I.S.; Stefanowicz, F.; Pitt, S.J.; Ajjan, R.A.; Stewart, A.J. Total plasma magnesium, zinc, copper and selenium concentrations in type-I and type-II diabetes. BioMetals 2019, 32, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Takeda, T.-A.; Takagishi, T.; Fukue, K.; Kambe, T.; Fukada, T. Physiological roles of zinc transporters: Molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 2017, 67, 283–301. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W.; Zheng, W.; Fang, X.; Chen, L.; Rink, L.; Min, J.; Wang, F. Zinc supplementation improves glycemic control for diabetes preven-tion and management: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 110, 76–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaud, J.; De Lorgeril, M.; Akbaraly, T.N.; Salen, P.; Arnout, J.; Cappuccio, F.P.; Van Dongen, M.C.J.M.; Donati, M.B.; Krogh, V.; Siani, A.; et al. Gender differences in copper, zinc and selenium status in diabetic-free metabolic syndrome European population—The IMMIDIET study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Farvid, M.S.; Homayouni, F.; Amiri, Z.; Adelmanesh, F. Improving neuropathy scores in type 2 diabetic patients using micronutrients supplementation. Diabetes Res. Clin. Pract. 2011, 93, 86–94. [Google Scholar] [CrossRef]
- Seet, R.C.; Lee, C.-Y.J.; Lim, E.C.; Quek, A.M.; Huang, H.; Huang, S.H.; Looi, W.F.; Long, L.H.; Halliwell, B.; Lee, J.C.-Y. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis 2011, 219, 231–239. [Google Scholar] [CrossRef]
- Muthuraman, P.; Ramkumar, K.; Pandurangan, M. Analysis of Dose-Dependent Effect of Zinc Oxide Nanoparticles on the Oxidative Stress and Antioxidant Enzyme Activity in Adipocytes. Appl. Biochem. Biotechnol. 2014, 174, 2851–2863. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.; Foster, M.; Hancock, D.; Petocz, P.; Samman, S. Interrelationships among mediators of cellular zinc homeostasis in healthy and type 2 diabetes mellitus populations. Mol. Nutr. Food Res. 2017, 61, 1600838. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Pigera, S.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Zinc and diabetes mellitus: Understanding molecular mechanisms and clinical implications. DARU J. Pharm. Sci. 2015, 23, 44. [Google Scholar] [CrossRef] [Green Version]
- Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of copper in humans. Am. J. Clin. Nutr. 1998, 67 (Suppl. 5), 952S–959S. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, Q.; Liu, G.; Tan, Y.; Cai, L. Analysis of serum and urinal copper and zinc in Chinese northeast population with the pre-diabetes or diabetes with and without complications. Oxid. Med. Cell. Longev. 2013, 2013, 635214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.-K.; Bae, Y.-J. Relationship between Dietary Magnesium, Manganese, and Copper and Metabolic Syndrome Risk in Korean Adults: The Korea National Health and Nutrition Examination Survey (2007–2008). Biol. Trace Element Res. 2013, 156, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Obeid, O.A.; Elfakhani, M.; Hlais, S.; Iskandar, M.; Batal, M.; Mouneimne, Y.; Adra, N.; Hwalla, N. Plasma Copper, Zinc, and Selenium Levels and Correlates with Metabolic Syndrome Components of Lebanese Adults. Biol. Trace Element Res. 2008, 123, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Asp. Med. 2005, 26, 268–298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Rawal, S. Dietary iron intake, iron status, and gestational diabetes. Am. J. Clin. Nutr. 2017, 106 (Suppl. 