Lactate Threshold Training Program on Patients with Multiple Sclerosis: A Multidisciplinary Approach
Abstract
:1. Introduction
2. Methods
2.1. Subjects
- -
- Aged between 20 and 55;
- -
- Absence of clinical relapses in the 12 months preceding the study;
- -
- Total Expanded Disability Status Scale (EDSS )score not lower than 1.5 and not higher than 3.5;
- -
- Absence of other concomitant diseases (tumors, epilepsy, severe cardiovascular diseases, osteoporosis, etc.);
- -
- Signed informed consent by the patient.
2.2. Anthropometric Analysis and Coordination Skills Test
- Timed up and go test: measures the level of mobility of the subjects and requires static and dynamic balance skills [37].
- Eye–hand reaction test: records the time interval between the presentation of a visual stimulus and the execution of a response.
- Flamingo test: a total body equilibrium test performed without shoes testing the ability of the patient to balance on one leg for 60 s [38].
- Wall squat test: assesses the isometric strength of the lower limbs [39].
- Handgrip test: measures the maximum strength of the muscles of the hand and forearm through the use of a digital dynamometer [40].
2.3. Psychological Assessment
2.4. Eating Disorders Evaluations
2.5. Hematological Evaluations
2.6. Intervention Protocol
- Warm up;
- Workout;
- Cool down.
2.7. Statistical Analysis
3. Results
3.1. Anthropometric Evaluations
3.2. Neuromotor Evaluations and Coordination Skills
3.3. Differences in Self-Efficacy and Motivation to Exercise
3.4. Eating Disorder Evaluations
3.5. Visual Analogue Fatigue Scale
3.6. Biological Assessment
4. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collao, N.; Rada, I.; Francaux, M.; Deldicque, L.; Zbinden-Foncea, H. Anti-Inflammatory Effect of Exercise Mediated by Toll-Like Receptor Regulation in Innate Immune Cells—A Review. Int. Rev. Immunol. 2020, 39, 39–52. [Google Scholar] [CrossRef]
- Ihalainen, J.K.; Schumann, M.; Eklund, D.; Hamalainen, M.; Moilanen, E.; Paulsen, G.; Hakkinen, K.; Mero, A.A. Combined aerobic and resistance training decreases inflammation markers in healthy men. Scand. J. Med. Sci Sports 2018, 28, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Galle, F.A.; Martella, D.; Bresciani, G. Antioxidant and anti-inflammatory modulation of exercise during aging. Rev. Esp. Geriatr. Gerontol. 2018, 53, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Malkiewicz, M.A.; Szarmach, A.; Sabisz, A.; Cubala, W.J.; Szurowska, E.; Winklewski, P.J. Blood-brain barrier permeability and physical exercise. J. Neuroinflam. 2019, 16, 15. [Google Scholar] [CrossRef]
- Huang, H.; Li, W.; Qin, Z.; Shen, H.; Li, X.; Wang, W. Physical exercise increases peripheral brain-derived neurotrophic factors in patients with cognitive impairment: A meta-analysis. Restor. Neurol. Neurosci. 2021, 39, 159–171. [Google Scholar] [CrossRef]
- Buttler, L.; Jordao, M.T.; Fragas, M.G.; Ruggeri, A.; Ceroni, A.; Michelini, L.C. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control. Front. Physiol. 2017, 8, 1048. [Google Scholar] [CrossRef]
