A Single-Carbon Stable Isotope Ratio Model Prediction Equation Can Estimate Self-Reported Added Sugars Intake in an Adult Population Living in Southwest Virginia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Design
2.2. Ethics
2.3. Measures
2.4. Data Analysis
3. Results
3.1. Demographics
3.2. Single-Isotope Equation
3.3. Dual-Isotope Equation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, F.E.; Subar, A.F. Dietary Assessment Methodology. In Nutrition in the Prevention and Treatment of Disease, 4th ed.; Academic Press: San Diego, CA, USA, 2017; pp. 5–48. [Google Scholar]
- Willett, W.C. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Brownell, K.D.; Farley, T.; Willett, W.C.; Popkin, B.; Chaloupka, F.J.; Thompson, J.W.; Ludwig, D. The Public Health and Economic Benefits of Taxing Sugar-Sweetened Beverages. N. Engl. J. Med. 2009, 361, 1599–1605. [Google Scholar] [CrossRef]
- Hedrick, V.E.; Dietrich, A.M.; Estabrooks, P.A.; Savla, J.; Serrano, E.; Davy, B.M. Dietary biomarkers: Advances, limitations and future directions. Nutr. J. 2012, 11, 109. [Google Scholar] [CrossRef] [Green Version]
- Davy, B.; Jahren, H. New markers of dietary added sugar intake. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 282–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahren, A.H.; Saudek, C.; Yeung, E.; Kao, W.H.L.; Kraft, R.A.; Caballero, B. An isotopic method for quantifying sweeteners derived from corn and sugar cane. Am. J. Clin. Nutr. 2006, 84, 1380–1384. [Google Scholar] [CrossRef] [Green Version]
- Davy, B.M.; Jahren, A.H.; Hedrick, V.E.; Comber, D.L. Association of δ13C in Fingerstick Blood with Added-Sugar and Sugar-Sweetened Beverage Intake. J. Am. Diet. Assoc. 2011, 111, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Davy, B.M.; Jahren, A.H.; Hedrick, V.E.; You, W.; Zoellner, J.M. Influence of an intervention targeting a reduction in sugary beverage intake on the δ13C sugar intake biomarker in a predominantly obese, health-disparate sample. Public Health Nutr. 2016, 20, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Hedrick, V.E.; Zoellner, J.M.; Jahren, A.H.; Woodford, N.A.; Bostic, J.N.; Davy, B.M. A dual-carbon-and-nitrogen stable isotope ratio model is not superior to a single-carbon stable isotope ratio model for predicting added sugar intake in southwest Virginian adults. J. Nutr. 2015, 145, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Nash, S.H.; Kristal, A.; Bersamin, A.; Hopkins, S.E.; Boyer, B.B.; O’Brien, D. Carbon and Nitrogen Stable Isotope Ratios Predict Intake of Sweeteners in a Yup’ik Study Population. J. Nutr. 2013, 143, 161–165. [Google Scholar] [CrossRef]
- Yeung, E.H.; Saudek, C.D.; Jahren, A.H.; Kao, W.H.L.; Islas, M.; Kraft, R.; Coresh, J.; Anderson, C.A.M. Evaluation of a Novel Isotope Biomarker for Dietary Consumption of Sweets. Am. J. Epidemiol. 2010, 172, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- MacDougall, C.R.; Hill, C.E.; Jahren, A.H.; Savla, J.; Riebl, S.K.; Hedrick, V.E.; Raynor, H.; Dunsmore, J.C.; Frisard, M.I.; Davy, B.M. The δ13C Value of Fingerstick Blood Is a Valid, Reliable, and Sensitive Biomarker of Sugar-Sweetened Beverage Intake in Children and Adolescents. J. Nutr. 2018, 148, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.; Yon, B.; Hankin, J. Research: Successful Approaches, Dietary Assessment and Validation, 3rd ed.; Monsen, E., Van Horn, L., Eds.; American Dietetic Association: Chicago, IL, USA, 2008. [Google Scholar]
