Higher Serum Phosphorus Is Not an Independent Risk Factor of Mortality in Heart Failure with Reduced Ejection Fraction
Abstract
:1. Introduction
2. Methods
2.1. Study Group
2.2. Measurements
2.3. Statistics
3. Results
3.1. Clinical and Laboratory Characteristics
3.2. Unadjusted and Adjusted Risk of All-Cause Mortality
4. Discussion
5. Conclusions
6. Strengths and Limitations
6.1. Clinical Perspectives
6.2. Translational Look
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
BMI | body mass index |
CHF | chronic heart failure |
eGFRMDRD | estimated glomerular filtration rate calculated with the use of Modification of Diet in Renal Disease formula |
hsCRP | high-sensitive C-reactive protein |
LVEF | left ventricular ejection fraction |
NT-proBNP | N-terminal Prohormone of Brain Natriuretic Peptide |
NYHA | New York Heart Association |
SICA | Studies on Comorbidities Aggravating Heart Failure |
SP | serum phosphorus |
References
- Bergwitz, C.; Jüppner, H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu. Rev. Med. 2010, 61, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Lederer, E. Regulation of serum phosphate. J. Physiol. 2014, 592 Pt 18, 3985–3995. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, N.; Nogi, M.; Ando, A.; Watanabe, H.; Umekawa, S. Hypophosphatemia-induced Cardiomyopathy. Am. J. Med. Sci. 2016, 352, 317–323. [Google Scholar] [CrossRef]
- Al Harbi, S.A.; Al-Dorzi, H.M.; Al Meshari, A.M.; Tamim, H.; Abdukahil, S.A.I.; Sadat, M.; Arabi, Y. Association between phosphate disturbances and mortality among critically ill patients with sepsis or septic shock. BMC Pharmacol. Toxicol. 2021, 22, 30. [Google Scholar] [CrossRef]
- Goodman, W.G.; Goldin, J.; Kuizon, B.D.; Yoon, C.; Gales, B.; Sider, D.; Wang, Y.; Chung, J.; Emerick, A.; Greaser, L.; et al. Coronary-Artery Calcification in Young Adults with End-Stage Renal Disease Who Are Undergoing Dialysis. N. Engl. J. Med. 2000, 342, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Block, G.A.; Klassen, P.S.; Lazarus, J.M.; Ofsthun, N.; Lowrie, E.G.; Chertow, G.M. Mineral Metabolism, Mortality, and Morbidity in Maintenance Hemodialysis. J. Am. Soc. Nephrol. 2004, 15, 2208–2218. [Google Scholar] [CrossRef] [Green Version]
- Foley, R.N.; Collins, A.J.; Herzog, C.A.; Ishani, A.; Kalra, P.A. Serum Phosphorus Levels Associate with Coronary Atherosclerosis in Young Adults. J. Am. Soc. Nephrol. 2009, 20, 397–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonelli, M.; Sacks, F.; Pfeffer, M.; Gao, Z.; Curhan, G.; Cholesterol, F.T. Recurrent Events Trial Investigators. Relation Between Serum Phosphate Level and Cardiovascular Event Rate in People With Coronary Disease. Circulation 2005, 112, 2627–2633. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, R.; Sullivan, L.M.; Fox, C.S.; Wang, T.J.; D’Agostino, R.B., Sr.; Gaziano, J.M.; Vasan, R.S. Relations of Serum Phosphorus and Calcium Levels to the Incidence of Cardiovascular Disease in the Community. Arch. Intern. Med. 2007, 167, 879–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, W.; Li, J.; Liu, J. Serum phosphorus, cardiovascular and all-cause mortality in the general population: A meta-analysis. Clin. Chim. Acta 2016, 461, 76–82. [Google Scholar] [CrossRef]