- Fraga, I.; Weber, C.; Galiano, W.B.; Iraci, L.; Wohlgemuth, M.; Morales, G.; Cercato, C.; Rodriguez, J.; Pochmann, D.; Dani, C.; et al. Effects of a multimodal exercise protocol on functional outcomes, epigenetic modulation and brain-derived neurotrophic factor levels in institutionalized older adults: A quasi-experimental pilot study. Neural Regen. Res. 2021, 16, 2479–2485. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, D.L.; Kalinin, S.; Braun, D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: Noradrenergic signaling system. J. Neurochem. 2016, 139 (Suppl. 2), 154–178. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, L.; Pereira, J.R.; Silva Santos, R.M.; Rocha, N.P.; Teixeira, A.L.; Christo, P.P.; Santos, V.R.; Scalzo, P.L. Acute exercise increases BDNF serum levels in patients with Parkinson’s disease regardless of depression or fatigue. Eur. J. Sport Sci. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Angelova, G.; Skodova, T.; Prokopiusova, T.; Markova, M.; Hruskova, N.; Prochazkova, M.; Pavlikova, M.; Spanhelova, S.; Stetkarova, I.; Bicikova, M.; et al. Ambulatory Neuroproprioceptive Facilitation and Inhibition Physical Therapy Improves Clinical Outcomes in Multiple Sclerosis and Modulates Serum Level of Neuroactive Steroids: A Two-Arm Parallel-Group Exploratory Trial. Life 2020, 10, 267. [Google Scholar] [CrossRef]
- Kurdi, F.N.; Flora, R. The Impact of Physical Exercise on Brain-Derived Neurotrophic Factor (BDNF) Level in Elderly Population. Open Access Maced J. Med. Sci. 2019, 7, 1618–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippi, G.; Mattiuzzi, C.; Sanchis-Gomar, F. Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. J. Sport Health Sci. 2020, 9, 74–81. [Google Scholar] [CrossRef]
- Nilsson, J.; Ekblom, O.; Ekblom, M.; Lebedev, A.; Tarassova, O.; Moberg, M.; Lovden, M. Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults. Sci. Rep. 2020, 10, 4395. [Google Scholar] [CrossRef] [PubMed]
- Fanara, S.; Aprile, M.; Iacono, S.; Schirò, G.; Bianchi, A.; Brighina, F.; Dominguez, L.J.; Ragonese, P.; Salemi, G. The Role of Nutritional Lifestyle and Physical Activity in Multiple Sclerosis Pathogenesis and Management: A Narrative Review. Nutrients 2021, 13, 3774. [Google Scholar] [CrossRef]
- Proia, P.; Di Liegro, C.M.; Schiera, G.; Fricano, A.; Di Liegro, I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int. J. Mol. Sci. 2016, 17, 1450. [Google Scholar] [CrossRef] [Green Version]
- Morland, C.; Andersson, K.A.; Haugen, O.P.; Hadzic, A.; Kleppa, L.; Gille, A.; Rinholm, J.E.; Palibrk, V.; Diget, E.H.; Kennedy, L.H.; et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat. Commun. 2017, 8, 15557. [Google Scholar] [CrossRef]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts: How valid are they? Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.R.; Systrom, D.M.; Rose, N.R. Fatigue, Sleep, and Autoimmune and Related Disorders. Front. Immunol. 2019, 10, 1827. [Google Scholar] [CrossRef] [Green Version]
- Brück, W.; Stadelmann, C. Inflammation and degeneration in multiple sclerosis. Neurol. Sci. 2003, 24 (Suppl. 5), S265–S267. [Google Scholar] [CrossRef]
- Contrò, V.S.G.; Macchiarella, A.; Sacco, A.; Lombardo, G.; Proia, P. Multiple sclerosis: Physical activity and well being. Trends Sport Sci. 2017, 24, 6. [Google Scholar]