- Cook, C.M.; Alvig, A.L.; Liu, Y.Q.; Schoeller, D.A. The Natural 13C Abundance of Plasma Glucose Is a Useful Biomarker of Recent Dietary Caloric Sweetener Intake. J. Nutr. 2009, 140, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Jahren, A.H.; Bostic, J.N.; Davy, B.M. The potential for a carbon stable isotope biomarker of dietary sugar intake. J. Anal. At. Spectrom. 2014, 29, 795–816. [Google Scholar] [CrossRef] [Green Version]
- Huelsemann, F.; Koehler, K.; Braun, H.; Schaenzer, W.; Flenker, U. Human dietary δ15N intake: Representative data for principle food items. Am. J. Phys. Anthropol. 2013, 152, 58–66. [Google Scholar] [CrossRef]
- Nash, S.H.; Kristal, A.R.; Bersamin, A.; Choy, K.; E Hopkins, S.; Stanhope, K.L.; Havel, P.J.; Boyer, B.B.; O’Brien, D.M. Isotopic estimates of sugar intake are related to chronic disease risk factors but not obesity in an Alaska native (Yup’ik) study population. Eur. J. Clin. Nutr. 2013, 68, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dengo, A.L.; Dennis, E.A.; Orr, J.S.; Marinik, E.L.; Ehrlich, E.; Davy, B.M.; Davy, K.P. Arterial Destiffening With Weight Loss in Overweight and Obese Middle-Aged and Older Adults. Hypertension 2010, 55, 855–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, J.S.; Dengo, A.L.; Rivero, J.M.; Davy, K.P. Arterial Destiffening With Atorvastatin in Overweight and Obese Middle-Aged and Older Adults. Hypertension 2009, 54, 763–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, J.S.; Gentile, C.L.; Davy, B.M.; Davy, K.P. Large artery stiffening with weight gain in humans: Role of visceral fat accumulation. Hypertension 2008, 51, 1519–1524. [Google Scholar] [CrossRef] [Green Version]
- Zoellner, J.M.; Hedrick, V.E.; You, W.; Chen, Y.; Davy, B.M.; Porter, K.J.; Bailey, A.; Lane, H.; Alexander, R.; Estabrooks, P.A. Effects of a behavioral and health literacy intervention to reduce sugar-sweetened beverages: A randomized-controlled trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Nutrition Data System for Research (NDSR) Software, 2011 version; Nutrition Coordinating Center, University of Minnesota: Minneapolis, MN, USA, 2017.
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. Ser. D 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Myles, P.; Cui, J.I. Using the Bland–Altman method to measure agreement with repeated measures. Br. J. Anaesth. 2007, 99, 309–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, D.L.; Hopkins, S.; O’Brien, D.; Mancl, L.; Orr, E.; Lenaker, D. Association between added sugar intake and dental caries in Yup’ik children using a novel hair biomarker. BMC Oral Health 2015, 15, 121. [Google Scholar] [CrossRef]
- Nash, S.H.; Kristal, A.; Hopkins, S.E.; Boyer, B.B.; O’Brien, D. Stable Isotope Models of Sugar Intake Using Hair, Red Blood Cells, and Plasma, but Not Fasting Plasma Glucose, Predict Sugar Intake in a Yup’ik Study Population. J. Nutr. 2014, 144, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Kraft, R.A.; Jahren, A.H.; Saudek, C.D. Clinical-scale investigation of stable isotopes in human blood: δ13C and δ15N from 406 patients at the Johns Hopkins Medical Institutions. Rapid Commun. Mass Spectrom. 2008, 22, 3683–3692. [Google Scholar] [CrossRef]
- Lissner, L.; Troiano, R.; Midthune, D.; Heitmann, B.L.; Kipnis, V.; Subar, A.F.; Potischman, N. OPEN about obesity: Recovery biomarkers, dietary reporting errors and BMI. Int. J. Obes. 2007, 31, 956–961. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Dodd, K.W.; Kipnis, V.; E Thompson, F.; Potischman, N.; Schoeller, D.A.; Baer, D.J.; Midthune, D.; Troiano, R.; Bowles, H.; et al. Comparison of self-reported dietary intakes from the Automated Self-Administered 24-h recall, 4-d food records, and food-frequency questionnaires against recovery biomarkers. Am. J. Clin. Nutr. 2018, 107, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Bateman, A.S.; Kelly, S.D.; Woolfe, M. Nitrogen Isotope Composition of Organically and Conventionally Grown Crops. J. Agric. Food Chem. 2007, 55, 2664–2670. [Google Scholar] [CrossRef]