- Ponikowski, P.; Anker, S.D.; AlHabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; et al. Heart failure: Preventing disease and death worldwide. ESC Heart Fail. 2014, 1, 4–25. [Google Scholar] [CrossRef]
- Hassanein, M.; Abdelhamid, M.; Ibrahim, B.; Elshazly, A.; Aboleineen, M.W.; Sobhy, H.; Nasr, G.; Elmesseiry, F.; Abdelmoniem, A.; Ashmawy, M.; et al. Clinical characteristics and management of hospitalized and ambulatory patients with heart failure–results from ESC heart failure long-term registry–Egyptian cohort. ESC Heart Fail. 2015, 2, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Cubbon, R.; Thomas, C.; Drozd, M.; Gierula, J.; Jamil, H.; Byrom, R.; Barth, J.; Kearney, M.; Witte, K.A. Calcium, phosphate and calcium phosphate product are markers of outcome in patients with chronic heart failure. J. Nephrol. 2015, 28, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Ess, M.; Heitmair-Wietzorrek, K.; Frick, M.; Umlauf, N.; Ulmer, H.; Poelzl, G. Serum Phosphate and Long-Term Outcome among Patients with Stable Heart Failure. J. Card. Fail. 2013, 19, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Plischke, M.; Neuhold, S.; Adlbrecht, C.; Bielesz, B.; Shayganfar, S.; Bieglmayer, C.; Szekeres, T.; Hörl, W.H.; Strunk, G.; Vavken, P.; et al. Inorganic phosphate and FGF-23 predict outcome in stable systolic heart failure. Eur. J. Clin. Investig. 2012, 42, 649–656. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A.; Fuchs, U.; Kuhn, J.; Dreier, J.; Schulz, U.; Gummert, J.F.; Börgermann, J. Parameters of Mineral Metabolism predict Midterm Clinical Outcome in End-Stage Heart Failure Patients. Scand. Cardiovasc. J. 2011, 45, 342–348. [Google Scholar] [CrossRef]
- Gruson, D.; Lepoutre, T.; Ketelslegers, J.M.; Cumps, J.; Ahn, S.A.; Rousseau, M.F. C-terminal FGF23 is a strong predictor of survival in systolic heart failure. Peptides 2012, 37, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Sze, L.; Schmid, C. Effects of Age, Sex, and Estrogen on Serum Phosphorus: Role for Growth Hormone and Klotho? Am. J. Kidney Dis. 2014, 64, 157–158. [Google Scholar] [CrossRef]
- Charytan, D.M.; Fishbane, S.; Malyszko, J.; McCullough, P.A.; Goldsmith, D. Cardiorenal Syndrome and the Role of the Bone-Mineral Axis and Anemia. Am. J. Kidney Dis. 2015, 66, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillege, H.L.; Girbes, A.R.J.; de Kam, P.J.; Boomsma, F.; de Zeeuw, D.; Charlesworth, A.; Hampton, J.R.; van Veldhuisen, D.J. Renal Function, Neurohormonal Activation, and Survival in Patients With Chronic Heart Failure. Circulation 2000, 102, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morth, J.P.; Pedersen, B.P.; Buch-Pedersen, M.J.; Andersen, J.P.; Vilsen, B.; Palmgren, M.G.; Nissen, P. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat. Rev. Mol. Cell. Biol. 2011, 12, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Floras, J.S. Sympathetic Nervous System Activation in Human Heart Failure: Clinical Implications of an Updated Model. J. Am. Coll. Cardiol. 