- Mokhtarzade, M.; Motl, R.; Negaresh, R.; Zimmer, P.; Khodadoost, M.; Baker, J.S.; Patel, D.; Majdinasab, N.; Ranjbar, R. Exercise-induced changes in neurotrophic factors and markers of blood-brain barrier permeability are moderated by weight status in multiple sclerosis. Neuropeptides 2018, 70, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proia, P.; Amato, A.; Contro, V.; Monaco, A.L.; Brusa, J.; Brighina, F.; Messina, G. Relevance of lactate level detection in migrane and fibromyalgia. Eur. J. Transl. Myol. 2019, 29, 8202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef]
- Rigby, S.A.; Domenech, C.; Thornton, E.W.; Tedman, S.; Young, C.A. Development and validation of a self-efficacy measure for people with multiple sclerosis: The Multiple Sclerosis Self-efficacy Scale. Mult. Scler. 2003, 9, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Pakenham, K.I.; Stewart, C.A.; Rogers, A. The role of coping in adjustment to multiple sclerosis-related adaptive demands. Psychol. Health Med. 1997, 2, 197–211. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Self-efficacy mechanism in human agency. Am. Psychol. 1982, 37, 122–147. [Google Scholar] [CrossRef]
- Wassem, R. Self-efficacy as a predictor of adjustment to multiple sclerosis. J. Neurosci. Nurs. 1992, 24, 224–229. [Google Scholar] [CrossRef]
- Barnwell, A.M.; Kavanagh, D.J. Prediction of psychological adjustment to multiple sclerosis. Soc. Sci. Med. 1997, 45, 411–418. [Google Scholar] [CrossRef]
- Shnek, Z.M.; Foley, F.W.; Larocca, N.G.; Smith, C.R.; Halper, J. Psychological Predictors of Depression in Multiple-Sclerosis. J. Neurol. Rehabil. 1995, 9, 15–23. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Markland, D.; Tobin, V. A modification to the behavioural regulation in exercise questionnaire to include an assessment of amotivation. J. Sport Exerc. Psychol. 2004, 26, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.Y.Y.; Ntoumanis, N.; Thogersen-Ntoumani, C.; Deci, E.L.; Ryan, R.M.; Duda, J.L.; Williams, G.C. Self-Determination Theory Applied to Health Contexts: A Meta-Analysis. Perspect. Psychol. Sci. 2012, 7, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellness; Guilford Publications: New York, NY, USA, 2017; pp. 1–756. [Google Scholar] [CrossRef]
- Sebire, S.J.; Standage, M.; Vansteenkiste, M. Examining Intrinsic Versus Extrinsic Exercise Goals: Cognitive, Affective, and Behavioral Outcomes. J. Sport Exerc. Psychol. 2009, 31, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsiadlo, D.; Richardson, S. The Timed up and Go—A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Hu, M.T.; Szewczyk-Krolikowski, K.; Tomlinson, P.; Nithi, K.; Rolinski, M.; Murray, C.; Talbot, K.; Ebmeier, K.P.; Mackay, C.E.; Ben-Shlomo, Y. Predictors of cognitive impairment in an early stage Parkinson’s disease cohort. Mov. Disord. 2014, 29, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Han, H.R.; Yi, C.H.; You, S.H.; Cynn, H.S.; Lim, O.B.; Son, J.I. Comparative Effects of 4 Single-Leg Squat Exercises in Subjects With Gluteus Medius Weakness. J. Sport Rehabil. 2018, 27, 513–519. [Google Scholar] [CrossRef]
- Karatrantou, K. Dynamic Handgrip Strength Endurance: A Reliable Measurement in Older Women. J. Geriatr. Phys. Ther. 2019, 42, E51–E56. [Google Scholar] [CrossRef]
- Wilson, P.M.; Rodgers, W.M.; Loitz, C.C.; Scime, G. “It’s Who I Am...Really!” The Importance of Integrated Regulation in Exercise Contexts. J. Appl. Biobehav. Res. 2006, 11, 79–104. [Google Scholar] [CrossRef]