- Zoellner, J.; Krzeski, E.; Harden, S.; Cook, E.; Allen, K.; Estabrooks, P.A. Qualitative Application of the Theory of Planned Behavior to Understand Beverage Consumption Behaviors among Adults. J. Acad. Nutr. Diet. 2012, 112, 1774–1784. [Google Scholar] [CrossRef] [Green Version]
- Mantha, O.L.; Polakof, S.; Huneau, J.-F.; Mariotti, F.; Poupin, N.; Zalko, D.; Fouillet, H. Early changes in tissue amino acid metabolism and nutrient routing in rats fed a high-fat diet: Evidence from natural isotope abundances of nitrogen and carbon in tissue proteins. Br. J. Nutr. 2018, 119, 981–991. [Google Scholar] [CrossRef] [Green Version]
- Mantha, O.L.; Patel, M.L.; Hankard, R.; De Luca, A. Effect of Organic Food Intake on Nitrogen Stable Isotopes. Nutrients 2020, 12, 2965. [Google Scholar] [CrossRef]
- Shemin, D.; Rittenberg, D. The Life Span of the Human Red Blood Cell. J. Biol. Chem. 1946, 166, 627–636. [Google Scholar] [CrossRef]
Characteristics | Reference Group (n = 256) n (%) Unless Otherwise Noted | Test Group (n = 56) n (%) Unless Otherwise Noted | Test Statistic and p-Value |
---|---|---|---|
Sex, n (%) | |||
Male | 60 (23) | 34 (61) | χ2 = 30.6 |
Female | 197 (77) | 22 (39) | p ≤ 0.001 |
Age (years), mean ± SD | 42.4 ± 14.7 | 53.1 ± 16.0 | F = 23.7 |
p ≤ 0.001 | |||
Age category, n (%) | χ2 = 28.5 p ≤ 0.001 | ||
18–24 years | 33 (13) | 7 (12.5) | |
25–44 years | 117 (46) | 7 (12.5) | |
45–64 years | 91 (35) | 30 (53.5) | |
≥65 years | 16 (6) | 12 (21.5) | |
BMI (kg/m2), mean ± SD | 31.8 ± 9.2 | 29.5 ± 4.1 | F = 3.4 p = 0.07 |
BMI category, n (%) | χ2 = 10.0 p = 0.02 | ||
Underweight, ≤18.4 | 3 (1) | 0 (0) | |
Normal weight, 18.5–24.9 | 65 (25.5) | 6 (11) | |
Overweight, 25–29.9 | 65 (25.5) | 24 (43) | |
Obese, ≥30 | 124 (48) | 26 (46) | |
Added sugars intake (g), mean ± SD | 88.8 ± 58.8 | 68.8 ± 43.4 | F = 5.8 p = 0.02 |
δ13C (‰), mean ± SD | −19.1 ± 0.8 | −19.5 ± 0.8 | F = 10.3 p = 0.001 |
δ15N (‰), mean ± SD a | 7.4 ± 0.5 | 9.1 ± 0.3 | F = 526.9 p ≤ 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hedrick, V.E.; Halliday, T.M.; Davy, B.M.; Zoellner, J.M.; Jahren, A.H. A Single-Carbon Stable Isotope Ratio Model Prediction Equation Can Estimate Self-Reported Added Sugars Intake in an Adult Population Living in Southwest Virginia. Nutrients 2021, 13, 3842. https://doi.org/10.3390/nu13113842
Hedrick VE, Halliday TM, Davy BM, Zoellner JM, Jahren AH. A Single-Carbon Stable Isotope Ratio Model Prediction Equation Can Estimate Self-Reported Added Sugars Intake in an Adult Population Living in Southwest Virginia. Nutrients. 2021; 13(11):3842. https://doi.org/10.3390/nu13113842
Chicago/Turabian StyleHedrick, Valisa E., Tanya M. Halliday, Brenda M. Davy, Jamie M. Zoellner, and A. Hope Jahren. 2021. "A Single-Carbon Stable Isotope Ratio Model Prediction Equation Can Estimate Self-Reported Added Sugars Intake in an Adult Population Living in Southwest Virginia" Nutrients 13, no. 11: 3842. https://doi.org/10.3390/nu13113842
APA StyleHedrick, V. E., Halliday, T. M., Davy, B. M., Zoellner, J. M., & Jahren, A. H. (2021). A Single-Carbon Stable Isotope Ratio Model Prediction Equation Can Estimate Self-Reported Added Sugars Intake in an Adult Population Living in Southwest Virginia. Nutrients, 13(11), 3842. https://doi.org/10.3390/nu13113842