The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Clinical Examination and Anthropometric Measurements
2.3. Biochemical Analyses
2.4. Homeostasis Model Assessment for Insulin Resistance Cut-Off Points
2.5. Analysis and Diagnostic Criteria of Vitamin D Status
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Deficiency of Vitamin D
4.2. Insulin Resistance and Vitamin D
4.3. Puberty, Insulin Resistance, and Vitamin D
4.4. Obesity during Puberty, Insulin Resistance, and Vitamin D
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, R.A.; Dalskov, S.M.; Sorensen, L.B.; Hjorth, M.F.; Andersen, R.; Tetens, I.; Krarup, H.; Ritz, C.; Astrup, A.; Michaelsen, K.F.; et al. Vitamin D Status Is Associated with Cardiometabolic Markers in 8-11-Year-Old Children, Independently of Body Fat and Physical Activity. Br. J. Nutr. 2015, 114, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Corica, D.; Zusi, C.; Olivieri, F.; Marigliano, M.; Piona, C.; Fornari, E.; Morandi, A.; Corradi, M.; Miraglia del Giudice, E.; Gatti, D.; et al. Vitamin D Affects Insulin Sensitivity and β-Cell Function in Obese Non-Diabetic Youths. Eur. J. Endocrinol. 2019, 181, 439–450. [Google Scholar] [CrossRef]
- Denova-Gutiérrez, E.; Muñoz-Aguirre, P.; López, D.; Flores, M.; Medeiros, M.; Tamborrel, N.; Clark, P. Low Serum Vitamin D Concentrations Are Associated with Insulin Resistance in Mexican Children and Adolescents. Nutrients 2019, 11, 2109. [Google Scholar] [CrossRef]
- Barja-Fernández, S.; Aguilera, C.M.; Martínez-Silva, I.; Vazquez, R.; Gil-Campos, M.; Olza, J.; Bedoya, J.; Cadarso-Suárez, C.; Gil, Á.; Seoane, L.M.; et al. 25-Hydroxyvitamin D Levels of Children Are Inversely Related to Adiposity Assessed by Body Mass Index. J. Physiol. Biochem. 2018, 74, 111–118. [Google Scholar] [CrossRef]
- Gutiérrez Medina, S.; Gavela-Pérez, T.; Domínguez-Garrido, M.N.; Gutiérrez-Moreno, E.; Rovira, A.; Garcés, C.; Soriano-Guillén, L. The Influence of Puberty on Vitamin D Status in Obese Children and the Possible Relation between Vitamin D Deficiency and Insulin Resistance. J. Pediatric Endocrinol. Metab. 2015, 28, 105–110. [Google Scholar] [CrossRef][Green Version]
- Drincic, A.T.; Armas, L.A.G.; van Diest, E.E.; Heaney, R.P. Volumetric Dilution, rather than Sequestration Best Explains the Low Vitamin D Status of Obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Dix, C.F.; Barclay, J.L.; Wright, O.R.L. The Role of Vitamin D in Adipogenesis. Nutr. Rev. 2018, 76, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Gil, Á.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef]
- Abbas, M.A. Physiological Functions of Vitamin D in Adipose Tissue. J. Steroid Biochem. Mol. Biol. 2017, 165, 369–381. [Google Scholar] [CrossRef]
- Al-Shoumer, K.A.; Al-Essa, T.M. Is There a Relationship between Vitamin D with Insulin Resistance and Diabetes Mellitus? World J. Diabetes 2015, 6, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, I.; Klimov, L.; Kuryaninova, V.; Nikitina, I.; Malyavskaya, S.; Dolbnya, S.; Kasyanova, A.; Atanesyan, R.; Stoyan, M.; Todieva, A.; et al. Vitamin D Insufficiency in Overweight and Obese Children and Adolescents. Front. Endocrinol. 2019, 10, 103. [Google Scholar] [CrossRef]