6), 1672S–1680S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzini, C.; Girelli, D.; Olivieri, O.; Martinelli, N.; Bassi, A.; De Matteis, G.; Tenuti, I.; Lotto, V.; Friso, S.; Pizzolo, F.; et al. Prevalence of body iron excess in the metabolic syn-drome. Diabetes Care 2005, 28, 2061–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongiovanni, P.; Fracanzani, A.L.; Fargion, S.; Valenti, L. Iron in fatty liver and in the metabolic syndrome: A promising therapeutic target. J. Hepatol. 2011, 55, 920–932. [Google Scholar] [CrossRef] [PubMed]
Non-MetS | MetS | p-Value | |
---|---|---|---|
n = 446 | n = 709 | ||
Sex | 0.001 | ||
Female (%) | 312 (70.0) | 430 (60.6) | |
Male (%) | 134 (30.0) | 279 (39.4) | |
Age (years) | 66.0 ± 10.3 | 65.7 ± 9.8 | 0.623 |
Weight (kg) | 56.4 ± 9.1 | 68.7 ± 14.0 | <0.001 |
BMI (kg/m2) | 22.6 ± 2.7 | 26.8 ± 4.2 | <0.001 |
WC (cm) | 79.4 ± 8.2 | 91.1 ± 9.9 | <0.001 |
Systolic BP | 122.4 ± 14.8 | 134.4 ± 14.3 | <0.001 |
Diastolic BP | 73.8 ± 9.5 | 77.7 ± 10.2 | <0.001 |
TCHO (mmol/L) | 5.3 ± 0.9 | 4.8 ± 1.1 | <0.001 |
Triglycerides (mmol/L) | 1.1 ± 0.5 | 1.9 ± 1.2 | <0.001 |
HDL-C (mmol/L) | 1.5 ± 0.3 | 1.2 ± 0.3 | <0.001 |
LDL-C (mmol/L) | 3.1 ± 0.7 | 2.8 ± 0.8 | <0.001 |
Glucose (mmol/L) | 5.6 ± 1.2 | 7.1 ± 2.1 | <0.001 |
Insulin (U/mL) | 6.01 ± 4.20 | 12.69 ± 8.39 | <0.001 |
HOMA-IR | 1.56 ± 1.30 | 4.12 ± 3.25 | <0.001 |
Smoking (%) | 36 (8.1) | 102 (14.4) | 0.002 |
Drinking (%) | 42 (9.4) | 110 (15.5) | 0.01 |
Exercise (%) | 320 (71.7) | 411 (58.1) | <0.001 |
Copper (µg/L) | 949.5 ± 253.3 | 1101.2 ± 322.5 | <0.001 |
Zinc (µg/L) | 774.7 ± 247.4 | 1044.9 ± 339.3 | <0.001 |
Iron (µg/L) | 1051.6 ± 403.6 | 1370.0 ± 577.7 | <0.001 |
Metabolic factors | 1.25 ± 0.75 | 3.84 ± 0.74 | <0.001 |
Quartile of Zinc Levels | |||||
---|---|---|---|---|---|
Q1 (n = 292) (≤687) | Q2 (n = 290) (688–871) | Q3 (n = 292) (872–1140) | Q4 (n = 291) (>1140) | p for Trend | |
MetS | 98 (33.6) | 159 (55.4) | 197 (67.9) | 255 (89.2) | |
Model 1 | 1.00 | 2.46 (1.76–3.44) ** | 4.19 (2.97–5.93) ** | 16.28 (10.44–25.41) ** | <0.001 |
Model 2 | 1.00 | 2.37 (1.69–3.34) ** | 4.03 (2.83–5.75) ** | 15.16 (9.59–23.96) ** | <0.001 |
Model 3 | 1.00 | 1.92 (1.30–2.84) * | 3.17 (2.11–4.75) ** | 11.02 (6.66–18.22) ** | <0.001 |
Model 4 | 1.00 | 1.69 (1.10–2.59) * | 2.06 (1.30–3.27) * | 5.83 (3.35–10.12) ** | <0.001 |
Quartile of Copper Levels | |||||
Q1 (n = 293) (≤821) | Q2 (n = 290) (822–1012) | Q3 (n = 291) (1013–1224) | Q4 (n = 291) (>1224) | p for Trend | |
MetS | 136 (46.7) | 171 (59.2) | 184 (64.3) | 218 (75.4) | |
Model 1 | 1.00 | 1.65 (1.19–2.29) * | 2.06 (1.47–2.87) ** | 3.50 (2.46–4.98) ** | <0.001 |
Model 2 | 1.00 | 1.56 (1.11–2.18) * | 1.95 (1.38–2.76) ** | 3.39 (2.35–4.87) ** | <0.001 |
Model 3 | 1.00 | 1.53 (1.03–2.26) * | 1.75 (1.17–2.62) * | 2.65 (1.74–4.04) * | <0.001 |
Model 4 | 1.00 | 1.57 (1.01–2.44) * | 1.29 (0.82–2.03) | 2.02 (1.25–3.25) * | 0.013 |
Quartile of Iron Levels | |||||
Q1 (n = 290) (≤900) | Q2 (n = 289) (901–1124) | Q3 (n = 291) (1125–1458) | Q4 (n = 293) (>1458) | p for Trend | |
MetS | 138 (47.8) | 144 (50.3) | 173 (60.3) | 252 (86.6) | |
Model 1 | 1.00 | 1.09 (0.79–1.52) | 1.64 (1.18–2.28) * | 6.97 (4.63–10.48) ** | <0.001 |
