Nutritional and Non-Nutritional Predictors of Low Spot Urinary Creatinine Concentration in Patients with Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Methods
- Weight loss [%] = 100 × (preHF BMI-index BMI)/preHF BMI;
- Catabolic component = 100 × (minHF BMI–preHF BMI)/preHF BMI, (negative value or zero if minHF BMI = preHF BMI);
- Anabolic component = 100 × (index BMI–minHF BMI)/minHF BMI, (positive value or zero if index BMI = minHF BMI); and
- Catabolic/anabolic balance = Catabolic component − anabolic component.
- Controlling Nutritional Status (CONUT). The categories of normal nutrition and different levels of under-nutrition were calculated using serum albumin, cholesterol, and number of lymphocytes [19]. For the purpose of our study, we combined different stages of under-nutrition into one category.
- Prognostic Nutritional Index (PNI) [20] was calculated taking advantage of the formula: 10 × serum albumin (g/dL) + 0.005 × lymphocyte count (mm3). A score > 38 was considered normal, while patients with scores < 35 were categorized as under-nutrition.
- Geriatric Nutritional Risk Index (GRNI) was calculated based on the formula: 1.489 × serum albumin (g/L) + 41.7 × (body weight in kilograms/ideal body weight) [21]. The ideal body weight was calculated using the formula: 22 × square of height in meters [22]. A score > 98 was considered normal; scores below 98 were considered as the under-nutrition.
- Sarcopenia index defined as 10 × (creatinine [mg/dL]/cystatin C mg/dL) [23].
- GLIM (Global Leadership Initiative on Malnutrition) criteria for recognition of undernutrition use a combination of etiologic criteria, in our case it was HF, with at least one of three of the phenotypic criteria: weight loss exceeding 10%, BMI < 20 kg/m2 before the onset of etiologic factor in patients younger than 70 years or <22 kg/m2 in older people, and muscle mass loss assessed with validated technology and defined cut-offs. For our current study, we used the height-indexed appendicular skeletal muscle mass (ASMI) detected by DEXA scanning and applied the cut-offs recommended in the revision of the consensus of the European Working Group on Sarcopenia in Older People [24]. The cut-offs of ASMI were <7.0 kg/m2 in men and <5.5 kg/m2 in women.
2.3. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lippi, G.; Sanchis-Gomar, F. Global epidemiology and future trends of heart failure. AME Med. J. 2020, 5, 15. [Google Scholar] [CrossRef]
- Taylor, C.J.; Ordóñez-Mena, J.M.; Roalfe, A.K.; Lay-Flurrie, S.; Jones, N.; Marshall, T.; Hobbs, F.D.R. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000–2017: Population based cohort study. BMJ 2019, 364, l223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, N.; Roalfe, A.K.; Adoki, I.; Hobbs, F.R.; Taylor, C.J. Survival of patients with chronic heart failure in the community: A systematic review and meta-analysis. Eur. J. Heart Fail. 2019, 21, 1306–1325. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, M.; Dawson, D.; Falcao-Pires, I.; Giacca, M.; Hamdani, N.; Heymans, S.; Hooghiemstra, A.; Leeuwis, A.; Hermkens, D.; Tocchetti, C.G.; et al. Reciprocal organ interactions during heart failure-a position paper from the ESC working group on myocardial function. Cardiovasc. Res. 2021, 117, 2416–2433. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.E.; Berezin, A.A.; Lichtenauer, M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. Dis. Markers 2021, 2021, 6644631. [Google Scholar] [CrossRef]