- Kardas, F.; Kendirci, M.; Kurtoglu, S. Cardiometabolic Risk Factors Related to Vitamin D and Adiponectin in Obese Children and Adolescents. Int. J. Endocrinol. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.P.; von Mühlen, D.; Miller, E.R.; Michos, E.D.; Appel, L.J. Vitamin D Status and Cardiometabolic Risk Factors in the United States Adolescent Population. Pediatrics 2009, 124, e371–e379. [Google Scholar] [CrossRef] [PubMed]
- Saggese, G.; Vierucci, F.; Boot, A.M.; Czech-Kowalska, J.; Weber, G.; Camargo, C.A.; Mallet, E.; Fanos, M.; Shaw, N.J.; Holick, M.F. Vitamin D in Childhood and Adolescence: An Expert Position Statement. Eur. J. Pediatrics 2015, 174, 565–576. [Google Scholar] [CrossRef]
- Blomberg Jensen, M. Vitamin D Metabolism, Sex Hormones, and Male Reproductive Function. Reproduction 2012, 144, 135–152. [Google Scholar] [CrossRef]
- Lorenzen, M.; Boisen, I.M.; Mortensen, L.J.; Lanske, B.; Juul, A.; Blomberg Jensen, M. Reproductive Endocrinology of Vitamin D. Mol. Cell. Endocrinol. 2017, 453, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Cediel, G.; Corvalán, C.; de Romaña, D.L.; Mericq, V.; Uauy, R. Prepubertal Adiposity, Vitamin D Status, and Insulin Resistance. Pediatrics 2016, 138, e20160076. [Google Scholar] [CrossRef]
- Censani, M.; Hammad, H.T.; Christos, P.J.; Schumaker, T. Vitamin D Deficiency Associated with Markers of Cardiovascular Disease in Children With Obesity. Glob. Pediatric Health 2018, 5, 2333794X1775177. [Google Scholar] [CrossRef]
- Filgueiras, M.S.; Rocha, N.P.; Novaes, J.F.; Bressan, J. Vitamin D Status, Oxidative Stress, and Inflammation in Children and Adolescents: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Leis, R.; Jurado-Castro, J.M.; Llorente-Cantarero, F.J.; Anguita-Ruiz, A.; Iris-Rupérez, A.; Bedoya-Carpente, J.J.; Vázquez-Cobela, R.; Aguilera, C.M.; Bueno, G.; Gil-Campos, M. Cluster Analysis of Physical Activity Patterns, and Relationship with Sedentary Behavior and Healthy Lifestyles in Prepubertal Children: Genobox Cohort. Nutrients 2020, 12, 1288. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, A.I.; Mesa, M.D.; Anguita-Ruiz, A.; González-Gil, E.M.; Vázquez-Cobela, R.; Moreno, L.A.; Gil, Á.; Gil-Campos, M.; Leis, R.; Bueno, G.; et al. Antioxidants and Oxidative Stress in Children: Influence of Puberty aUnhealthy Status. Antioxidants 2020, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey. Br. Med. J. 2000, 320, 1240–1243. [Google Scholar] [CrossRef]
- Sobradillo, B.; Aguirre, A.; Uresti, U. Curvas y Tablas de Crecimiento. In Estudios Longitudinal y Transversal; Fundación Faustino Orbegozo Eizaguirre: Bilbao, Spain, 2009; pp. 499–523. [Google Scholar]
- Tanner, J.M.; Whitehouse, R.H. Clinical Longitudinal Standards for Height, Weight, Height Velocity, Weight Velocity, and Stages of Puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef]
