Influence of Diet and Levels of Zonulin, Lipopolysaccharide and C-Reactive Protein on Cardiometabolic Risk Factors in Young Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Measurements
2.3. Nutritional Assessment
2.4. Biochemical Measurements and Definitions
2.5. Biomarkers of Intestinal Permeability and Inflammation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, R.; Lloyd-Sherlock, P.; Soliz, P.; Ebrahim, S.; Vega, E.; Ordunez, P.; McKee, M. Trends in premature avertable mortality from non-communicable diseases for 195 countries and territories, 1990–2017: A population-based study. Lancet Glob. Health 2020, 8, e511–e523. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.H.; Saha, S. Burden of non-communicable disease: Global overview. Diabetes Metab. Syndr. Clin. Res. Rev. 2010, 4, 41–47. [Google Scholar] [CrossRef]
- Grajeda, R.; Hassell, T.; Ashby-Mitchell, K.; Uauy, R.; Nilson, E. Regional Overview on the Double Burden of Malnutrition and Examples of Program and Policy Responses: Latin America and the Caribbean. Ann. Nutr. Metab. 2019, 75, 139–143. [Google Scholar] [CrossRef]
- Bassi, N.; Karagodin, I.; Wang, S.; Vassallo, P.; Priyanath, A.; Massaro, E.; Stone, N.J. Lifestyle Modification for Metabolic Syndrome: A Systematic Review. Am. J. Med. 2014, 127, 1242.e1–1242.e10. [Google Scholar] [CrossRef]
- Weickert, M.O. Nutritional Modulation of Insulin Resistance. Scientifica 2012, 2012, 424780. [Google Scholar] [CrossRef] [Green Version]
- Julibert, A.; Bibiloni, M.D.M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef]
- Lassenius, M.I.; Pietiläinen, K.; Kaartinen, K.H.; Pussinen, P.J.; Syrjänen, J.; Forsblom, C.; Pörsti, I.; Rissanen, A.; Kaprio, J.; Mustonen, J.; et al. Bacterial Endotoxin Activity in Human Serum Is Associated With Dyslipidemia, Insulin Resistance, Obesity, and Chronic Inflammation. Diabetes Care 2011, 34, 1809–1815. [Google Scholar] [CrossRef] [Green Version]
- Sonnenburg, E.D.; Zheng, H.; Joglekar, P.; Higginbottom, S.K.; Firbank, S.J.; Bolam, D.N.; Sonnenburg, J.L. Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations. Cell 2010, 141, 1241–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caricilli, A.M.; Saad, M.J.A. The Role of Gut Microbiota on Insulin Resistance. Nutrients 2013, 5, 829–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okumura, R.; Takeda, K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 2017, 49, e338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasano, A. Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Navarrete, J.M.; Sabater-Masdeu, M.; Ortega, F.J.; Ricart, W.; Fernández-Real, J.M. Circulating Zonulin, a Marker of Intestinal Permeability, Is Increased in Association with Obesity-Associated Insulin Resistance. PLoS ONE 2012, 7, e37160. [Google Scholar] [CrossRef] [Green Version]
- Pussinen, P.J.; Havulinna, A.S.; Lehto, M.; Sundvall, J.; Salomaa, V. Endotoxemia Is Associated With an Increased Risk of Incident Diabetes. Diabetes Care 2011, 34, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pussinen, P.J.; Tuomisto, K.; Jousilahti, P.; Havulinna, A.S.; Sundvall, J.; Salomaa, V. Endotoxemia, Immune Response to Periodontal Pathogens, and Systemic Inflammation Associate With Incident Cardiovascular Disease Events. Arter. Thromb. Vasc. Biol. 2007, 27, 1433–1439. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Joseph, L.; Pilote, L. Obesity and C-reactive protein in various populations: A systematic review and meta-analysis. Obes. Rev. 2012, 14, 232–244. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Automated Multiple-Pass Method. USDA. Agricultural Research Service. Features of AMPM. 2014. Available online: http://www.ars.usda.gov/News/docs.htm?docid=7710 (accessed on 12 August 2018).