- Greenhaff, P.L. The creatine-phosphocreatine system: There’s more than one song in its repertoire. J. Physiol. 2001, 537, 657. [Google Scholar] [CrossRef]
- Stam, S.P.; Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; de Meijer, V.E.; van Beek, A.P.; Gansevoort, R.T.; Bakker, S.J. Muscle mass determined from urinary creatinine excretion rate, and muscle performance in renal transplant recipients. J. Cachex-Sarcopenia Muscle 2019, 10, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Hessels, L.; Koopmans, N.; Neto, A.W.G.; Volbeda, M.; Koeze, J.; Lansink-Hartgring, A.O.; Bakker, S.J.; Straaten, H.M.O.-V.; Nijsten, M.W. Urinary creatinine excretion is related to short-term and long-term mortality in critically ill patients. Intensiv. Care Med. 2018, 44, 1699–1708. [Google Scholar] [CrossRef] [Green Version]
- Oterdoom, L.H.; Gansevoort, R.T.; Schouten, J.P.; de Jong, P.E.; Gans, R.O.; Bakker, S.J. Urinary creatinine excretion, an indirect measure of muscle mass, is an independent predictor of cardiovascular disease and mortality in the general population. Atherosclerosis 2009, 207, 534–540. [Google Scholar] [CrossRef]
- Ix, J.H.; de Boer, I.H.; Wassel, C.L.; Criqui, M.H.; Shlipak, M.G.; Whooley, M.A. Urinary creatinine excretion rate and mortality in persons with coronary artery disease: The Heart and Soul Study. Circulation 2010, 121, 1295–1303. [Google Scholar] [CrossRef] [Green Version]
- Wilson, F.P.; Xie, D.; Anderson, A.H.; Leonard, M.B.; Reese, P.P.; Delafontaine, P.; Horwitz, E.; Kallem, R.; Navaneethan, S.; Ojo, A.; et al. Urinary Creatinine Excretion, Bioelectrical Impedance Analysis, and Clinical Outcomes in Patients with CKD: The CRIC Study. Clin. J. Am. Soc. Nephrol. 2014, 9, 2095–2103. [Google Scholar] [CrossRef] [Green Version]
- Sinkeler, S.J.; Kwakernaak, A.J.; Bakker, S.J.; Shahinfar, S.; Esmatjes, E.; De Zeeuw, D.; Navis, G.; Heerspink, H.J.L. Creatinine Excretion Rate and Mortality in Type 2 Diabetes and Nephropathy. Diabetes Care 2013, 36, 1489–1494. [Google Scholar] [CrossRef] [Green Version]
- ter Maaten, J.M.; Damman, K.; Hillege, H.L.; Bakker, S.J.; Anker, S.D.; Navis, G.; Voors, A.A. Creatinine excretion rate, a marker of muscle mass, is related to clinical outcome in patients with chronic systolic heart failure. Clin. Res. Cardiol. 2014, 103, 976–983. [Google Scholar] [CrossRef]
- ter Maaten, J.M.; Maggioni, A.P.; Latini, R.; Masson, S.; Tognoni, G.; Tavazzi, L.; Signorini, S.; Voors, A.A.; Damman, K. Clinical and prognostic value of spot urinary creatinine in chronic heart failure—An analysis from GISSI-HF. Am. Heart J. 2017, 188, 189–195. [Google Scholar] [CrossRef]