- McCrindle, B.W. Assessment and Management of Hypertension in Children and Adolescents. Nat. Rev. Cardiol. 2010, 7, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Anguita-Ruiz, A.; Méndez-Gutiérrez, A.; Ruperez, A.I.; Leis, R.; Bueno, G.; Gil, M.; Tofe, I.; Gomez-Llorente, C.; Moreno, L.A.; Gil, Á.; et al. The Protein S100A4 as a Novel Marker of Insulin Resistance in Prepubertal and Pubertal Children with Obesity. Metabolism 2020, 105, 154187. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, A.I.; Olza, J.; Gil-Campos, M.; Leis, R.; Bueno, G.; Aguilera, C.M.; Gil, A.; Moreno, L.A. Cardiovascular Risk Biomarkers and Metabolically Unhealthy Status in Prepubertal Children: Comparison of Definitions. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 524–530. [Google Scholar] [CrossRef]
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Pereira-Santos, M.; Costa, P.R.F.; Assis, A.M.O.; Santos, C.A.S.T.; Santos, D.B. Obesity and Vitamin D Deficiency: A Systematic Review and Meta-Analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef] [PubMed]
- González-Gross, M.; Valtueña, J.; Breidenassel, C.; Moreno, L.A.; Ferrari, M.; Kersting, M.; de Henauw, S.; Gottrand, F.; Azzini, E.; Widhalm, K.; et al. Vitamin D Status among Adolescents in Europe: The Healthy Lifestyle in Europe by Nutrition in Adolescence Study. Br. J. Nutr. 2012, 107, 755–764. [Google Scholar] [CrossRef]
- Szymczak-Pajor, I.; Śliwińska, A. Analysis of Association between Vitamin d Deficiency and Insulin Resistance. Nutrients 2019, 11, 794. [Google Scholar] [CrossRef]
- Pacifico, L.; Anania, C.; Osborn, J.F.; Ferraro, F.; Bonci, E.; Olivero, E.; Chiesa, C. Low 25(OH)D3 Levels Are Associated with Total Adiposity, Metabolic Syndrome, and Hypertension in Caucasian Children and Adolescents. Eur. J. Endocrinol. 2011, 165, 603–611. [Google Scholar] [CrossRef]
- Xiao, P.; Dong, H.; Li, H.; Yan, Y.; Cheng, H.; Liu, J.; Zhao, X.; Hou, D.; Mi, J. Adequate 25-Hydroxyvitamin D Levels Are Inversely Associated with Various Cardiometabolic Risk Factors in Chinese Children, Especially Obese Children. BMJ Open Diabetes Res. Care 2020, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Drzewoski, J.; Śliwińska, A. The Molecular Mechanisms by Which Vitamin d Prevents Insulin Resistance and Associated Disorders. Int. J. Mol. Sci. 2020, 21, 6644. [Google Scholar] [CrossRef] [PubMed]
- Ricca, C.; Aillon, A.; Bergandi, L.; Alotto, D.; Castagnoli, C.; Silvagno, F. Vitamin D Receptor Is Necessary for Mitochondrial Function and Cell Health. Int. J. Mol. Sci. 2018, 19, 1672. [Google Scholar] [CrossRef]
- Ricciardi, C.J.; Bae, J.; Esposito, D.; Komarnytsky, S.; Hu, P.; Chen, J.; Zhao, L. 1,25-Dihydroxyvitamin D3/Vitamin D Receptor Suppresses Brown Adipocyte Differentiation and Mitochondrial Respiration. Eur. J. Nutr. 2015, 54, 1001–1012. [Google Scholar] [CrossRef]
- Ke, L.; Mason, R.S.; Baur, L.A.; Cowell, C.T.; Liu, X.; Garnett, S.P.; Brock, K.E. Vitamin D Levels in Childhood and Adolescence and Cardiovascular Risk Factors in a Cohort of Healthy Australian Children. J. Steroid Biochem. Mol. Biol. 2018, 177, 270–277. [Google Scholar] [CrossRef]
- Gilbert-Diamond, D.; Baylin, A.; Mora-Plazas, M.; Marin, C.; Arsenault, J.E.; Hughes, M.D.; Willett, W.C.; Villamor, E. Vitamin D Deficiency and Anthropometric Indicators of Adiposity in School-Age Children: A Prospective Study. Am. J. Clin. Nutr. 2010, 92, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Buyukinan, M.; Ozen, S.; Kokkun, S.; Saz, E.U. The Relation of Vitamin D Deficiency with Puberty and Insulin Resistance in Obese Children and Adolescents. J. Pediatric Endocrinol. Metab. 2012, 25, 83–87. [Google Scholar] [CrossRef]
