Identification of Sarcopenic Obesity in German Nursing Home Residents—The Role of Body Composition and Malnutrition in the BaSAlt Cohort-Study
Abstract
:1. Introduction
2. Methods
2.1. Recruitment, Inclusion and Exclusion Criteria
2.2. Instruments for Demographical and Clinical Data
2.3. Instruments and Quantification Methodes for SO
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Morley, J.E.; Schols, A.M.W.J.; Ferrucci, L.; Cruz-Jentoft, A.J.; Dent, E.; Baracos, V.E.; Crawford, J.A.; Doehner, W.; Heymsfield, S.B.; et al. Sarcopenia: A Time for Action. An SCWD Position Paper. J. Cachexia Sarcopenia Muscle 2019, 10, 956–961. [Google Scholar] [CrossRef]
- Drey, M.; Maetzler, W.; Ferrari, U. Sarkopenie. In Neurogeriatrie, 1st ed.; Maetzler, W., Dodel, R., Jacobs, A.H., Eds.; Springer: Berlin, Germany, 2019; pp. 69–84. [Google Scholar]
- Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 693–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Berens, Å.; Obling, S.R.; Nydahl, M.; Koochek, A.; Lissner, L.; Skoog, I.; Frändin, K.; Skoglund, E.; Rothenberg, E.; Cederholm, T. Sarcopenic obesity and associations with mortality in older women and men—A prospective observational study. BMC Geriatr. 2020, 20, 199. [Google Scholar] [CrossRef] [PubMed]
- Ciudin, A.; Simó-Servat, A.; Palmas, F.; Barahona, M.J. Sarcopenic obesity: A new challenge in the clinical practice. Endocrinol. Diabetes Nutr. 2020, 67, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Bischoff, S.C.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic obesity: Time to meet the challenge. Clin. Nutr. 2018, 37 Pt A, 1787–1793. [Google Scholar] [CrossRef]
- Zamboni, M.; Macchi, F.; Nori, N.; Rossi, A.P. Sarcopenic Obesity. In Sarcopenia, 2nd ed.; Cruz-Jentoft, A.J., Morley, J.E., Eds.; Wiley Blackwell: Oxford, UK, 2021; pp. 147–156. [Google Scholar]
- World Health Organization-Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 19 July 2021).
- Kelly, O.J.; Gilman, J.C.; Boschiero, D.; Ilich, J.Z. Osteosarcopenic Obesity: Current Knowledge, Revised Identification Criteria and Treatment Principles. Nutrients 2019, 11, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenaar, C.A.; Dekker, L.H.; Navis, G.J. Prevalence of sarcopenic obesity and sarcopenic overweight in the general population: The lifelines cohort study. Clin. Nutr. 2021, 40, 4422–4429. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; von Stengel, S.; Engelke, K.; Sieber, C.; Freiberger, E. Prevalence of sarcopenic obesity in Germany using established definitions: Baseline data of the FORMOsA study. Osteoporos Int. 2016, 27, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kemmler, W.; Teschler, M.; Weißenfels, A.; Sieber, C.; Freiberger, E.; von Stengel, S. Prevalence of sarcopenia and sarcopenic obesity in older German men using recognized definitions: High accordance but low overlap! Osteoporos. Int. 2017, 28, 1881–1891. [Google Scholar] [CrossRef] [PubMed]
- Sanford, A.M.; Orrell, M.; Tolson, D.; Abbatecola, A.M.; Arai, H.; Bauer, J.M.; Cruz-Jentoft, A.J.; Dong, B.; Ga, H.; Goel, A.; et al. An International Definition for “Nursing Home”. J. Am. Med. Dir. Assoc. 2015, 16, 181–184. [Google Scholar] [CrossRef]
- Füzeki, E.; Banzer, W. Bewegung und Gesundheit im Alter. In Körperliche Aktivität und Gesundheit, 1st ed.; Banzer, W., Ed.; Springer: Berlin, Germany, 2017; pp. 139–152. [Google Scholar]
- Bundesministerium für Gesundheit-Pflegeversicherung, Zahlen und Fakten. Available online: https://www.bundesgesundheitsministerium.de/themen/pflege/pflegeversicherung-zahlen-und-fakten.html?limit=all (accessed on 15 July 2021).