- Tseng, B.Y.; Gajewski, B.J.; Kluding, P.M. Reliability, responsiveness, and validity of the visual analog fatigue scale to measure exertion fatigue in people with chronic stroke: A preliminary study. Stroke Res. Treat. 2010, 2010, 412964. [Google Scholar] [CrossRef] [Green Version]
- Garner, D.M.; Garfinkel, P.E. The Eating Attitudes Test: An index of the symptoms of anorexia nervosa. Psychol. Med. 1979, 9, 273–279. [Google Scholar] [CrossRef]
- Garner, D.M.; Olmsted, M.P.; Bohr, Y.; Garfinkel, P.E. The eating attitudes test: Psychometric features and clinical correlates. Psychol. Med. 1982, 12, 871–878. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Baecher-Allan, C.; Kaskow, B.J.; Weiner, H.L. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018, 97, 742–768. [Google Scholar] [CrossRef] [Green Version]
- Mayrhofer, F.; Dariychuk, Z.; Zhen, A.; Daugherty, D.J.; Bannerman, P.; Hanson, A.M.; Pleasure, D.; Soulika, A.; Deng, W.; Chechneva, O.V. Reduction in CD11c(+) microglia correlates with clinical progression in chronic experimental autoimmune demyelination. Neurobiol. Dis. 2021, 161, 105556. [Google Scholar] [CrossRef] [PubMed]
- Di Liegro, C.M.; Schiera, G.; Proia, P.; Di Liegro, I. Physical Activity and Brain Health. Genes 2019, 10, 720. [Google Scholar] [CrossRef] [Green Version]
- Farì, G.; Lunetti, P.; Pignatelli, G.; Raele, M.V.; Cera, A.; Mintrone, G.; Ranieri, M.; Megna, M.; Capobianco, L. The Effect of Physical Exercise on Cognitive Impairment in Neurodegenerative Disease: From Pathophysiology to Clinical and Rehabilitative Aspects. Int. J. Mol. Sci. 2021, 22, 11632. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, E.; Roeben, B.; Granert, O.; Hanert, A.; Liepelt-Scarfone, I.; Leks, E.; Otterbein, S.; Saraykin, P.; Busch, J.H.; Synofzik, M.; et al. Effects of exergaming on hippocampal volume and brain-derived neurotrophic factor levels in Parkinson's disease. Eur. J. Neurol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, J.; Liu, X.D.; Luo, M.Y.; Xu, N.J. Roles of physical exercise in neurodegeneration: Reversal of epigenetic clock. Transl. Neurodegener. 2021, 10, 30. [Google Scholar] [CrossRef]
- Mahler, A.; Balogh, A.; Csizmadia, I.; Klug, L.; Kleinewietfeld, M.; Steiniger, J.; Susnjar, U.; Muller, D.N.; Boschmann, M.; Paul, F. Metabolic, Mental and Immunological Effects of Normoxic and Hypoxic Training in Multiple Sclerosis Patients: A Pilot Study. Front. Immunol. 2018, 9, 2819. [Google Scholar] [CrossRef]
- Mulero, P.; Almansa, R.; Neri, M.J.; Bermejo-Martin, J.F.; Archanco, M.; Arenillas, J.F.; Téllez, N. Improvement of fatigue in multiple sclerosis by physical exercise is associated to modulation of systemic interferon response. J. Neuroimmunol. 2015, 280, 8–11. [Google Scholar] [CrossRef]
- Sasi, M.; Vignoli, B.; Canossa, M.; Blum, R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch 2017, 469, 593–610. [Google Scholar] [CrossRef] [Green Version]
- Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol. Neurobiol. 2018, 38, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Boghozian, R.; McKenzie, B.A.; Saito, L.B.; Mehta, N.; Branton, W.G.; Lu, J.; Baker, G.B.; Noorbakhsh, F.; Power, C. Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Glia 2017, 65, 1590–1606. [Google Scholar] [CrossRef]