- Tolppanen, A.M.; Fraser, A.; Fraser, W.D.; Lawlor, D.A. Risk Factors for Variation in 25-Hydroxyvitamin D 3 and D 2 Concentrations and Vitamin D Deficiency in Children. J. Clin. Endocrinol. Metab. 2012, 97, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Khadgawat, R.; Thomas, T.; Gahlot, M.; Tandon, N.; Tangpricha, V.; Khandelwal, D.; Gupta, N. The Effect of Puberty on Interaction between Vitamin D Status and Insulin Resistance in Obese Asian-Indian Children. Int. J. Endocrinol. 2012, 2012. [Google Scholar] [CrossRef]
- Peterson, C.A.; Tosh, A.K.; Belenchia, A.M. Vitamin D Insufficiency and Insulin Resistance in Obese Adolescents; SAGE Publications: Thousand Oaks, CA, USA, 2014; Volume 5, pp. 166–189. [Google Scholar]
- Abou El Ella, S.S.; Barseem, N.F.; Tawfik, M.A.; Ahmed, A.F. BMI Relationship to the Onset of Puberty: Assessment of Growth Parameters and Sexual Maturity Changes in Egyptian Children and Adolescents of Both Sexes. J. Pediatric Endocrinol. Metab. 2020, 33, 121–128. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Guan, P.; Liu, Q.; Crabtree, D.; Peng, L.; Wang, H. The Relationship between Obesity and Body Compositions with Respect to the Timing of Puberty in Chongqing Adolescents: A Cross-Sectional Study. BMC Public Health 2017, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Crocker, M.K.; Stern, E.A.; Sedaka, N.M.; Shomaker, L.B.; Brady, S.M.; Ali, A.H.; Shawker, T.H.; Hubbard, V.S.; Yanovski, J.A. Sexual Dimorphisms in the Associations of BMI and Body Fat with Indices of Pubertal Development in Girls and Boys. J. Clin. Endocrinol. Metab. 2014, 99, e1519–e1529. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, M.; Ye, J.; Luo, D.; Su, X.; Zheng, D.; Feng, L.; Gao, L.; Yu, C.; Guan, Q. The Effect of Aromatase on the Reproductive Function of Obese Males. Horm. Metab. Res. 2017, 49, 572–579. [Google Scholar] [CrossRef]
- Reinehr, T.; Roth, C.L. Is There a Causal Relationship between Obesity and Puberty? Lancet Child Adolesc. Health 2019, 3, 44–54. [Google Scholar] [CrossRef]
- Nieuwenhuis, D.; Pujol-Gualdo, N.; Arnoldussen, I.A.C.; Kiliaan, A.J. Adipokines: A Gear Shift in Puberty. Obes. Rev. 2020, 21, e13005. [Google Scholar] [CrossRef]
- Guzzetti, C.; Ibba, A.; Casula, L.; Pilia, S.; Casano, S.; Loche, S. Cardiovascular Risk Factors in Children and Adolescents with Obesity: Sex-Related Differences and Effect of Puberty. Front. Endocrinol. 2019, 10, 591. [Google Scholar] [CrossRef]
- Reinehr, T.; Wabitsch, M.; Kleber, M.; de Sousa, G.; Denzer, C.; Toschke, A.M. Parental Diabetes, Pubertal Stage, and Extreme Obesity Are the Main Risk Factors for Prediabetes in Children and Adolescents: A Simple Risk Score to Identify Children at Risk for Prediabetes. Pediatric Diabetes 2009, 10, 395–400. [Google Scholar] [CrossRef]
- Xu, L.; Li, M.; Yin, J.; Cheng, H.; Yu, M.; Zhao, X.; Xiao, X.; Mi, J. Change of Body Composition and Adipokines and Their Relationship with Insulin Resistance across Pubertal Development in Obese and Nonobese Chinese Children: The BCAMS Study. Int. J. Endocrinol. 2012, 2012. [Google Scholar] [CrossRef]