- Domínguez-Reyes, T.; Astudillo-López, C.C.; Salgado-Goytia, L.; Muñoz-Valle, J.F.; Salgado-Bernabé, A.B.; Guzmán-Guzmán, I.P.; Castro-Alarcón, N.; Moreno-Godínez, M.E.; Parra-Rojas, I. Interaction of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its relationship with obesity and dyslipidemia in young subjects. Lipids Health Dis. 2015, 14, 106. [Google Scholar] [CrossRef] [Green Version]
- Third Report of National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [CrossRef]
- Shamah-Levy, T.; Cuevas-Nasu, L.; Rivera-Dommarco, J.; Hernández-Ávila, M. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016 Informe Final de Resultados. Cuernavaca, México: Instituto Nacional de Salud Pública. 2016. Available online: https://ensanut.insp.mx/encuestas/ensanut2016/doctos/informes/ENSANUT2016ResultadosNacionales.pdf (accessed on 23 February 2019).
- Bergman, R.N.; Kim, S.P.; Hsu, I.R.; Catalano, K.J.; Chiu, J.D.; Kabir, M.; Richey, J.M.; Ader, M. Abdominal Obesity: Role in the Pathophysiology of Metabolic Disease and Cardiovascular Risk. Am. J. Med. 2007, 120, S3–S8. [Google Scholar] [CrossRef]
- Fasano, A. Intestinal Permeability and Its Regulation by Zonulin: Diagnostic and Therapeutic Implications. Clin. Gastroenterol. Hepatol. 2012, 10, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanuytsel, T.; Vermeire, S.; Cleynen, I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers 2013, 1, e27321. [Google Scholar] [CrossRef] [Green Version]
- de Kort, S.; Keszthelyi, D.; Masclee, A.A.M. Leaky gut and diabetes mellitus: What is the link? Obes. Rev. 2011, 12, 449–458. [Google Scholar] [CrossRef]
- Neves, A.L.; Coelho, J.; Couto, L.; Leite-Moreira, A.; Jr, R.R.-A. Metabolic endotoxemia: A molecular link between obesity and cardiovascular risk. J. Mol. Endocrinol. 2013, 51, R51–R64. [Google Scholar] [CrossRef] [Green Version]
- Yeh, E.T.H. High-sensitivity C-reactive protein as a risk assessment tool for cardiovascular disease. Clin. Cardiol. 2005, 28, 408–412. [Google Scholar] [CrossRef]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns and Metabolic Syndrome in Adult Subjects: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2056. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Willett, W.C. Optimal diets for prevention of coronary heart disease. JAMA 2002, 288, 2569–2578. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L.; West, K.L. Mechanisms by which Dietary Fatty Acids Modulate Plasma Lipids. J. Nutr. 2005, 135, 2075–2078. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yang, R.; Tarr, P.T.; Wu, P.H.; Handschin, C.; Li, S.; Yang, W.; Pei, L.; Uldry, M.; Tontonoz, P.; et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 2005, 120, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodson, L.; Skeaff, C.M.; Chisholm, W.-A. The effect of replacing dietary saturated fat with polyunsaturated or monounsaturated fat on plasma lipids in free-living young adults. Eur. J. Clin. Nutr. 2001, 55, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Desmarchelier, C.; Borel, P.; Lairon, D.; Maraninchi, M.; Valéro, R. Effect of Nutrient and Micronutrient Intake on Chylomicron Production and Postprandial Lipemia. Nutrients 2019, 11, 1299. [Google Scholar] [CrossRef] [Green Version]
- Mörkl, S.; Lackner, S.; Meinitzer, A.; Mangge, H.; Lehofer, M.; Halwachs, B.; Gorkiewicz, G.; Kashofer, K.; Painold, A.; Holl, A.K.; et al. Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur. J. Nutr. 2018, 57, 2985–2997. [Google Scholar] [CrossRef] [Green Version]
- Żak-Gołąb, A.; Kocełak, P.; Aptekorz, M.; Zientara, M.; Juszczyk, Łukasz; Martirosian, G.; Chudek, J.; Olszanecka-Glinianowicz, M. Gut Microbiota, Microinflammation, Metabolic Profile, and Zonulin Concentration in Obese and Normal Weight Subjects. Int. J. Endocrinol. 2013, 2013, 674106. [Google Scholar] [CrossRef] [Green Version]
- Mani, V.; Hollis, J.H.; Gabler, N.K. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr. Metab. 2013, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Chen, L.; Hu, L.; Liu, Y.; Sun, H.-Y.; Tang, J.; Hou, Y.-J.; Chang, Y.-X.; Tu, Q.-Q.; Feng, G.-S.; et al. Nuclear factor high-mobility group box1 mediating the activation of toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology 2011, 54, 1620–1630. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-A.; Gu, W.; Lee, I.-A.; Joh, E.-H.; Kim, D.-H. High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway. PLoS ONE 2012, 7, e47713. [Google Scholar] [CrossRef]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef] [Green Version]
- Guldiken, S.; Demir, M.; Arikan, E.; Turgut, B.; Azcan, S.; Gerenli, M.; Tugrul, A. The levels of circulating markers of atherosclerosis and inflammation in subjects with different degrees of body mass index: Soluble CD40 ligand and high-sensitivity C-reactive protein. Thromb. Res. 2007, 119, 79–84. [Google Scholar] [CrossRef]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–640. [Google Scholar] [CrossRef]