- Pandhi, P.; Streng, K.W.; Anker, S.D.; Cleland, J.G.; Damman, K.; Dickstein, K.; Pellicori, P.; Lang, C.C.; Ng, L.; Samani, N.J.; et al. The value of spot urinary creatinine as a marker of muscle wasting in patients with new-onset or worsening heart failure. J. Cachex-Sarcopenia Muscle 2021, 12, 555–567. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Arteaga, C.; McManus, C.; Smith, J.; Moffitt, S. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. Am. J. Clin. Nutr. 1983, 37, 478–494. [Google Scholar] [CrossRef]
- Maleta, K. Undernutrition. Malawi Med. J. 2006, 18, 189–205. [Google Scholar]
- Rozentryt, P.; Niedziela, J.T.; Hudzik, B.; Lekston, A.; Doehner, W.; Jankowska, E.A.; Nowak, J.; Von Haehling, S.; Partyka, R.; Rywik, T.; et al. Higher serum phosphorus is associated with catabolic/anabolic imbalance in heart failure. J. Cachex-Sarcopenia Muscle 2015, 6, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Ignacio de Ulibarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cereda, E.; Pedrolli, C. The Geriatric Nutritional Risk Index. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Barreto, E.F.; Kanderi, T.; DiCecco, S.R.; Lopez-Ruiz, A.; Poyant, J.O.; Mara, K.C.; Heimgartner, J.; Gajic, O.; Rule, A.D.; Nystrom, E.M.; et al. Sarcopenia Index Is a Simple Objective Screening Tool for Malnutrition in the Critically Ill. J. Parenter. Enter. Nutr. 2019, 43, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [Green Version]
- von Haehling, S.; Ebner, N.; Dos Santos, M.R.; Springer, J.; Anker, S.D. Muscle wasting and cachexia in heart failure: Mechanisms and therapies. Nat. Rev. Cardiol. 2017, 14, 323–341. [Google Scholar] [CrossRef]
- Lena, A.; Anker, M.S.; Springer, J. Muscle Wasting and Sarcopenia in Heart Failure—The Current State of Science. Int. J. Mol. Sci. 2020, 21, 6549. [Google Scholar] [CrossRef]
- Hweidi, I.M.; Al-Omari, A.K.; Rababa, M.J.; Al-Obeisat, S.M.; Hayajneh, A.A. Cardiac cachexia among patients with chronic heart failure: A systematic review. Nurs. Forum 2021, 56, 916–924. [Google Scholar] [CrossRef]
- Beltrami, M.; Fumagalli, C.; Milli, M. Frailty, sarcopenia and cachexia in heart failure patients: Different clinical entities of the same painting. World J. Cardiol. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Fernandez-Pombo, A.; Rodríguez-Carnero, G.; Castro, A.I.; Cantón-Blanco, A.; Seoane, L.M.; Casanueva, F.F.; Crujeiras, A.B.; Martínez-Olmos, M.A. Relevance of nutritional assessment and treatment to counteract cardiac cachexia and sarcopenia in chronic heart failure. Clin. Nutr. 2021, 40, 5141–5155. [Google Scholar] [CrossRef]
- Prado, C.M.; Anker, S.D.; Coats, A.J.; Laviano, A.; von Haehling, S. Nutrition in the spotlight in cachexia, sarcopenia and muscle: Avoiding the wildfire. J. Cachex-Sarcopenia Muscle 2021, 12, 3–8. [Google Scholar] [CrossRef]
- Khan, M.S.; Khan, F.; Fonarow, G.C.; Sreenivasan, J.; Greene, S.J.; Khan, S.U.; Usman, M.S.; Vaduganathan, M.; Fudim, M.; Anker, S.D.; et al. Dietary interventions and nutritional supplements for heart failure: A systematic appraisal and evidence map. Eur. J. Heart Fail. 2021, 23, 1468–1476. [Google Scholar] [CrossRef]