- Von Armin, C.; Wirth, R. Mangelernährung. In Neurogeriatrie, 1st ed.; Maetzler, W., Dodel, R., Jacobs, A.H., Eds.; Springer: Berlin, Germany, 2019; pp. 195–210. [Google Scholar]
- Bell, C.L.; Lee, A.S.; Tamura, B.K. Malnutrition in the nursing home. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Faxén-Irving, G.; Luiking, Y.; Grönstedt, H.; Franzén, E.; Seiger, Å.; Vikström, S.; Wimo, A.; Boström, A.M.; Cederholm, T. Do Malnutrition, Sarcopenia and Frailty Overlap in Nursing-Home Residents? J. Frailty Aging 2021, 10, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Krug, S.; Jordan, S.; Mensink, G.B.M.; Müters, S.; Finger, J.D.; Lampert, T. Körperliche Aktivität. Bundesgesundheitsblatt 2013, 56, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Lotvonen, S.; Kyngäs, H.; Koistinen, P.; Bloigu, R.; Elo, S. Social Environment of Older People during the First Year in Senior Housing and Its Association with Physical Performance. Int. J. Environ. Res. Public Health 2017, 14, 960. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip strength across the life course: Normative data from twelve British studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Studenski, S.A.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haigis, D.; Pomiersky, R.; Altmeier, D.; Frahsa, A.; Sudeck, G.; Thiel, A.; Eschweiler, G.; Nieß, A.M. Feasibility of a Geriatric Assessment to Detect and Quantify Sarcopenia and Physical Functioning in German Nursing Home Residents-A Pilot Study. Geriatrics 2021, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; McCloskey, E.; Bruyère, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertière, M.C.; et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, G.; Heshmat, R.; Ostovar, A.; Khatami, F.; Fahimfar, N.; Arzaghi, S.M.; Gharibzadeh, S.; Hanaei, S.; Nabipour, I.; Larijani, B. Comparison of EWGSOP-1and EWGSOP-2 diagnostic criteria on prevalence of and risk factors for sarcopenia among Iranian older people: The Bushehr Elderly Health (BEH) program. J. Diabetes Metab Disord. 2020, 19, 727–734. [Google Scholar] [CrossRef]
- Reiss, J.; Iglseder, B.; Alzner, R.; Mayr-Pirker, B.; Pirich, C.; Kässmann, H.; Kreutzer, M.; Dovjak, P.; Reiter, R. Consequences of applying the new EWGSOP2 guideline instead of the former EWGSOP guideline for sarcopenia case finding in older patients. Age Ageing 2019, 48, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Van Ancum, J.M.; Alcazar, J.; Meskers, C.G.M.; Nielsen, B.R.; Suetta, C.; Maier, A.B. Impact of using the updated EWGSOP2 definition in diagnosing sarcopenia: A clinical perspective. Arch. Gerontol. Geriatr. 2020, 90, 104125. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical impedance analysis (BIA) -derived phase angle in sarcopenia: A systematic review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, S.; Gilliland, J.; O’Connor, C.; Chesworth, B.; Madill, J. Is phase angle an appropriate indicator of malnutrition in different disease states? A systematic review. Clin. Nutr. ESPEN 2019, 29, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brunani, A.; Perna, S.; Soranna, D.; Rondanelli, M.; Zambon, A.; Bertoli, S.; Vinci, C.; Capodaglio, P.; Lukaski, H.; Cancello, R. Body composition assessment using bioelectrical impedance analysis (BIA) in a wide cohort of patients affected with mild to severe obesity. Clin. Nutr. 2021, 40, 3973–3981. [Google Scholar] [CrossRef] [PubMed]