- Kallio, P.; Kolehmainen, M.; E Laaksonen, D.; Pulkkinen, L.; Atalay, M.; Mykkänen, H.; Uusitupa, M.; Poutanen, K.; Niskanen, L. Inflammation markers are modulated by responses to diets differing in postprandial insulin responses in individuals with the metabolic syndrome. Am. J. Clin. Nutr. 2008, 87, 1497–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Sohn, K.H.; Rhee, S.H.; Hwang, D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J. Biol. Chem. 2001, 276, 16683–16689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, A.; Bengmark, S. Advanced glycation and lipoxidation end products—Amplifiers of inflammation: The role of food. Nutr. Hosp. 2007, 22, 625–640. [Google Scholar]
- Ahluwalia, N.; Andreeva, V.; Kesse-Guyot, E.; Hercberg, S. Dietary patterns, inflammation and the metabolic syndrome. Diabetes Metab. 2013, 39, 99–110. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventos, R.M.; Estruch, R.; et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: A substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 2017, 83, 114–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajani, U.A.; Ford, E.S.; Mokdad, A.H. Dietary Fiber and C-Reactive Protein: Findings from National Health and Nutrition Examination Survey Data. J. Nutr. 2004, 134, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Brehm, B.J.; Seeley, R.J.; Bean, J.; Wener, M.H.; Daniels, S.; D’Alessio, D.A. Diet-Induced Weight Loss Is Associated with Decreases in Plasma Serum Amyloid A and C-Reactive Protein Independent of Dietary Macronutrient Composition in Obese Subjects. J. Clin. Endocrinol. Metab. 2005, 90, 2244–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussatto, S.I.; Mancilha, I.M. Non-digestible oligosaccharides: A review. Carbohydr. Polym. 2007, 68, 587–597. [Google Scholar] [CrossRef]
- Gu, W.; Wang, Y.; Zeng, L.; Dong, J.; Bi, Q.; Yang, X.; Che, Y.; He, S.; Yu, J. Polysaccharides from Polygonatum kingianum improve glucose and lipid metabolism in rats fed a high fat diet. Biomed. Pharmacother. 2020, 125, 109910. [Google Scholar] [CrossRef] [PubMed]
Variables | Total n = 238 | <3 CRF n = 154 (65) | ≥3 CRF n = 84 (35) | p Value |
---|---|---|---|---|
Sex n (%) | <0.001 a | |||
Women | 134 (56) | 98 (64) | 36 (43) | |
Men | 104 (44) | 56 (36) | 48 (57) | |
Age (years) | 20 (18–22) | 19 (18–21) | 21 (19–24) | 0.009 c |
Weight (Kg) | 64.6 (53–80) | 58 (50–67) | 80.5 (71–88) | <0.001 c |
BMI (Kg/m2) | 25 (20.8–29) | 21.9 (20–25.5) | 30 (27–33) | <0.001 c |
WC (cm) | ||||
Women | 75 (68–83) | 72 (66–77) | 87 (81–95) | <0.001 c |
Men | 91 (77–100) | 78 (71–85) | 98 (93.5–103) | <0.001 c |
HC (cm) | 98 (91–100) | 93 (87–101) | 107 (103–112.5) | <0.001 c |
WtHR | 0.8 (0.76–0.89) | 0.78 (0.74–0.82) | 0.89 (0.83–0.93) | <0.001 c |
BP (mmHg) | ||||
Systolic | 108 (100–116) | 105 (97–112) | 113 (107–125) | <0.001 c |
Diastolic | 65 (59–73) | 62 (58–70) | 71 (64–67) | <0.001 c |