- Yilmaz, C.; Karali, K.; Fodelianaki, G.; Gravanis, A.; Chavakis, T.; Charalampopoulos, I.; Alexaki, V.I. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol. 2019, 55, 100788. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G. The adipose tissue metabolism: Role of testosterone and dehydroepiandrosterone. Int. J. Obes. 2000, 24, S59–S63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalakis, K.; Goulis, D.G.; Vazaiou, A.; Mintziori, G.; Polymeris, A.; Abrahamian-Michalakis, A. Obesity in the ageing man. Metabolism 2013, 62, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
First Training Sessions | Second Training Sessions | |
---|---|---|
Repetition Time (Minutes) | 1.30′ | 1.30′ |
1-RM % | 50% | 50% |
Set | 2 | 2 |
Rest (Minutes) | 2–3 | 2–3 |
Exercises |
|
|
T0 | T1 | p-Value | |
---|---|---|---|
Anthropometric measurements | |||
Weight (Kg) | 72.31 ± 17.3 | 72.18 ± 17.1 | 0.79 |
Fat mass (%) | 29.31 ± 12,3 | 21.33 ± 10.5 | 0.05 |
Lean mass (%) | 70.69 ± 12.3 | 78.68 ± 10.5 | 0.05 |
Heart rate (bpm) | 79.38 ± 7.07 | 79 ± 5 | 0.92 |
BMI (Kg/cm2) | 25.44 ± 5.4 | 25.39 ± 5.4 | 0.79 |
Body water (L) | 36.38 ± 7.4 | 40.9 ± 6.10 | 0.03 * |
Metabolic rate (Cal) | 1578.63 ± 210.6 | 1705.25 ± 184 | 0.03 * |
Physical performance parameters | |||
Timed up and go (s) | 9.08 ± 1.6 | 10.97 ± 2.4 | 0.09 |
Eye–hand reaction (s) | 0.50 ± 0.1 | 0.49 ± 0.1 | 0.89 |
Flamingo test (touches) | 5.75 ± 8.3 | 2.13 ± 4.2 | 0.13 |
Wall squat R (s) | 18.47 ± 11.7 | 35.39 ± 22.8 | 0.05 |
Wall squat L (s) | 13.58 ± 8.5 | 40.86 ± 26.53 | 0.02 * |
Handgrip R (kg) | 29.9 ± 16.5 | 26.24 ± 10.5 | 0.89 |
Handgrip L (kg) | 26.6 ± 9.1 | 26.19 ± 8.94 | 0.37 |
VAFS | 77.3 ± 13.2 | 58.6 ± 17.3 | 0.00 * |
Basal lactate level (mmol/uL) | 2.29 ± 0.4 | 1.30 ± 0.5 | 0.01 * |
Time A | Time B | Mean Difference (Time A-B) | SE | Sig. a | 95% CI for Difference a | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
BDNF | ||||||
T0 | T1 | −260.200 * | 64.289 | 0.015 * | −461.268 | −59.132 |
T2 | −170.912 | 126.036 | 0.652 | −565.098 | 223.273 | |
T1 | T2 | 89.288 | 123.545 | 1000 | −297.105 | 475.680 |
DHEAS | ||||||
T0 | T1 | −2.632 | 0.847 | 0.051 | −5.280 | 0.015 |
T2 | 3.064 * | 0.799 | 0.019 * | 0.566 | 5.562 | |
T1 | T2 | 5.696 * | 0.843 | 0.001 * | 3.060 | 8.332 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, A.; Ragonese, P.; Ingoglia, S.; Schiera, G.; Schirò, G.; Di Liegro, C.M.; Salemi, G.; Di Liegro, I.; Proia, P. Lactate Threshold Training Program on Patients with Multiple Sclerosis: A Multidisciplinary Approach. Nutrients 2021, 13, 4284. https://doi.org/10.3390/nu13124284
Amato A, Ragonese P, Ingoglia S, Schiera G, Schirò G, Di Liegro CM, Salemi G, Di Liegro I, Proia P. Lactate Threshold Training Program on Patients with Multiple Sclerosis: A Multidisciplinary Approach. Nutrients. 2021; 13(12):4284. https://doi.org/10.3390/nu13124284
Chicago/Turabian StyleAmato, Alessandra, Paolo Ragonese, Sonia Ingoglia, Gabriella Schiera, Giuseppe Schirò, Carlo Maria Di Liegro, Giuseppe Salemi, Italia Di Liegro, and Patrizia Proia. 2021. "Lactate Threshold Training Program on Patients with Multiple Sclerosis: A Multidisciplinary Approach" Nutrients 13, no. 12: 4284. https://doi.org/10.3390/nu13124284
APA StyleAmato, A., Ragonese, P., Ingoglia, S., Schiera, G., Schirò, G., Di Liegro, C. M., Salemi, G., Di Liegro, I., & Proia, P. (2021). Lactate Threshold Training Program on Patients with Multiple Sclerosis: A Multidisciplinary Approach. Nutrients, 13(12), 4284. https://doi.org/10.3390/nu13124284