- Maffeis, C.; Morandi, A. Body Composition and Insulin Resistance in Children. Eur. J. Clin. Nutr. 2018, 72, 1239–1245. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Anguita-Ruiz, A.; Leis, R.; Aguilera, C.M. Genetic Factors and Molecular Mechanisms of Vitamin D and Obesity Relationship. Ann. Nutr. Metab. 2018, 73, 89–99. [Google Scholar] [CrossRef]
- Chang, E.; Kim, Y. Vitamin D Insufficiency Exacerbates Adipose Tissue Macrophage Infiltration and Decreases AMPK/SIRT1 Activity in Obese Rats. Nutrients 2017, 9, 338. [Google Scholar] [CrossRef] [PubMed]
- Durá-Travé, T.; Gallinas-Victoriano, F.; Peñafiel-Freire, D.M.; Urretavizcaya-Martinez, M.; Moreno-González, P.; Chueca-Guindulain, M.J. Hypovitaminosis D and Cardiometabolic Risk Factors in Adolescents with Severe Obesity. Children 2020, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Fiamenghi, V.I.; de Mello, E.D. Vitamin D Deficiency in Children and Adolescents with Obesity: A Meta-Analysis. J. Pediatr. 2021, 97, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemy, Z.; Shahdadian, F.; Ziaei, R.; Saneei, P. Serum Vitamin D Levels in Relation to Abdominal Obesity: A Systematic Review and Dose–Response Meta-Analysis of Epidemiologic Studies. Obes. Rev. 2021, 22, e13134. [Google Scholar] [CrossRef]
- Aypak, C.; Türedi, Ö.; Yüce, A. The Association of Vitamin D Status with Cardiometabolic Risk Factors, Obesity and Puberty in Children. Eur. J. Pediatrics 2014, 173, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Fraser, A.; Sayers, A.; Fraser, W.D.; Hingorani, A.; Deanfield, J.; Smith, G.D.; Sattar, N.; Lawlor, D.A. Associations of 25-Hydroxyvitamin D 2 and D 3 with Cardiovascular Risk Factors in Childhood: Cross-Sectional Findings from the Avon Longitudinal Study of Parents and Children. J. Clin. Endocrinol. Metab. 2012, 97, 1563–1571. [Google Scholar] [CrossRef] [PubMed]
T0 (Prepubertal) | T1 (Pubertal) | p-Value * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
All (n = 76) | Optimal (n = 14) | Insufficiency (n = 26) | Deficiency (n = 36) | p-Value | All (n = 76) | Optimal (n = 6) | Insufficiency (n = 23) | Deficiency (n = 47) | p-Value | ||
Age (years) | 7.8 (1.9) | 6.3 (1.6) | 8.0 (1.9) | 8.2 (1.7) | 0.002 | 13.9 (2.2) | 15.2 (1.6) | 14.2 (2.4) | 13.7 (2.2) | 0.229 | <0.001 |
Weight (kg) | 37.9 (12.1) | 32.0 (9.3) | 38.4 (15.0) | 39.9 (10.1) | 0.07 | 68.0 (21.2) | 72.7 (16.9) | 69.1 (13.5) | 66.8 (24.6) | 0.619 | <0.001 |
BMI (kg/m2) | 22.8 [14.3–36.0] | 22.8 [14.8–26.8] | 22.4 [14.7–36.0] | 22.9 [14.3–35.5] | 0.519 | 26.2 [15.0–45.5] | 25.9 [18.8–37.6] | 25.9 [17.9–32.6] | 26.5 [15.0–45.5] | 0.997 | <0.001 ¥ |
BMI z-score | 2.1 (1.8) | 2.4 (2.4) | 2.0 (1.8) | 2.1 (1.6) | 0.785 | 1.7 (1.6) | 1.5 (2.0) | 1.5 (1.2) | 1.8 (1.7) | 0.799 | 0.003 |
Waist circumference (cm) | 74.4 (13.1) | 67.8 (11.2) | 75.5 (15.1) | 76.3 (11.9) | 0.107 | 87.1 (15.5) | 90.5 (19.9) | 86.6 (11.7) | 86.9 (16.7) | 0.850 | <0.001 |
SBP (mmHg) | 104.3 (11.8) | 100.1 (15.4) | 104.9 (12.2) | 105.5 (9.6) | 0.333 | 116.2 (15.8) | 118.9 (9.9) | 114.6 (11.5) | 115.7 (18.6) | 0.841 | <0.001 |
DBP (mmHg) | 62.0 [45.0–100.0] | 59.5 [46.0–79.0] | 62.5 [49.0–77.0] | 63.0 [45.0–100.0] | 0.671 | 67.0 [49.5–94.5] | 72.7 [63.0–82.0] | 68.0 [55.0–85.0] | 65.5 [49.5–94.5] | 0.266 | <0.001 ¥ |