2009, 54, 375–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozentryt, P.; Niedziela, J.T.; Hudzik, B.; Lekston, A.; Doehner, W.; Jankowska, E.A.; Nowak, J.; von Haehling, S.; Partyka, R.; Rywik, T.; et al. Higher serum phosphorus is associated with catabolic/anabolic imbalance in heart failure. J. Cachexia Sarcopenia Muscle 2015, 6, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.C.; Kittleson, M.M.; Patel, P.C.; Cowger, J.A.; Patel, C.B.; Mountis, M.M.; Johnson, F.L.; Guglin, M.E.; Rame, J.E.; Teuteberg, J.J.; et al. INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) Profiling Identifies Ambulatory Patients at High Risk on Medical Therapy After Hospitalizations for Heart Failure. Circ. Heart Fail. 2016, 9, e003032. [Google Scholar] [CrossRef] [Green Version]
- Rozentryt, P.; Nowak, J.; Niedziela, J.; Hudzik, B.; Doehner, W.; Jankowska, E.A.; von Haehling, S.; Partyka, R.; Kawecka, E.; Myrda, K.; et al. Serum phosphorus level is related to degree of clinical response to up-titration of heart failure pharmacotherapy. Int. J. Cardiol. 2014, 177, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Eräranta, A.; Törmänen, S.; Kööbi, P.; Vehmas, T.I.; Lakkisto, P.; Tikkanen, I.; Moilanen, E.; Niemelä, O.; Mustonen, J.; Pörsti, I. Phosphate Binding Reduces Aortic Angiotensin-Converting Enzyme and Enhances Nitric Oxide Bioactivity in Experimental Renal Insufficiency. Am. J. Nephrol. 2014, 39, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, M.; Razzaque, M.S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 2010, 24, 3562–3571. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Tokumoto, M.; Tatsumoto, N.; Taniguchi, M.; Noguchi, H.; Nakano, T.; Masutani, K.; Ooboshi, H.; Tsuruya, K.; Kitazono, T. Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia. Am. J. Physiol.-Ren. Physiol. 2014, 306, F1418–F1428. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Negassa, A.; Coats, A.J.; Afzal, R.; Poole-Wilson, P.A.; Cohn, J.N.; Yusuf, S. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: An observational study. Lancet 2003, 361, 1077–1083. [Google Scholar] [CrossRef]
- Shuto, E.; Taketani, Y.; Tanaka, R.; Harada, N.; Isshiki, M.; Sato, M.; Nashiki, K.; Amo, K.; Yamamoto, H.; Higashi, Y.; et al. Dietary Phosphorus Acutely Impairs Endothelial Function. J. Am. Soc. Nephrol. 2009, 20, 1504–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.L.; Lin, K.H.; Tamilselvi, S.; Chen, W.K.; Shen, C.Y.; Chen, R.J.; Day, C.H.; Wu, H.C.; Viswanadha, V.P.; Huang, C.Y. Elevated Phosphate Levels Trigger Autophagy-Mediated Cellular Apoptosis in H9c2 Cardiomyoblasts. Cardiorenal Med. 2018, 8, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, J.L.; Joannides, A.J.; Skepper, J.N.; McNair, R.; Schurgers, L.J.; Proudfoot, D.; Jahnen-Dechent, W.; Weissberg, P.L.; Shanahan, C.M. Human Vascular Smooth Muscle Cells Undergo Vesicle-Mediated Calcification in Response to Changes in Extracellular Calcium and Phosphate Concentrations: A Potential Mechanism for Accelerated Vascular Calcification in ESRD. J. Am. Soc. Nephrol. 2004, 15, 2857–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scialla, J.J.; Lau, W.L.; Reilly, M.P.; Isakova, T.; Yang, H.