- Eglseer, D.; Eminovic, S.; Lohrmann, C. Association Between Sarcopenia and Nutritional Status in Older Adults: A Systematic Literature Review. J. Gerontol. Nurs. 2016, 42, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Ligthart-Melis, G.C.; Luiking, Y.C.; Kakourou, A.; Cederholm, T.; Maier, A.B.; de van der Schueren, M.A.E. Frailty, Sarcopenia, and Malnutrition Frequently (Co-)occur in Hospitalized Older Adults: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Bloom, I.; Shand, C.; Cooper, C.; Robinson, S.; Baird, J. Diet Quality and Sarcopenia in Older Adults: A Systematic Review. Nutrients 2018, 10, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moosavian, S.P.; Rahimlou, M.; Saneei, P.; Esmaillzadeh, A. Effects of dairy products consumption on inflammatory biomarkers among adults: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 872–888. [Google Scholar] [CrossRef]
- Denison, H.J.; Cooper, C.; Sayer, A.A.; Robinson, S.M. Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interv. Aging. 2015, 10, 859–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiel, A.; Sudeck, G.; Niess, A.; Eschweiler, G.W.; Altmeier, D.; Haigis, D.; Pomiersky, R.; Schmid, J.; Frahsa, A. BaSAlt—A mixed-methods study protocol on setting-based physical activity promotion and counseling in nursing homes. Contemp. Clin. Trials Commun. 2021, 23, 100828. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, R.; McCullough, D.; Butler, T.; Perez de Heredia, F.; Davies, I.G.; Stewart, C. Sarcopenia during COVID-19 lockdown restrictions: Long-term health effects of short-term muscle loss. Geroscience 2020, 42, 1547–1578. [Google Scholar] [CrossRef]
- Donini, L.M.; Busetto, L.; Bauer, J.M.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cruz-Jentoft, A.J.; Dicker, D.; Frühbeck, G.; Giustina, A.; et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin. Nutr. 2020, 39, 2368–2388. [Google Scholar] [CrossRef] [PubMed]
Assessment | Cut-Off-Value for Women | Cut-Off-Value for Men |
---|---|---|
Hand force measurement [1] | <16 kg | <27 kg |
Appendicular skeletal muscle mass [1] | <15 kg | <20 kg |
4-m walking speed test [1] | ≤0.8 m/s | ≤0.8 m/s |
Body mass index [2] | ≥30 kg/m2 | ≥30 kg/m2 |
Fat mass in % [2] | >42% | >30% |
Fat mass index [10] | ≥13 kg/m2 | ≥9 kg/m2 |
Women (n = 49) | Men (n = 17) | |
---|---|---|
Age | 88.9 (SD ± 6.1) | 82.8 (SD ± 8.7) |
Height | 158.6 (SD ± 7.4) | 171.4 (SD ± 6.0) |
Weight | 65.4 (SD ± 12.3) | 80.9 (SD ± 16.0) |
Body mass index | 26.0 (SD ± 4.9) | 27.7 (SD ± 6.5) |
<18.5 kg/m2 | 4.1% (n = 2) | 0.0% (n = 0) |
18.5–24.9 kg/m2 | 46.9% (n = 23) | 52.9% (n = 9) |
25.0–29.9 kg/m2 | 34.7% (n = 17) | 17.6% (n = 3) |
≥30.0 kg/m2 | 14.3% (n = 7) | 29.4% (n = 5) |
Mini-Mental Status Test | 19.0 (SD ± 7.8) | 20.6 (SD ± 7.6) |
No dementia | 8.2% (n = 4) | 23.5% (n = 4) |
Mild cognitive impairment | 20.4% (n = 10) | 11.8% (n = 2) |
Mild dementia | 18.4% (n = 9) | 11.8% (n = 2) |
Moderate dementia | 26.5% (n = 13) | 35.3% (n = 6) |
Severe dementia | 8.2% (n = 4) | 0.0% (n = 0) |
Barthel Index | 63.9 (SD ± 23.0) | 64.7 (SD ± 25.6) |
Completely independent | 2.0% (n = 1) | 11.8% (n = 2) |
Partially in need of care | 24.5% (n = 12) | 17.6% (n = 3) |
In need of care | 61.2% (n = 30) | 52.9% (n = 9) |
Dependent on care | 12.2% (n = 6) | 17.6% (n = 3) |
Mini-Nutrition-Assessment Short-Form © | 11.7 (SD ± 2.3) | 11.7 (SD ± 1.5) |
Normal nutritional status | 65.3% (n = 32) | 52.9% (n = 9) |
Risk of malnutrition | 30.6% (n = 15) | 47.1% (n = 8) |
Malnutrition | 4.1% (n = 2) | 0.0% (n = 0) |
Women (n = 49) | Men (n = 17) | |
---|---|---|
Phase angle (PhA in °) | 4.9 (SD ± 1.9) | 5.1 (SD ± 1.6) |
Fat mass (FM in kg) | 20.4 (SD ± 9.8) | 20.3 (SD ± 13.7) |
Fat mass percentage (FM in %) | 29.8 (SD ± 10.6) | 23.3 (SD ± 11.5) |
Fat mass index (FMI in kg/m2) | 8.1 (SD ± 4.0) | 7.1 (SD ± 5.4) |
Fat free mass (FFM in kg) | 45.0 (SD ± 6.4) | 60.5 (SD ± 5.8) |
Fat free mass percentage (FFM in %) | 70.2 (SD ± 10.4) | 76.7 (SD ± 11.5) |