25(OH)D (ng/mL) | 23.0 (10.6) | 40.9 (8.6) | 24.4 (2.6) | 15.1 (3.5) | <0.001 | 19.0 (7.6) | 35.7 (6.9) | 24.4 (2.5) | 14.3 (3.6) | <0.001 | 0.004 |
Fasting glucose (mg/dL) | 81.0 (8.2) | 83.6 (6.7) | 80.6 (8.4) | 80.3 (8.6) | 0.415 | 81.2 (7.4) | 80.5 (5.0) | 80.7 (7.7) | 81.6 (7.6) | 0.872 | 0.867 |
Fasting insulin (mUI/L) | 8.0 (6.0) | 6.4 (4.6) | 7.4 (5.4) | 9.1 (6.9) | 0.245 | 14.2 (9.4) | 15.9 (14.1) | 11.4 (7.6) | 15.4 (9.5) | 0.123 | <0.001 |
HOMA-IR | 1.6 (1.2) | 1.3 (0.9) | 1.5 (1.1) | 1.8 (1.4) | 0.327 | 2.9 (2.0) | 3.1 (1.9) | 2.4 (2.0) | 3.2 (3.0) | 0.131 | <0.001 |
QUICKI | 0.4 (0.05) | 0.4 (0.05) | 0.4 (0.05) | 0.4 (0.04) | 0.409 | 0.3 (0.03) | 0.3 (0.05) | 0.3 (0.03) | 0.3 (0.03) | 0.115 | <0.001 |
TAG (mg/dL) | 56.2 (27.0) | 48.1 (20.0) | 51.7 (20.9) | 62.6 (32.0) | 0.211 | 70.7 (31.7) | 56.8 (20.6) | 64.1 (20.2) | 75.7 (36.4) | 0.222 | <0.001 |
Cholesterol (mg/dL) | 164.0 [102.0–298.0] | 168.0 [112.0–221.0] | 168.0 [102.0–225.0] | 162.5 [104.0–298.0] | 0.849 | 157.0 [101.0–271.0] | 157.5 [126.0–200.0] | 152.0 [101.0–210.0] | 157.0 [103.0–271.0] | 0.382 | 0.053 ¥ |
HDL-c (mg/dL) | 52.6 (12.6) | 53.3 (9.8) | 52.1 (11.3) | 52.7 (14.6) | 0.958 | 50.6 (15.1) | 49.5 (13.3) | 45.5 (9.6) | 53.2 (17.0) | 0.163 | 0.180 |
LDL-c (mg/dL) | 92.0 [52.0–224.0] | 101.0 [52.0–155.0] | 99.0 [56.0–139.0] | 92.0 [56.0–224.0] | 0.822 | 87.0 [50.0–187.0] | 82.5 [71.0–113.0] | 87.0 [50.6–147.0] | 90.0 [50.0–187.0] | 0.875 | 0.026 ¥ |
Adiponectin (mg/L) | 17.9 (12.0) | 24.9 (14.4) | 16.9 (11.6) | 14.6 (9.8) | 0.036 | 12.0 (8.5) | 12.5 (9.5) | 9.6 (5.3) | 13.2 (9.5) | 0.582 | 0.001 |
Leptin (μg/L) | 13.8 (13.4) | 10.1 (7.9) | 15.2 (17.1) | 14.3 (12.1) | 0.515 | 10.4 (7.5) | 10.7 (12.2) | 8.3 (6.2) | 11.3 (7.4) | 0.322 | 0.047 |
Cardiometabolic Variables (T1) | 25(OH)D Levels (T1) (ng/mL) | |||||
---|---|---|---|---|---|---|
Unadjusted Model 1 | Adjusted Model 2 | |||||
B | 95% CI | p-Value | B | 95% CI | p-Value | |
Waist circumference (cm) | −0.007 | −0.013 to −0.001 | 0.021 | −0.002 | −0.016 to 0.012 | 0.759 |
SBP (mmHg) | −0.006 | −0.012 to 0.000 | 0.065 | −0.002 | −0.010 to 0.006 | 0.580 |
DBP (mmHg) | −0.059 | −0.249 to 0.130 | 0.535 | 0.082 | −0.138 to 0.302 | 0.459 |
Glucose (mg/dL) | −0.001 | −0.014 to 0.012 | 0.859 | −0.003 | −0.016 to 0.010 | 0.652 |
Insulin (mUI/L) | −0.283 | −0.437 to −0.128 | 0.001 | −0.250 | −0.446 to −0.054 | 0.013 |
HOMA-IR | −0.256 | −0.404 to −0.108 | 0.001 | −0.219 | −0.400 to −0.038 | 0.019 |
QUICKI | 1.817 | 0.795 to 2.839 | 0.001 | 1.574 | 0.337 to 2.811 | 0.013 |
TAG (mg/dL) | −0.349 | −0.563 to −0.135 | 0.002 | −0.274 | −0.525 to −0.024 | 0.032 |
Cholesterol (mg/dL) | −0.018 | −0.098 to 0.061 | 0.653 | −0.041 | −0.121 to 0.038 | 0.303 |
HDL-c (mg/dL) | −0.015 | −0.107 to 0.077 | 0.748 | −0.098 | −0.201 to 0.005 | 0.061 |
LDL-c (mg/dL) | −0.011 | −0.075 to 0.053 | 0.727 | −0.019 | −0.083 to 0.044 | 0.551 |
Adiponectin (mg/L) | 0.062 | −0.071 to 0.196 | 0.356 | 0.003 | −0.155 to 0.161 | 0.973 |
Leptin (μg/L) | −0.080 | −0.153 to −0.007 | 0.032 | −0.014 | −0.160 to 0.132 | 0.850 |
Cardiometabolic Variables (T0) | 25(OH)D Levels (T1) (ng/mL) | |||||