-Y.; Crouthamel, M.H.; Chavkin, N.W.; Rahman, M.; Wahl, P.; Amaral, A.P.; et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013, 83, 1159–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojic, M.; Koller, L.; Cejka, D.; Niessner, A.; Bielesz, B. Propensity for Calcification in Serum Associates with 2-Year Cardiovascular Mortality in Ischemic Heart Failure with Reduced Ejection Fraction. Front Med. 2021, 8, 672348. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Marz, W.; Wellnitz, B.; Seelhorst, U.; Fahrleitner-Pammer, A.; Dimai, H.P.; Boehm, B.O.; Dobnig, H. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J. Clin. Endocrinol. Metab. 2008, 93, 3927–3935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilz, S.; Tomaschitz, A.; Drechsler, C.; Ritz, E.; Boehm, B.O.; Grammer, T.B.; Marz, W. Parathyroid hormone level is associated with mortality and cardiovascular events in patients undergoing coronary angiography. Eur. Heart J. 2010, 31, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
Feature | Quintiles of sP (mmol/L) | ||||||
---|---|---|---|---|---|---|---|
All N = 1029 | Q1 0.54–0.94, N = 201 (Hypophosphatemia in 57 (28.3%) Patients) | Q2 0.95–1.04 N = 200 | Q3 1.05–1.15 N = 207 | Q4 1.16–1.29 N = 215 | Q5 1.30–2.24, N = 206 (Hyperphosphatemia in 108 (52.4%) Patients) | p-Value | |
Demography | |||||||
Sex (% women) | 13.7 | 7.0 | 10.5 | 14.6 | 16.7 | 18.9 | 0.002 |
Age (years) | 53 ± 10 | 54 ± 8 | 54 ± 10 | 53 ± 10 | 52 ± 12 | 51 ± 12 | 0.02 |
BMI (kg/m2) | 26.4 ± 4.5 | 27.6 ± 4.1 | 26.9 ± 4.3 | 26.0 ± 4.1 | 25.9 ± 4.6 | 25.9 ± 4.8 | <0.0001 |
Ischemic etiology (%) | 62.9 | 64.7 | 68.5 | 62,6 | 60.9 | 58.3 | 0.26 |
Duration of HF (months) | 35 (56) | 40 (54) | 37 (44) | 32 (42) | 38 (56) | 28 (56) | 0.03 |
Weight loss in HF (%) | 6.7 (13,3) | 3.2 (14.6) | 5.4 (11.9) | 7.8 (13.0) | 7.6 (12.7) | 9.7 (13.8 | <0.0001 |
Clinical characteristics and echocardiography | |||||||
NYHA I (%) | 6.3 | 9.0 | 8.0 | 8.5 | 5.6 | 1.0 | <0.0001 |
NYHA II (%) | 36.5 | 47.3 | 40.0 | 33.5 | 32.1 | 30.6 | |
NYHA III (%) | 47.7 | 40.8 | 46.0 | 48.5 | 50.7 | 52.4 | |
NYHA IV (%) | 9.5 | 2.9 | 6.0 | 9.5 | 11.6 | 16.0 | |
MVO2 (ml/kg*min) | 14.6 ± 4.8 | 14.8 ± 4.1 | 14.9 ± 4.8 | 14.9 ± 5.0 | 14.3 ± 4.8 | 14.0 ± 4.9 | 0.12 |
LVEF (%) | 25.2 ± 8 | 27.5 ± 8 | 25.9 ± 8 | 24.8 ± 9 | 24.4 ± 9 | 23.3 ± 8 | <0.0001 |
Biochemistry | |||||||
eGFRMDRD (mL/min x 1.73 m2) | 85 (38) | 87 (34) (Hypophosphataemic subgroup: 85) (36)) | 90 (33) | 84 (36) | 84 (41) | 71 (44) (Hyperphosphataemic subgroup: 64) (47)) | <0.0001 |
hsCRP (mg/L) | 2.9 (5.6) | 2.5 (4.9) | 2.6 (4.6) | 2.7 (4.4) | 3.3 (6.2) | 4.5 (7.3) | <0.0001 |
Sodium (mmol/L) | 136 ± 4 | 137 ± 3 | 137 ± 3 | 136 ± 4 | 136 ± 4 | 134 ± 4 | <0.0001 |
NTproBNP (pg/mL) | 1393 (2538) | 1072 (1642) | 1083 (366) | 1344 (2070) | 1917 (3633) | 2310 (3151) | <0.0001 |
Calcium (mmol/L) | 2.3 ± 0.18 | 2.3 ± 0.16 | 2.3 ± 0.19 | 2.3 ± 0.17 | 2.3 ± 0.17 | 2.4 ± 0.18 | <0.0001 |
Phosphorus (mmol/L) | 1.13 ± 0.23 | 0.84 ± 0.09 | 0.99 ± 0.03 | 1.10 ± 0.03 | 1.22 ± 0.04 | 1.47 ± 0.17 | <0.0001 |
Comorbidities (N/%) | |||||||
Hypertension | 55.2 | 60.2 | 54.5 | 58.7 | 52.1 | 51.0 | 0.25 |
Diabetes mellitus type 2 | 30.7 | 25.9 | 34.0 | 30.6 | 28.8 | 34.5 | 0.29 |
Hypercholesterolemia | 60.6 | 60.7 | 65.0 | 61.7 | 60.5 | 55.3 | 0.39 |