- Voors, A.A.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; van der Harst, P.; Hillege, H.L.; Lang, C.C.; ter Maaten, J.M.; Ng, L.; et al. A systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure: Rationale, design, and baseline characteristics of BIOSTAT-CHF. Eur. J. Heart Fail. 2016, 18, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.P.; Metra, M.; Mordi, I.; Gregson, J.; Ter Maaten, J.M.; Tromp, J.; Anker, S.D.; Dickstein, K.; Hillege, H.L.; Ng, L.; et al. Heart failure in the outpatient versus inpatient setting: Findings from the BIOSTAT-CHF study. Eur. J. Heart Fail. 2018, 21, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef]
- Tetsuka, S.; Morita, M.; Ikeguchi, K.; Nakano, I. Creatinine/cystatin C ratio as a surrogate marker of residual muscle mass in amyotrophic lateral sclerosis. Neurol. Clin. Neurosci. 2013, 1, 32–37. [Google Scholar] [CrossRef]
- Kashani, K.B.; Frazee, E.N.; Kukrálová, L.; Sarvottam, K.; Herasevich, V.; Young, P.M.; Kashyap, R.; Lieske, J.C. Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Crit. Care Med. 2017, 45, e23–e29. [Google Scholar] [CrossRef]
- Barreto, E.F.; Poyant, J.O.; Coville, H.H.; Dierkhising, R.A.; Kennedy, C.C.; Gajic, O.; Nystrom, E.M.; Takahashi, N.; Moynagh, M.R.; Kashani, K.B. Validation of the sarcopenia index to assess muscle mass in the critically ill: A novel application of kidney function markers. Clin. Nutr. 2019, 38, 1362–1367. [Google Scholar] [CrossRef]
- Tan, L.; Li, R.; Hu, X.; Zhu, Y.; Bao, T.; Zuo, Y.; Yang, M. Serum creatinine/cystatin C ratio as a case-finding tool for low handgrip strength in Chinese middle-aged and older adults. Sci. Rep. 2020, 10, 14028. [Google Scholar] [CrossRef]
- Kusunoki, H.; Tsuji, S.; Wada, Y.; Fukai, M.; Nagai, K.; Itoh, M.; Sano, K.; Tamaki, K.; Ohta, Y.; Amano, M. Relationship between sarcopenia and the serum creatinine/cystatin C ratio in Japanese rural community-dwelling older adults. JCSM Clin. Rep. 2018, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tabara, Y.; Kohara, K.; Okada, Y.; Ohyagi, Y.; Igase, M. Creatinine-to-cystatin C ratio as a marker of skeletal muscle mass in older adults: J-SHIPP study. Clin. Nutr. 2020, 39, 1857–1862. [Google Scholar] [CrossRef]
- Sun-Wook, K.; Hee-Won, J.; Cheol-Ho, K.; Kwang-Il, K.; Ho Jun, C.; Hajeong, L. A New Equation to Estimate Muscle Mass from Creatinin and Cystatin C. PLoS ONE 2016, 11, e0148495. [Google Scholar]
- Osaka, T.; Hamaguchi, M.; Hashimoto, Y.; Ushigome, E.; Tanaka, M.; Yamazaki, M.; Fukui, M. Decreased the creatinine to cystatin C ratio is a surrogate marker of sarcopenia in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 139, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Singh, S.; Upadhyay, A.D.; Dwivedi, S.N.; Das, C.J.; Mohta, S.; Chatterjee, P.; Dey, A.B.; Chakrawarty, A. Serum creatinine and cystatin C-based index can be a screening biomarker for sarcopenia in older population. Eur. Geriatr. Med. 2019, 10, 625–630. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Jiang, J.; Xie, L.; Zhang, L.; Yang, M. A sarcopenia index based on serum creatinine and cystatin C cannot accurately detect either low muscle mass or sarcopenia in urban community-dwelling older people. Sci. Rep. 2018, 8, 11534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Feature | Means ± Standard Deviation/Medians with 25 and 75 Percentiles or per Cent Where Appropriate |