---|---|---|---|---|---|---|
Unadjusted Model 1 | Adjusted Model 2 | |||||
B | 95% CI | p-Value | B | 95% CI | p-Value | |
Waist circumference (cm) | −0.004 | −0.011 to 0.003 | 0.272 | 0.004 | −0.005 to 0.013 | 0.398 |
SBP (mmHg) | −0.007 | −0.015 to 0.002 | 0.110 | −0.004 | −0.012 to 0.005 | 0.394 |
DBP (mmHg) | −0.136 | −0.295 to 0.023 | 0.093 | −0.076 | −0.238 to 0.086 | 0.352 |
Glucose (mg/dL) | −0.001 | −0.012 to 0.011 | 0.875 | 0.002 | −0.011 to 0.014 | 0.774 |
Insulin (mUI/L) | −0.136 | −0.258 to −0.014 | 0.030 | −0.097 | −0.228 to 0.034 | 0.144 |
HOMA-IR | −0.132 | −0.252 to −0.012 | 0.032 | −0.088 | −0.214 to 0.039 | 0.172 |
QUICKI | 0.783 | 0.025 to 1.541 | 0.043 | 0.534 | −0.254 to 1.321 | 0.181 |
TAG (mg/dL) | −0.137 | −0.344 to 0.071 | 0.193 | −0.007 | −0.227 to 0.214 | 0.953 |
Cholesterol (mg/dL) | −0.008 | −0.080 to 0.065 | 0.836 | −0.004 | −0.078 to 0.071 | 0.917 |
HDL-c (mg/dL) | −0.006 | −0.112 to 0.100 | 0.910 | −0.077 | −0.184 to 0.030 | 0.157 |
LDL-c (mg/dL) | −0.004 | −0.067 to 0.058 | 0.888 | 0.003 | −0.060 to 0.065 | 0.935 |
Adiponectin (mg/L) | 0.140 | 0.000 to 0.279 | 0.049 | 0.070 | −0.085 to 0.225 | 0.373 |
Leptin (μg/L) | −0.006 | −0.061 to 0.049 | 0.835 | 0.046 | −0.015 to 0.108 | 0.136 |
Variables | NW Non-IR No Change Group 1 (n = 16) | OW/OB Non-IR to NW Non-IR Group 2 (n = 6) | OW/OB Non-IR No Change Group 3 (n = 26) | OW/OB—IR to Non-IR Group 4 (n = 9) | OW/OB—Non-IR to IR Group 5 (n = 13) | OW/OB IR No Change Group 6 (n = 6) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | ∆ | T0 | ∆ | T0 | ∆ | T0 | ∆ | T0 | ∆ | T0 | ∆ | |
Sex, F/M | 4/12 | 4/2 | 8/18 | 6/3 | 8/5 | 4/2 | ||||||
Age (years) | 7.5 (2.1) | 7.3 (3.2) ** | 8.4 (1.6) | 6.4 (2.5) ** | 7.8 (1.9) | 5.9 (2.5) ** | 8.1 (1.9) | 5.1 (3.1) ** | 7.1 (1.9) | 6.5 (2.8) ** | 8.6 (0.8) | 4.9 (1.9) ** |
BMI z-score | −0.3 (0.6) | 0.1 (0.5) | 1.3 (0.6) | −1.4 (0.4) ** | 3.0 (1.3) | −1.0 (1.5) ** | 3.1 (1.9) | −1.0 (1.7) | 2.5 (1.1) | 0.4 (1.3) | 3.5 (1.6) | 0.4 (0.9) |
BMI (kg/m2) ¥ | 15.9 [14.3; 20.2] | 3.4 [0.5; 8.7] ** | 21.6 [17.7; 24.1] | −0.6 [−3.9; 2.8] | 23.6 [19.6; 29.8] | 3.07 [−3.9; 10.7] ** | 25.4 [21.4; 36.0] | 0.8 [−5.2; 11.3] | 23.3 [17.9; 25.1] | 5.1 [2.5; 15.6] ** | 26.2 [23.0; 35.5] | 7.1 [2.0; 12.5] * |
Waist circumference (cm) | 58.3 (6.1) | 13.2 (7.2) ** | 75.7 (9.4) | −0.2 (9.9) | 78.0 (10.2) | 10.8 (11.7) ** | 81.6 (13.1) | 10.2 (16.3) | 75.4 (8.5) | 18.9 (11.1) ** | 89.5 (12.4) | 22.4 (13.6) * |
SBP (mmHg) | 100.7 (11.9) | 7.2 (15.2) | 105.0 (10.6) | 7.8 (17.9) | 103.8 (13.5) | 12.5 (16.1) ** | 109.2 (13.6) | 11.8 (15.0) | 102.5 (9.0) | 13.8 (12.8) ** | 111.5 (7.3) | 24.1 (29.6) |
DBP (mmHg) | 59.5 [50.0–72.0] | 6.0 [−13.5; 20.5] | 68.5 [58.0; 76.0] | −6.0 [−18.0; 3.0] | 62.0 [46.0; 81.0] | 7.0 [−11.0; 21.0] ** | 66.0 [50; 79] | 0.5 [−11.0; 31.5] | 63.0 [45; 71.0] | 9.0 [−4.0; 24.0] ** | 64.5 [56.0; 100.0] | 7.7 [−20.0; 21.5] |
25(OH)D (ng/mL) | 27.1 (15.2) | −7.6 (13.4) | 21.5 (6.8) | −0.5 (12.0) | 22.2 (8.1) | −1.2 (10.8) | 24.4 (9.4) | −6.3 (9.4) | 23.0 (10.8) | −7.0 (12.4) * | 15.0 (6.3) | 0.1 (10.3) |
Fasting glucose (mg/dL) | 80.0 (9.2) | 0.6 (10.5) | 83.3 (8.1) | −3.0 (9.0) | 80.4 (7.9) | −0.5 (10.2) | 81.1 (7.9) | −3.3 (7.8) | 79.4 (6.9) | 5.5 (11.8) | 87.5 (9.9) | −0.5 (17.8) |