Fat mass (Kg) | 18.6 (11.9–25) | 14.2 (10–20.3) | 25 (20–29.8) | <0.001 c |
Muscle mass (Kg) | 43.7 (37.7–54.7) | 40.6 (36.3–48.6) | 54 (44.6–61) | <0.001 c |
Metabolic parameters | ||||
Glucose (mg/dL) | 79 (73–85) | 78 (72–85) | 81 (74–89) | 0.003 c |
TG (mg/dL) | 85 (63–135) | 72 (58–95) | 152 (101–182) | <0.001 c |
TC (mg/dL) | 179 (148–213) | 165 (138–188) | 216 (181–244) | <0.001 c |
LDL-C (mg/dL) | 101 (79–121) | 90 (72–107) | 148 (117–180) | <0.001 c |
HDL-C (mg/dL) | ||||
Women | 40 (37–42) | 40 (37–42) | 40 (38–41) | 0.470 c |
Men | 40 (37–42) | 41 (37–43) | 38 (37–40) | 0.200 |
Cardiometabolic risk factors n (%) | ||||
Central obesity | 98(41) | 28(18) | 70(83) | <0.001 a |
Women (≥80 cm) | 47(35) | 17(17) | 30(83) | <0.001 a |
Men (≥90 cm) | 51(49) | 11(20) | 40(83) | <0.001 a |
High blood pressure | 17(7) | 1(1) | 16(19) | <0.001 b |
Glucose ≥ 100 mg/dL | 7(3) | 4(3) | 3(4) | 0.48 b |
TG ≥ 150 mg/dL | 44(18) | 2(1) | 42(50) | <0.001 b |
TC ≥ 200 mg/dL | 74(31) | 17(11) | 57(68) | <0.001 a |
LDL-C ≥ 100 mg/dL | 102(43) | 41(27) | 61(73) | <0.001 a |
Low HDL-C | 172(72) | 108(70) | 64(76) | 0.32 a |
Women (<50 mg/dL) | 124(93) | 91(93) | 33(92) | 0.53 b |
Men (<40 mg/dL) | 48(46) | 17(30) | 31(65) | <0.001 a |
Nutrient | Total n = 238 | <3 CRF n = 154 (65) | ≥3 CRF n = 84 (35) | p Value |
---|---|---|---|---|
Energy (cal) | 1816 (1298–2459) | 1809 (1342–2382) | 1861 (1184–2991) | 0.66 |
CHO (g) | 226 (157–337) | 213 (154–305) | 253 (161–387) | 0.12 |
Protein (g) | 73 (51–101) | 75 (52–100) | 66 (46–108) | 0.53 |
Lipid (g) | 66 (39–98) | 64 (42–94) | 77 (38–110) | 0.69 |
SFA (g) | 13 (7–19) | 12 (7–19) | 15 (8–19) | 0.46 |
PUFA (g) | 6 (3–8) | 7 (4–8) | 5 (3–7) | 0.007 |
Cholesterol (mg) | 129 (66–273) | 127 (73–273) | 133.5 (57–223) | 0.75 |
Water (mL) | 1167 (815–1765) | 1196 (824–1816) | 1141 (727–1597) | 0.37 |
Fiber (g) | 18 (12–25) | 20 (13–25) | 15 (9–24) | 0.03 |
Glucose β (95% CI) p | Triglycerides β (95% CI) p | Cholesterol β (95% CI) p | LDL-C β (95% CI) p | HDL-C β (95% CI) p | |
---|---|---|---|---|---|
↑Zonulina + ↑LPS | 1.1 (0.3, 1.9) 0.006 | 2 (−0.3, 2.5) 0.3 | 2.3 (0.7, 6) 0.2 | 3.2 (0.3, 6.8) 0.07 | 0.01 (−0.33, 0.3) 0.9 |
↑Zonulina + ↑hs-CRP | 0.6 (−0.9, 2.1) 0.4 | 2.2 (0.03, 7) 0.4 | 0.8 (−3, 5) 0.6 | 1 (0.4, 4) 0.5 | −0.2 (−0.6, 0.3) 0.1 |
↑LPS + ↑hs-CRP | 1.2 (0.3, 2) 0.007 | 3.9 (1.2, 8.5) 0.01 | 3.8 (0.7, 8) 0.1 | 3.3 (0.3, 7.8) 0.08 | −0.1 (−0.5, 0.2) 0.4 |
Glucose β (95% CI) p | Triglycerides β (95% CI) p | Cholesterol β (95% CI) p | LDL-C β (95% CI) p | HDL-C β (95% CI) p | |
---|---|---|---|---|---|