---|---|
Baseline Demographics and Functional Tests | |
Age (years) | 52 ± 11 |
Males (%) | 86 |
HF aetiology–ICM (%) | 57 |
NYHA class | 2.7 ± 0.7 |
NYHA class I/II/III/IV (%) | 5/35/51/9 |
Duration of HF (months) | 35.1; (13 ÷ 71) |
Systolic BP (mmHg) | 108 ± 16 |
Heart rate (beats per minute) | 82 ± 15 |
MVO2 (mL/kg min) | 15.0; (12.3 ÷ 18.4) |
LVEF (%) | 24 ± 7 |
Anthropometrics and body composition | |
PreHF BMI (kg/m2) | 28.3 ± 4.7 |
% preHF BMI < 20 kg/m2 if <70 years or <22 kg/m2 if ≥70 years (%) | 2.1 |
IndexBMI (kg/m2) | 26.2 ± 4.5 |
Weight loss from preHF BMI till index BMI (%) | 7.9; (1.1 ÷ 14.3) |
% with weight loss > 10% | 37.1 |
Catabolic component of weight trajectory (%) | −11.5; (−18.3 ÷ −5.3) |
Anabolic component of weight trajectory (%) | 3.6; (0.0 ÷ 9.3) |
Catabolic/anabolic balance (%) | −16.3; (−24.1 ÷ −10.0) |
Fat mass (kg/m2) | 7.2; (5.6 ÷ 9.0) |
Fat mass (%) | 27.5 ± 7.8 |
Fat-free mass (kg/m2) | 17.7; (16.0 ÷ 19.4) |
ASMI (kg/m2) | 7.4 ± 1.2 |
ASMI < 7 kg/m2 if male or <5.5 kg/m2 if female (%) | 33.7 |
Nutritional indices | |
CONUT score | 1.6 ± 1.4 |
CONUT under-nutrition present/absent (%) | 49/51 |
PNI score | 50.5 ± 5.4 |
PNI under-nutrition present/absent (%) | 15/85 |
GNRI score | 111.5 ± 10.7 |
GNRI under-nutrition present/absent (%) | 10/90 |
Creatinine/cystatin C ratio (number) | 10.37; (8.84 ÷ 12.30) |
GLIM under-nutrition present/absent | 34/66 |
Laboratory tests | |
Hemoglobin (mmol/L) | 8.7 ± 1.1 |
NTproBNP (pg/mL) | 1474; (679 ÷ 3283) |
Creatinine (µmol/L) | 86; (73 ÷ 107) |
eGFRMDRD (mL/min × 1.73 m2) | 85.8; (66.2 ÷ 104.1) |
Sodium (mmol/L) | 136; (134 ÷ 138) |
hCRP (mg/dL) | 2.8; (1.2 ÷ 6.7) |
Spot urinary creatinine (g/L) | 1.04; (0.55 ÷ 1.59) |
Comorbidities | |
Hypertension (%) | 54.5 |
Diabetes mellitus type 2 (%) | 29.4 |
Hypercholesterolemia (%) | 60.5 |
Hypertriglicerydemia (%) | 42.6 |
History of smoking (%) | 73.6 |
Therapy | |
ACEI/ARB (% treated) | 93.9 |
ACEI/ARB (% of recommended dose) | 50; (25 ÷ 100) |
BB (% treated) | 97.5 |
BB (% target of recommended dose) | 50; (33 ÷ 67) |
MRA (% treated) | 95 |
MRA (% of recommended dose) | 50; (50 ÷ 50) |
Loop diuretics (% treated) | 90.6 |
Loop diuretics (mg of furosemide eq.) | 80; (40 ÷ 120) |
Mortality at 1 year (%) | 11.1 |
Feature | Means ± Standard Deviation/Medians with 25 and 75 Percentiles or per Cent Where Appropriate | ||
---|---|---|---|
Groups of SUCR Defined Based on ROC Analysis | |||
SUCR < 0.628 g/L (1 Year Mortality) | |||
<0.628 g/L N = 211 | ≥0.628 g/L N = 510 | p-Value | |
Baseline Demographics and Functional Tests | |||
Age (years) | 51.4 ± 11.8 | 52.6 ± 10.0 | 0.16 |
Males (%) | 82 | 87 | 0.08 |