Fat free mass index (FFMI in kg/m2) | 17.9 (SD ± 2.3) | 20.6 (SD ± 1.8) |
Muscle mass (MM in kg) | 18.1 (SD ± 5.8) | 29.5 (SD ± 2.5) |
Muscle mass percentage (MM in %) | 28.2 (SD ± 10.1) | 37.6 (SD ± 6.9) |
Total body water (TBW in L) | 33.6 (SD ± 5.6) | 46.1 (SD ± 4.3) |
Extracellular water (ECW in L) | 17.4 (SD ± 2.4) | 23.7 (SD ± 3.5) |
Body cell mass (BCM in kg) | 21.3 (SD ± 6.6) | 29.1 (SD ± 6.2) |
Women (n = 49) | Men (n = 17) | |
---|---|---|
(1) Past cardiovascular event | 24.5% (n = 12) | 47.1% (n = 8) |
(2) Arterial hypertension | 69.4% (n = 34) | 64.7% (n = 11) |
(3) Coronary heart disease | 14.3% (n = 7) | 41.2% (n = 7) |
(4) Cardiac insufficiency | 22.4% (n = 11) | 58.8% (n = 10) |
(5) Cardiac pacemakers | 6.1% (n = 3) | 17.6% (n = 3) |
(6) Post-stroke/cerebral hemorrhage/TIA | 26.5% (n = 13) | 29.4% (n = 5) |
(7) Chronic lung disease | 8.2% (n = 4) | 11.8% (n = 2) |
(8) Cancer | 12.2% (n = 6) | 29.4% (n = 5) |
(9) Diabetes mellitus type II | 20.4% (n = 10) | 29.4% (n = 5) |
(10) Osteoarthritis lower extremity | 26.5% (n = 13) | 23.5% (n = 4) |
(11) Psychological/emotional/nervous disease | 57.1% (n = 28) | 64.7% (n = 11) |
Women (n = 49) | Men (n = 17) | |
---|---|---|
Sarcopenia | ||
SARC-F | 3.2 (SD ± 2.6) | 2.6 (SD ± 2.5) |
Risk of sarcopenia | 34.7% (n = 17) | 23.5% (n = 4) |
No risk of sarcopenia | 49.0% (n = 24) | 64.7% (n = 11) |
Hand force measurement | 13.6 (SD ± 5.1) | 23.8 (SD ± 6.3) |
Quantified as sarcopenic | 57.1% (n = 28) | 70.6% (n = 12) |
Quantified as non-sarcopenic | 40.8% (n = 20) | 23.5% (n = 4) |
Appendicular skeletal muscle mass | 16.1 (SD ± 3.7) | 22.6 (SD ± 2.3) |
Quantified as sarcopenic | 30.6% (n = 15) | 11.8% (n = 2) |
Quantified as non-sarcopenic | 69.4% (n = 34) | 88.2% (n = 15) |
4-m walking speed test | 0.6 (SD ± 0.2) | 0.6 (SD ± 0.2) |
Quantified as sarcopenic | 83.7% (n = 41) | 88.2% (n = 15) |
Quantified as non-sarcopenic | 16.3% (n = 8) | 11.8% (n = 2) |
Obesity | ||
Body mass index | ||
Quantified as obese | 14.3% (n = 7) | 29.4% (n = 5) |
Quantified as non-obese | 85.7% (n = 42) | 70.6% (n = 12) |
Fat mass in % | ||
Quantified as obese | 8.2% (n = 4) | 29.4% (n = 5) |
Quantified as non-obese | 91.8% (n = 45) | 70.6% (n = 12) |
Fat mass index | ||
Quantified as obese | 12.2% (n = 6) | 29.4% (n = 5) |
Quantified as non-obese | 87.8% (n = 43) | 70.6% (n = 12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haigis, D.; Matting, L.; Wagner, S.; Sudeck, G.; Frahsa, A.; Thiel, A.; Eschweiler, G.; Nieß, A.M. Identification of Sarcopenic Obesity in German Nursing Home Residents—The Role of Body Composition and Malnutrition in the BaSAlt Cohort-Study. Nutrients 2021, 13, 3791. https://doi.org/10.3390/nu13113791
Haigis D, Matting L, Wagner S, Sudeck G, Frahsa A, Thiel A, Eschweiler G, Nieß AM. Identification of Sarcopenic Obesity in German Nursing Home Residents—The Role of Body Composition and Malnutrition in the BaSAlt Cohort-Study. Nutrients. 2021; 13(11):3791. https://doi.org/10.3390/nu13113791
Chicago/Turabian StyleHaigis, Daniel, Leon Matting, Silas Wagner, Gorden Sudeck, Annika Frahsa, Ansgar Thiel, Gerhard Eschweiler, and Andreas Michael Nieß. 2021. "Identification of Sarcopenic Obesity in German Nursing Home Residents—The Role of Body Composition and Malnutrition in the BaSAlt Cohort-Study" Nutrients 13, no. 11: 3791. https://doi.org/10.3390/nu13113791
APA StyleHaigis, D., Matting, L., Wagner, S., Sudeck, G., Frahsa, A., Thiel, A., Eschweiler, G., & Nieß, A. M. (2021). Identification of Sarcopenic Obesity in German Nursing Home Residents—The Role of Body Composition and Malnutrition in the BaSAlt Cohort-Study. Nutrients, 13(11), 3791. https://doi.org/10.3390/nu13113791