Fasting insulin (mUI/L) | 4.7 (2.8) | 5.3 (3.3) ** | 5.6 (3.3) | 2.7 (3.1) | 5.3 (3.2) | 4.3 (4.7) ** | 17.0 (6.3) | −4.2 (7.2) | 7.8 (3.2) | 17.3 (8.0) ** | 18.1 (5.3) | 11.9 (11.7) * |
HOMA-IR | 0.9 (0.5) | 1.1 (0.7) ** | 1.1 (0.6) | 0.5 (0.7) | 1.1 (0.7) | 0.8 (0.9) ** | 3.3 (0.9) | −0.9 (1.4) | 1.5 (0.7) | 3.8 (2.2) ** | 3.9 (1.1) | 2.3 (1.8) ** |
QUICKI | 0.4 (0.04) | −0.05 (0.04) ** | 0.4 (0.04) | −0.03 (0.04) | 0.4 (0.04) | −0.05 (0.05) ** | 0.3 (0.01) | 0.02 (0.03) | 0.4 (0.03) | −0.06 (0.03) ** | 0.3 (0.01) | −0.02 (0.01) ** |
TAG (mg/dL) | 44.8 (19.9) | 12.8 (20.5) * | 57.7 (24.4) | −3.0 (14.1) | 52.7 (21.3) | 13.6 (26.0) ** | 71.7 (26.5) | −10.1 (27.1) | 55.7 (36.1) | 43.8 (31.0) ** | 77.8 (34.3) | 13.5 (36.6) |
Cholesterol (mg/dL) ¥ | 175.0 [112.0–231.0] | −5.0 [−28.0; 43.0] | 160.0 [119.0; 246.0] | 9.5 [−36.0; 25.0] | 173.0 [104.0; 298.0] | −7.0 [−101.0; 30.0] | 164.0 [141.0; 221.0] | −14.0 [–39.0; 0.0] * | 158.0 [102.0; 185.0] | 7.0 [−30.0; 33.0] | 171.0 [135.0; 203. 0] | −11.5 [−36.0; 29.0] |
LDL-c (mg/dL) ¥ | 102.0 [54.0–140.0] | −1.5 [−32.0; 25.0] | 99.5 [56.0; 184.0] | 3.0 [−30.0; 9.0] | 101.0 [56.0; 224.0] | −5.0 [−81.0; 24.0] | 83.0 [66.0; 155.0] | −5.0 [−35.0; 10.0] | 92.0 [52.0; 114.0] | 2.0 [−31.0; 28.0] | 96.0 [62.0; 149.0] | −8.0 [−29.0; 15.0] |
HDL-c (mg/dL) | 59.7 (13.4) | 0.2 (11.6) | 51.3 (7.9) | 6.7 (10.6) | 53.7 (12.9) | −6.0 (15.1) | 51.0 (11.9) | 2.3 (28.9) | 46.0 (9.8) | −3.7 (5.0) * | 46.8 (12.8) | −2.3 (12.0) |
Adiponectin (mg/L) | 23.3 (14.6) | −9.0 (15.4) * | 17.4 (11.4) | 0.1 (15.6) | 17.6 (13.1) | −6.5 (15.1) * | 15.3 (10.0) | −1.9 (11.4) | 11.4 (4.3) | −3.6 (6.2) | 18.2 (11.6) | −0.8 (8.8) |
Leptin (μg/L) | 3.7 (6.2) | −0.1 (5.8) | 9.4 (5.1) | −5.5 (4.22) * | 14.2 (11.3) | −4.2 (12.3) | 22.2 (22.0) | −11.4 (21.6) | 13.5 (4.2) | 3.0 (6.2) | 34.5 (9.3) | −11.2 (11.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, L.V.; González-Gil, E.M.; Anguita-Ruiz, A.; Bueno, G.; Gil-Campos, M.; Vázquez-Cobela, R.; Pérez-Ferreirós, A.; Moreno, L.A.; Gil, Á.; Leis, R.; et al. The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study. Nutrients 2021, 13, 4488. https://doi.org/10.3390/nu13124488
Pires LV, González-Gil EM, Anguita-Ruiz A, Bueno G, Gil-Campos M, Vázquez-Cobela R, Pérez-Ferreirós A, Moreno LA, Gil Á, Leis R, et al. The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study. Nutrients. 2021; 13(12):4488. https://doi.org/10.3390/nu13124488
Chicago/Turabian StylePires, Liliane Viana, Esther M. González-Gil, Augusto Anguita-Ruiz, Gloria Bueno, Mercedes Gil-Campos, Rocío Vázquez-Cobela, Alexandra Pérez-Ferreirós, Luis A. Moreno, Ángel Gil, Rosaura Leis, and et al. 2021. "The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study" Nutrients 13, no. 12: 4488. https://doi.org/10.3390/nu13124488
APA StylePires, L. V., González-Gil, E. M., Anguita-Ruiz, A., Bueno, G., Gil-Campos, M., Vázquez-Cobela, R., Pérez-Ferreirós, A., Moreno, L. A., Gil, Á., Leis, R., & Aguilera, C. M. (2021). The Vitamin D Decrease in Children with Obesity Is Associated with the Development of Insulin Resistance during Puberty: The PUBMEP Study. Nutrients, 13(12), 4488. https://doi.org/10.3390/nu13124488