HF aetiology–ICM (%) | 57 | 57 | 0.96 |
NYHA class | 2.7 ± 0.8 | 2.6 ± 0.7 | 0.15 |
NYHA class I/II/III/IV (%) | 7/27/55/12 | 4/38/58/8 | 0.007 |
Duration of HF (months) | 27; (11 ÷ 62) | 38; (14 ÷ 73) | 0.48 |
Systolic BP (mmHg) | 105 ± 16 | 109 ± 16 | 0.02 |
Heart rate (beat per minute) | 82 ± 14 | 82 ± 15 | 0.8 |
MVO2 (mL/kg min) | 15.3; (12.6 ÷ 19.2) | 14.9; (12.2 ÷ 18.0) | 0.11 |
LVEF (%) | 25 ± 8 | 24 ± 7 | 0.39 |
Anthropometrics and body composition | |||
PreHF BMI (kg/m2) | 28.4 ± 4.9 | 28.3 ± 4.7 | 0.91 |
% preHF BMI < 20 kg/m2 if <70 years or <22 kg/m2 if ≥70 years (%) | 3 | 2 | 0.13 |
IndexBMI (kg/m2) | 25.5 ± 4.2 | 26.5 ± 4.5 | 0.01 |
Weight loss from preHF BMI till index BMI (%) | 10.0; (4.1 ÷ 16.1) | 6.6; (0.0 ÷ 13.2) | <0.001 |
% with weight loss > 10% | 50 | 37 | 0.002 |
Catabolic component of weight trajectory (%) | −14.1; (−19.4 ÷ −8.8) | −10.4; (−17.6 ÷ −4.8) | <0.001 |
Anabolic component of weight trajectory (%) | 3.2; (0.0 ÷ 8.9) | 3.8; (0.0 ÷ 9.4) | 0.32 |
Catabolic/anabolic balance (%) | −17.9; (−26.4 ÷ −11.9) | −15.0; (−23.1 ÷ −9.2) | 0.06 |
Fat mass (kg/m2) | 7.1; (5.1 ÷ 8.7) | 7.3; (5.8 ÷ 9.1) | 0.078 |
Fat mass (%) | 27.0 ± 8.1 | 27.7 ± 7.7 | 0.27 |
Fat-free mass (kg/m2) | 17.4 ± 2.5 | 17.8 ± 2.7 | 0.06 |
ASMI (kg/m2) | 7.3 ± 1.2 | 7.5 ± 1.2 | 0.04 |
ASMI < 7 kg/m2 if male or <5.5 kg/m2 if female (%) | 38 | 32 | 0.09 |
Nutritional indices | |||
CONUT score | 1.67 ± 1.4 | 1.65 ± 1.4 | 0.84 |
CONUT under-nutrition present/absent (%) | 51 | 49 | 0.68 |
PNI score | 50.8 ± 5.7 | 50.4 ± 5.3 | 0.28 |
PNI under-nutrition present/absent (%) | 14 | 15 | 0.66 |
GNRI score | 111.1 ± 10.4 | 111.7 ± 10.8 | 0.44 |
GNRI under-nutrition present/absent (%) | 9 | 10 | 0.54 |
Creatinine/cystatin C ratio (number) | 9.59; (8.15 ÷ 11.48) | 10.69; (9.13 ÷ 12.59) | <0.001 |
GLIM under-nutrition present/absent | 39 | 32 | 0.05 |
Laboratory tests | Means ± standard deviation/medians with 25 and 75 percentiles or per cent where appropriate | ||
Hemoglobin (mmol/L) | 8.7 ± 1.1 | 8.7 ± 1.0 | 0.58 |
NTproBNP (pg/mL) | 1662; (925 ÷ 3846) | 1363; (620 ÷ 2981) | 0.04 |
Creatinine (µmol/L) | 1.0; (0.8 ÷ 1.3) | 0.97; (0.8 ÷ 1.2) | 0.11 |
eGFRMDRD (mL/min × 1.73 m2) | 83; (62 ÷ 106) | 86; (68 ÷ 103) | 0.86 |
Sodium (mmol/L) | 136; (134 ÷ 138) | 136; (134 ÷ 138) | 0.02 |
hCRP (mg/dL) | 2.8; (1.3 ÷ 6.5) | 2.7; (1.2 ÷ 6.8) | 0.52 |
Comorbidities | |||
Hypertension (%) | 58 | 53 | 0.25 |
Diabetes mellitus type 2 (%) | 30 | 29 | 0.86 |
Hypercholesterolemia (%) | 62 | 60 | 0.57 |
Hypertriglicerydemia (%) | 44 | 42 | 0.72 |
History of smoking (%) | 73 | 74 | 0.65 |
Therapy | |||
ACEI/ARB (% treated) | 92 | 95 | 0.29 |
ACEI/ARB (% of recommended dose) | 50 (20 ÷ 100) | 50 (25 ÷ 100) | 0.81 |
BB (% treated) | 98 | 97 | 0.51 |
BB (% target of recommended dose) | 50 (33 ÷ 66) | 50 (33 ÷ 66) | 0.45 |
MRA (% treated) | 94 | 95 | 0.36 |
MRA (% of recommended dose) | 50 (50 ÷ 100) | 50 (50 ÷ 50) | 0.13 |
Loop diuretics (% treated) | 91 | 90 | 0.59 |
Loop diuretics (mg of furosemide eq.) | 80 (40 ÷ 120) | 80 (40 ÷120) | 0.11 |
Mortality at 1 year (%) | 15 | 10 | 0.06 |