History of smoking | 72.1 | 68.2 | 73.0 | 71.4 | 73.5 | 74.3 | 0.55 |
Pharmacotherapy | |||||||
ACEI/ARB (%) | 93.1 | 96.5 | 93.0 | 91.3 | 90.2 | 94.7 | 0.08 |
ACEI/ARB (% of recommended dose) | 60 ± 51 | 66 ± 51 | 68 ± 58 | 55 ± 40 | 60 ± 57 | 52 ± 45 | 0.002 |
Beta-blockers (%) | 97.6 | 98.5 | 99.0 | 96.6 | 95.3 | 98.5 | 0.07 |
Beta-blockers (% of recommended dose) | 49 ± 30 | 49 ± 25 | 51 ± 34 | 48 ± 31 | 47 ± 31 | 51 ± 30 | 0.34 |
Aldosterone antagonists (%) | 92.3 | 90.0 | 94.5 | 92.2 | 91.2 | 93.7 | 0.43 |
Aldosterone antagonists (% of recommended dose) | 119 ± 65 | 113 ± 61 | 108 ± 58 | 114 ± 58 | 132 ± 77 | 128 ± 67 | 0.001 |
Loop diuretics (%) | 87.2 | 80.6 | 87.5 | 85.0 | 86.5 | 96.1 | <0.0001 |
Loop diuretics (mg of furosemide equivalent) | 93 ± 82 | 75 ± 66 | 77 ± 66 | 94 ± 87 | 99 ± 91 | 119 ± 87 | <0.0001 |
Digoxin (%) | 47.5 | 41.3 | 43.5 | 48.1 | 49.8 | 54.9 | 0.05 |
Al-cause mortality (%) | |||||||
At 18 months of follow-up (%) | 18.0 | 15.9 (Hypophosphataemic subgroup: 13.8%) | 11.5 | 17.8 | 21.4 | 22.8 (Hyperphosphataemic subgroup: 24.3%) | 0.03 |
Hazard Ratio, 95% Confidence Intervals, p-Value | |||||
---|---|---|---|---|---|
Q1 0.54–0.94 | Q2 (Ref.) 0.95–1.04 | Q3 1.05–1.15 | Q4 1.16–1.29 | Q5 1.30–2.24 | |
Unadjusted model | 1.40; (0.82–2.39), p = 0.22 | 1.0 | 1.62; (0.96–2.72), p = 0.07 | 1.98; (1.20–3.26), p = 0.008 | 2.15; (1.30–3.53), p = 0.003 |
Model 1 | 1.38; (0.80–2.36), p = 0.25 | 1.0 | 1.60; (0.95–2.70), p = 0.08 | 1.92; (1.16–3.17), p = 0.01 | 1.82; (1.10–3.03), p = 0.02 |
Model 2 | 1.55; (0.85–2.48), p = 0.18 | 1.0 | 1.45; (0.86–2.45), p = 0.16 | 1.70; (1.04–2.83), p = 0.04 | 1.76; (1.05–2.95), p = 0.03 |
Model 3 | 1.26; (0.69–2.30), p = 0.45 | 1.0 | 0.99; (0.54–1.81), p = 0.97 | 1.23; (0.70–2.18), p = 0.47 | 1.14; (0.64–2.05), p = 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robert, P.; Alina, M.; Sylwia, D.; Jolanta, M.-B.; Marta, B.; Anna, G.-G.; Jacek, N.; Bartosz, H.; Mariusz, G.; Piotr, R. Higher Serum Phosphorus Is Not an Independent Risk Factor of Mortality in Heart Failure with Reduced Ejection Fraction. Nutrients 2021, 13, 4004. https://doi.org/10.3390/nu13114004
Robert P, Alina M, Sylwia D, Jolanta M-B, Marta B, Anna G-G, Jacek N, Bartosz H, Mariusz G, Piotr R. Higher Serum Phosphorus Is Not an Independent Risk Factor of Mortality in Heart Failure with Reduced Ejection Fraction. Nutrients. 2021; 13(11):4004. https://doi.org/10.3390/nu13114004
Chicago/Turabian StyleRobert, Partyka, Mroczek Alina, Duda Sylwia, Malinowska-Borowska Jolanta, Buczkowska Marta, Głogowska-Gruszka Anna, Niedziela Jacek, Hudzik Bartosz, Gąsior Mariusz, and Rozentryt Piotr. 2021. "Higher Serum Phosphorus Is Not an Independent Risk Factor of Mortality in Heart Failure with Reduced Ejection Fraction" Nutrients 13, no. 11: 4004. https://doi.org/10.3390/nu13114004
APA StyleRobert, P., Alina, M., Sylwia, D., Jolanta, M. -B., Marta, B., Anna, G. -G., Jacek, N., Bartosz, H., Mariusz, G., & Piotr, R. (2021). Higher Serum Phosphorus Is Not an Independent Risk Factor of Mortality in Heart Failure with Reduced Ejection Fraction. Nutrients, 13(11), 4004. https://doi.org/10.3390/nu13114004