↑Zonulin + ↑Energy | 1.1 (−1.9, 4) 0.4 | 4.8 (0.3, 5.7) 0.3 | 0.5 (−7, 8.8) 0.9 | 3.5 (0.5, 10) 0.3 | 0.3 (0.1, 1) 0.3 |
↑Zonulin + ↑CHO | 1.7 (−1.3, 4.7) 0.2 | 3 (0.4, 7) 0.5 | 0.7 (−7, 9.8) 0.8 | 1.1 (0.3, 6) 0.7 | 0.1 (0.01, 0.6) 0.7 |
↑Zonulin + ↑Protein | 2 (−1.1, 5.3) 0.2 | 4.2 (0.6, 15.2) 0.4 | 4 (0.5, 12) 0.3 | 1.4 (−5, 8) 0.6 | 0.2 (0.04, 0.9) 0.5 |
↑Zonulin + ↑Fat | 0.1 (−2.8, 3.2) 0.9 | −0.4 (−10.6, 9) 0.9 | 8.5 (0.5, 16) 0.03 | 0.2 (−7, 7) 0.9 | 0.2 (−0.6, 1.0) 0.6 |
↑Zonulin + ↑Chol | −1.6 (−4.9, 1.6) 0.3 | 3 (0.2, 8.1) 0.6 | 0.4 (0.2, 0.6) 0.9 | 2.5 (−4.9, 10) 0.5 | 0.7 (0.05, 1.5) 0.06 |
↑Zonulin + ↑SFA | 0.3 (−2.3, 3) 0.8 | 9.2 (0.2, 18) 0.4 | 5.3 (0.6, 12) 0.1 | −0.5 (−6, 5) 0.8 | 0.6 (00.02, 1.2) 0.06 |
↑LPS + ↑Energy | 2.93 (1.3, 4.7) 0.001 | 1 (0.1, 10.7) 0.8 | 0.7 (−9, 8.3) 0.9 | 1.6 (−9, 5) 0.6 | 0.5 (0.2, 1.2) 0.2 |
↑LPS + ↑CHO | 2.9 (1.2, 4.5) 0.001 | 3.5 (−5, 12.7) 0.5 | 1.6 (−10, 7.8) 0.7 | 0.8 (−6.3, 8) 0.8 | 0.1 (0.01, 0.5) 0.6 |
↑LPS + ↑Protein | 2.2 (0.6, 3.8) 0.001 | −0.6 (−9.9, −1.0) 0.08 | 1.5 (−10.5, 7) 0.7 | 0.2 (−7, 7) 0.9 | 0.7 (0.04, 0.9) 0.07 |
↑LPS + ↑Fat | 1.8 (0.1, 3.5) 0.03 | 0.8 (−8.9, 10.6) 0.9 | 6.3 (−0.3, 15) 0.1 | 6.3 (−1.3, 14) 0.1 | 0.7 (−0.01, 1.4) 0.05 |
↑LPS + ↑Chol | 0.3 (−1.3, 1.9) 0.7 | 4.3 (0.6, 13.1) 0.03 | 2.3 (0.1, 6) 0.6 | 4.3 (−2.8, 11) 0.2 | 0.4 (−0.2, 1.1) 0.1 |
↑LPS + ↑SFA | 1.6 (0.1, 3) 0.02 | 8.1 (0.18, 16) 0.04 | 0.2 (−7.6, 7) 0.9 | 2.3 (−4, 8) 0.5 | 0.6 (0.01, 1.2) 0.05 |
↑hs-CRP + ↑Energy | 0.1 (−3.2, 3.4) 0.9 | 9.9 (1.2, 21.2) 0.08 | 12.5 (3, 21) 0.006 | 3.3 (0.5, 11) 0.4 | 0.4 (0.1, 2) 0.4 |
↑hs-CRP + ↑CHO | 0.3 (−2.9, 3.6) 0.8 | 12.3 (1.4, 23) 0.02 | 11.3 (2.7, 19.8) 0.01 | 0.7 (−8.1, 6.6) 0.8 | −0.03 (−0.1, 0.4) 0.3 |
↑hs-CRP + ↑Protein | 4.2 (0.9, 7.5) 0.01 | 1.7 (−1.4, 20.2) 0.8 | 10.7 (1.9, 19) 0.01 | 1.9 (−9, 5) 0.6 | 0.1 (−0.06, 0.9) 0.7 |
↑hs-CRP + ↑Fat | 0.7 (−4.1, 2.6) 0.7 | 5.4 (1.6, 16) 0.03 | 16.6 (7.8, 25) 0.001 | 10.7 (1.9, 7) 0.01 | 0.2 (−0.6, 1.0) 0.6 |
↑hs-CRP + ↑Chol | −2.7 (−4.8, 0.4) 0.09 | 3.9 (−0.6, 12.1) 0.4 | 6.6 (0.2, 15.6) 0.04 | 3.1 (−10.9, 3) 0.4 | 0.2 (−0.5, 0.6) 0.5 |
↑hs-CRP + ↑SFA | 1.2 (−1.3, 9) 0.4 | 9.2 (0.2, 18) 0.04 | 4.8 (0.6, 12) 0.1 | 3.5 (−6, 5) 0.3 | −0.6 (−1.2, 0.2) 0.06 |
Glucose β (95% CI) p | Triglycerides β (95% CI) p | Cholesterol β (95% CI) p | LDL-C β (95% CI) p | HDL-C β (95% CI) p | |
---|---|---|---|---|---|
↑Zonulina + ↑PUFA | −0.4 (−3, 2.1) 0.7 | −6.8 (−15.8, −2.1) 0.1 | −0.4 (−0.7, −0–1) 0.09 | −0.5 (−6.5, 5) 0.9 | 0.5 (0.1, 0.6) 0.8 |
↑Zonulina +↑Fiber | −0.7 (−3.4, 1.9) 0.6 | −5.7 (−14.7, −3.3) 0.2 | 1.2 (−5.8, 8.1) 0.7 | −4.5 (−10, −1.5) 0.1 | 0.8 (0.01, 6) 0.9 |