Model 2 | 1.00 | 1.06 (0.76–1.47) | 1.55 (1.10–2.18) * | 6.64 (4.32–10.21) ** | <0.001 |
Model 3 | 1.00 | 0.94 (0.64–1.38) | 1.31 (0.88–1.95) | 5.03 (3.10–8.16) ** | <0.001 |
Model 4 | 1.00 | 0.88 (0.57–1.36) | 0.96 (0.61–1.50) | 2.11 (1.24–3.62) * | 0.021 |
Elevated WC | Elevated BP | Elevated Glucose | Elevated | Low HDL–C | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Triglycerides | ||||||||||
OR (95% CI) | p for Trend | OR (95% CI) | p for Trend | OR (95% CI) | p for Trend | OR (95% CI) | p for Trend | OR (95% CI) | p for Trend | |
Zinc | ||||||||||
Model 1 | 1.54 (1.38–1.72) | <0.001 | 1.35 (1.21–1.50) | <0.001 | 3.05 (2.64–3.53) | <0.001 | 1.81 (1.62–2.03) | <0.001 | 1.16 (1.04–1.29) | 0.006 |
Model 2 | 1.63 (1.45–1.84) | <0.001 | 1.34 (1.20–1.50) | <0.001 | 2.87 (2.46–3.34) | <0.001 | 1.78 (1.58–2.01) | <0.001 | 1.24 (1.11–1.39) | <0.001 |
Model 3 | 1.32 (1.10–1.58) | 0.002 | 1.24 (1.11–1.40) | <0.001 | 2.61 (2.23–3.06) | <0.001 | 1.65 (1.45–1.86) | <0.001 | 1.12 (0.99–1.26) | 0.066 |
Model 4 | 1.15 (0.95–1.40) | 0.163 | 1.19 (1.05–1.35) | 0.006 | 2.17 (1.80–2.62) | <0.001 | 1.45 (1.27–1.66) | <0.001 | 1.04(0.91–1.18) | 0.59 |
Copper | ||||||||||
Model 1 | 1.39 (1.25–1.55) | <0.001 | 1.12 (1.01–1.24) | 0.032 | 1.58 (1.41–1.78) | <0.001 | 1.24 (1.11–1.38) | <0.001 | 1.29 (1.16–1.43) | <0.001 |
Model 2 | 1.36 (1.22–1.52) | <0.001 | 1.14 (1.02–1.27) | 0.017 | 1.63 (1.44–1.85) | <0.001 | 1.25 (1.12–1.39) | <0.001 | 1.26 (1.13–1.41) | <0.001 |
Model 3 | 1.19 (1.00–1.42) | 0.047 | 1.08 (0.97–1.20) | 0.172 | 1.55 (1.35–1.76) | <0.001 | 1.18 (1.05–1.32) | 0.004 | 1.19 (1.07–1.34) | 0.002 |
Model 4 | 1.09 (0.90–1.31) | 0.376 | 1.04 (0.93–1.17) | 0.501 | 1.42 (1.21–1.67) | <0.001 | 1.10 (0.98–1.25) | 0.121 | 1.13 (1.01–1.28) | 0.041 |
Iron | ||||||||||
Model 1 | 1.38 (1.24–1.54) | <0.001 | 1.19 (1.07–1.32) | 0.001 | 2.31 (2.03–2.64) | <0.001 | 1.49 (1.34–1.67) | <0.001 | 1.08 (0.97–1.20) | 0.155 |
Model 2 | 1.47 (1.31–1.66) | <0.001 | 1.18 (1.06–1.32) | 0.004 | 2.19 (1.91–2.52) | <0.001 | 1.46 (1.29–1.64) | <0.001 | 1.15 (1.02–1.28) | 0.02 |
Model 3 | 1.31 (1.09–1.57) | 0.004 | 1.11 (0.99–1.24) | 0.087 | 2.08 (1.79–2.41) | <0.001 | 1.36 (1.21–1.54) | <0.001 | 1.05 (0.93–1.19) | 0.402 |
Model 4 | 1.13 (0.93–1.38) | 0.207 | 1.07 (0.95–1.22) | 0.263 | 1.72 (1.43–2.07) | <0.001 | 1.18 (1.03–1.35) | 0.016 | 0.94 (0.83–1.07) | 0.362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.-W.; Lee, Y.-C.; Kuo, C.-S.; Chiang, C.-H.; Chang, H.-H.; Huang, K.-C. Association of Serum Levels of Zinc, Copper, and Iron with Risk of Metabolic Syndrome. Nutrients 2021, 13, 548. https://doi.org/10.3390/nu13020548
Lu C-W, Lee Y-C, Kuo C-S, Chiang C-H, Chang H-H, Huang K-C. Association of Serum Levels of Zinc, Copper, and Iron with Risk of Metabolic Syndrome. Nutrients. 2021; 13(2):548. https://doi.org/10.3390/nu13020548
Chicago/Turabian StyleLu, Chia-Wen, Yi-Chen Lee, Chia-Sheng Kuo, Chien-Hsieh Chiang, Hao-Hsiang Chang, and Kuo-Chin Huang. 2021. "Association of Serum Levels of Zinc, Copper, and Iron with Risk of Metabolic Syndrome" Nutrients 13, no. 2: 548. https://doi.org/10.3390/nu13020548
APA StyleLu, C.-W., Lee, Y.-C., Kuo, C.-S., Chiang, C.-H., Chang, H.-H., & Huang, K.-C. (2021). Association of Serum Levels of Zinc, Copper, and Iron with Risk of Metabolic Syndrome. Nutrients, 13(2), 548. https://doi.org/10.3390/nu13020548