Feature | All N = 721 | ||
---|---|---|---|
Groups of SUCR Defined Based on ROC Analysis | |||
SUCR < 0.628 g/L (1 Year Mortality Group) | |||
Univariate | Multivariable | ||
Model 1 | Model 2 | ||
Odds Ratio ± 95% Confidence Interval, p-Value | |||
Male versus female | 1.54; (1.06–2.33), p = 0.02 | ||
NYHA class (per 1 class increase) | 1.46; (1.20–1.77), p = 0.0001 | ||
Systolic BP (per 5 mmHg increase) | 0.94; (0.89–0.98), p = 0.008 | ||
Index BMI (per 1 kg/m2 increase) | 1.06; (1.3–1.1), p = 0.0006 | ||
Weight loss from preHF BMI until index BMI (per 5% increase) | 1.13; (1.06–1.20), p = 0.0002 | ||
Catabolic component of weight trajectory (per 5% increase) | 1.19; (1.10–1.29), p < 0.0001 | 1.43; (1.04–1.97), p = 0.03 | |
Catabolic/anabolic balance (per 5% more anabolic) | 0.89; (0.83–0.95), p = 0.0003 | ||
Fat mass (per 1 kg/m2 increase) | 1.06; (0.99–1.12); p = 0.068 | ||
Fat-free mass (per 1 kg/m2 increase) | 0.94; (0.89–1.00), p = 0.057 | ||
GNRI score (per 5 points increase) | 0.95; (0.88–1.01), p = 0.120 | 0.83; (0.72–0.97), p = 0.01 | 0.83; (0.72–0.77), p = 0.02 |
Creatinine/cystatin ratio (per 1 decrease) | 1.16; (1.09–1.23), p < 0.0001 | 1.19; (1.10–1.29), p < 0.0001 | 1.18; (1.09–1.28), p < 0.0001 |
GLIM under-nutrition present versus absent | 1.41; (1.03–1.93), p = 0.030 | ||
NTproBNP (per 1000 pg/mL increase) | 1.07; (1.02–1.13), p = 0.060 | ||
Sodium (per 5 mmol/L increase) | 0.69; (0.57–0.83), p < 0.0001 | ||
MRA (% of recommended dose) | 1.03; (1.01–1.05), p = 0.02 | ||
Loop diuretics (mg of furosemide eq.) | 1.11; (1.03–1.19), p = 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowska-Borowska, J.; Kulik, A.; Buczkowska, M.; Ostręga, W.; Stefaniak, A.; Piecuch, M.; Garbicz, J.; Nowak, J.U.; Tajstra, M.; Jankowska, E.A.; et al. Nutritional and Non-Nutritional Predictors of Low Spot Urinary Creatinine Concentration in Patients with Heart Failure. Nutrients 2021, 13, 3994. https://doi.org/10.3390/nu13113994
Malinowska-Borowska J, Kulik A, Buczkowska M, Ostręga W, Stefaniak A, Piecuch M, Garbicz J, Nowak JU, Tajstra M, Jankowska EA, et al. Nutritional and Non-Nutritional Predictors of Low Spot Urinary Creatinine Concentration in Patients with Heart Failure. Nutrients. 2021; 13(11):3994. https://doi.org/10.3390/nu13113994
Chicago/Turabian StyleMalinowska-Borowska, Jolanta, Aleksandra Kulik, Marta Buczkowska, Weronika Ostręga, Apolonia Stefaniak, Małgorzata Piecuch, Jagoda Garbicz, Jolanta Urszula Nowak, Mateusz Tajstra, Ewa Anita Jankowska, and et al. 2021. "Nutritional and Non-Nutritional Predictors of Low Spot Urinary Creatinine Concentration in Patients with Heart Failure" Nutrients 13, no. 11: 3994. https://doi.org/10.3390/nu13113994
APA StyleMalinowska-Borowska, J., Kulik, A., Buczkowska, M., Ostręga, W., Stefaniak, A., Piecuch, M., Garbicz, J., Nowak, J. U., Tajstra, M., Jankowska, E. A., Gąsior, M., & Rozentryt, P. (2021). Nutritional and Non-Nutritional Predictors of Low Spot Urinary Creatinine Concentration in Patients with Heart Failure. Nutrients, 13(11), 3994. https://doi.org/10.3390/nu13113994