↑Zonulina + ↑Water | −0.3 (−3, 2.3) 0.8 | −9.6 (−18.65, −0.6) 0.03 | −4.2 (−11.2, 0.2) 0.2 | −0.5 (−6.5, 5) 0.8 | 0.8 (0.2, 1) 0.7 |
↑LPS + ↑PUFA | 0.8 (−5, 2.2) 0.2 | −0.9 (−8.8, −0.1) 0.1 | −0.5 (−7, −8) 0.9 | −4.5 (−6, 11.5) 0.1 | 0.09 (0.001, 0.5) 0.8 |
↑LPS + ↑Fiber | −0.9 (−0.5, 2.2) 0.2 | −2.79 (−10.9, −0.3) 0.4 | 2.8 (−4.8, 10) 0.5 | −7.7 (−13, −1.4) 0.01 | 0.2 (−0.4, 0.8) 0.5 |
↑LPS + ↑Water | −1.3 (−3, 2.3) 0.06 | −4.8 (−12.6, −3.6) 0.02 | −3.3 (−10.2, 0.4) 0.4 | −5.7 (−11.5, 0.5) 0.06 | 0.17 (−0.4, 0.7) 0.6 |
↑hs-CRP + ↑PUFA | −1.0 (−3.7, 1.6) 0.4 | −1.3 (−7.8, −0.1) 0.01 | −5.1 (−7, −0–1) 0.01 | −0.3 (−6.3, 5.7) 0.9 | −0.57 (−1.1, 0.3) 0.06 |
↑hs-CRP + ↑Fiber | −1.6 (−4.3, 1) 0.2 | −1.5 (−10.5, −0.3) 0.02 | 4.3 (−2.7, 8.1) 0.2 | −0.3 (−2, 6.5) 0.2 | −0.4 (−0.8, 0.2) 0.1 |
↑hs-CRP + ↑Water | −1.5 (−4.2, 1.2) 0.2 | −0.8 (−8.3, 10.6) 0.8 | −2 (−5, 0.9) 0.6 | −3.7 (−9.9, 2) 0.2 | −0.5 (−1.2, 1) 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astudillo-López, C.C.; Castro-Alarcón, N.; Ariza, A.C.; Muñoz-Valle, J.F.; de la Cruz-Mosso, U.; Flores-Alfaro, E.; del Moral-Hernández, O.; Moreno-Godínez, M.E.; Ramírez-Vargas, M.A.; Matia-Garcia, I.; et al. Influence of Diet and Levels of Zonulin, Lipopolysaccharide and C-Reactive Protein on Cardiometabolic Risk Factors in Young Subjects. Nutrients 2021, 13, 4472. https://doi.org/10.3390/nu13124472
Astudillo-López CC, Castro-Alarcón N, Ariza AC, Muñoz-Valle JF, de la Cruz-Mosso U, Flores-Alfaro E, del Moral-Hernández O, Moreno-Godínez ME, Ramírez-Vargas MA, Matia-Garcia I, et al. Influence of Diet and Levels of Zonulin, Lipopolysaccharide and C-Reactive Protein on Cardiometabolic Risk Factors in Young Subjects. Nutrients. 2021; 13(12):4472. https://doi.org/10.3390/nu13124472
Chicago/Turabian StyleAstudillo-López, Constanza C., Natividad Castro-Alarcón, Ana C. Ariza, José F. Muñoz-Valle, Ulises de la Cruz-Mosso, Eugenia Flores-Alfaro, Oscar del Moral-Hernández, Ma. Elena Moreno-Godínez, Marco A. Ramírez-Vargas, Inés Matia-Garcia, and et al. 2021. "Influence of Diet and Levels of Zonulin, Lipopolysaccharide and C-Reactive Protein on Cardiometabolic Risk Factors in Young Subjects" Nutrients 13, no. 12: 4472. https://doi.org/10.3390/nu13124472
APA StyleAstudillo-López, C. C., Castro-Alarcón, N., Ariza, A. C., Muñoz-Valle, J. F., de la Cruz-Mosso, U., Flores-Alfaro, E., del Moral-Hernández, O., Moreno-Godínez, M. E., Ramírez-Vargas, M. A., Matia-Garcia, I., & Parra-Rojas, I. (2021). Influence of Diet and Levels of Zonulin, Lipopolysaccharide and C-Reactive Protein on Cardiometabolic Risk Factors in Young Subjects. Nutrients, 13(12), 4472. https://doi.org/10.3390/nu13124472