Margin of Exposure Analyses and Overall Toxic Effects of Alcohol with Special Consideration of Carcinogenicity
Abstract
:1. Introduction
2. The Margin of Exposure Method and Its Application to Alcoholic Beverages
3. Occurrence of Carcinogenic Compounds in Alcoholic Beverages
4. Comparative Risk Assessment of Compounds in Alcoholic Beverages
5. Overall Toxic Effects of Alcoholic Beverages
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pflaum, T.; Hausler, T.; Baumung, C.; Ackermann, S.; Kuballa, T.; Rehm, J.; Lachenmeier, D.W. Carcinogenic compounds in alcoholic beverages: An update. Arch. Toxicol. 2016, 90, 2349–2367. [Google Scholar] [CrossRef] [PubMed]
- Lamy, L. Etude de statistique clinique de 134 cas de cancer de l’ oesophage en du cardia. Arch. Mal. Appar. Dig. 1910, 4, 451–475. [Google Scholar]
- Praud, D.; Rota, M.; Rehm, J.; Shield, K.; Zatoński, W.; Hashibe, M.; La Vecchia, C.; Boffetta, P. Cancer incidence and mortality attributable to alcohol consumption. Int. J. Cancer 2016, 138, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Sohnius, E.-M. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: Evidence from a large chemical survey. Food Chem. Toxicol. 2008, 46, 2903–2911. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Kanteres, F.; Rehm, J. Carcinogenicity of acetaldehyde in alcoholic beverages: Risk assessment outside ethanol metabolism. Addiction 2009, 104, 533–550. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde. IARC Monogr. Eval. Carcinog. Risks Hum. 2006, 88, 39–325. [Google Scholar]
- Monakhova, Y.B.; Jendral, J.A.; Lachenmeier, D.W. The margin of exposure to formaldehyde in alcoholic beverages. Arch. Ind. Hyg. Toxicol. 2012, 63, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Jendral, J.A.; Monakhova, Y.B.; Lachenmeier, D.W. Formaldehyde in Alcoholic Beverages: Large Chemical Survey Using Purpald Screening Followed by Chromotropic Acid Spectrophotometry with Multivariate Curve Resolution. Int. J. Anal. Chem. 2011, 2011, 797604. [Google Scholar] [CrossRef] [Green Version]
- Boettcher, M.I.; Schettgen, T.; Kütting, B.; Pischetsrieder, M.; Angerer, J. Mercapturic acids of acrylamide and glycidamide as biomarkers of the internal exposure to acrylamide in the general population. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2005, 580, 167–176. [Google Scholar] [CrossRef]
- Mo, W.; He, H.; Xu, X.; Huang, B.; Ren, Y. Simultaneous determination of ethyl carbamate, chloropropanols and acrylamide in fermented products, flavoring and related foods by gas chromatography–triple quadrupole mass spectrometry. Food Control 2014, 43, 251–257. [Google Scholar] [CrossRef]
- Wenzl, T.; Lachenmeier, D.W.; Gökmen, V. Analysis of heat-induced contaminants (acrylamide, chloropropanols and furan) in carbohydrate-rich food. Anal. Bioanal. Chem. 2007, 389, 119–137. [Google Scholar] [CrossRef]
- Breitling-Utzmann, C.M.; Köbler, H.; Harbolzheimer, D.; Maier, A. 3-MCPD - Occurrence in bread crust and various food groups as well as formation in toast. Dtsch. Leb. 2003, 99, 280–285. [Google Scholar]
- Svejkovská, B.; Novotný, O.; Divinová, V.; Réblová, Z.; Doležal, M.; Velíšek, J. Esters of 3-chloropropane-1,2-diol in foodstuffs. Czech J. Food Sci. 2018, 22, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Baxter, E.D.; Booer, C.D.; Muller, R.E.; O’Shaugnessy, C.; Slaiding, I.R. Minimizing acrylamide and 3-MCPD in crystal malts; effects on flavour. Proc. Congr. Eur. Brew Conv. 2005, 30, 163-1–163-6. [Google Scholar]
- Sadowska-Rociek, A.; Surma, M. A survey on thermal processing contaminants occurrence in dark craft beers. J. Food Compos. Anal. 2021, 99, 103888. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Aflatoxins. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100F, 225–248. [Google Scholar]
- Mably, M.; Mankotia, M.; Cavlovic, P.; Tam, J.; Wong, L.; Pantazopoulos, P.; Calway, P.; Scott, P.M. Survey of aflatoxins in beer sold in Canada. Food Addit. Contam. 2005, 22, 1252–1257. [Google Scholar] [CrossRef]
- Gilbert, J.; Michelangelo, P. Analytical methods for mycotoxins in the wheat chain. In Mycotoxin Reduction in Grain Chain; Leslie, J.F., Logrieco, A.F., Eds.; Wiley Blackwell: Oxford, UK, 2014; pp. 169–188. [Google Scholar]
- Odhav, B.; Naicker, V. Mycotoxins in South African traditionally brewed beers. Food Addit. Contam. 2002, 19, 55–61. [Google Scholar] [CrossRef]
- Okaru, A.O.; Abuga, K.O.; Kibwage, I.O.; Hausler, T.; Luy, B.; Kuballa, T.; Rehm, J.; Lachenmeier, D.W. Aflatoxin contamination in unrecorded beers from Kenya – A health risk beyond ethanol. Food Control 2017, 79, 344–348. [Google Scholar] [CrossRef]
- Okaru, A.O.; Rehm, J.; Sommerfeld, K.; Kuballa, T.; Walch, S.G.; Lachenmeier, D.W. The Threat to Quality of Alcoholic Beverages by Unrecorded Consumption. In Alcoholic Beverages; Woodhead Publishing: Cambridge, UK, 2019; pp. 1–34. [Google Scholar]
- Esti, M.; Benucci, I.; Liburdi, K.; Acciaro, G. Monitoring of ochratoxin A fate during alcoholic fermentation of wine-must. Food Control 2012, 27, 53–56. [Google Scholar] [CrossRef]
- Lopez de Cerain, A.; González-Peñas, E.; Jiménez, A.M.; Bello, J. Contribution to the study of ochratoxin A in Spanish wines. Food Addit. Contam. 2002, 19, 1058–1064. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic and arsenic compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100C, 41–93. [Google Scholar]
- Barbaste, M.; Medina, B.; Perez-Trujillo, J.P. Analysis of arsenic, lead and cadmium in wines from the Canary Islands, Spain, by ICP/MS. Food Addit. Contam. 2021, 4, 141–148. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Cadmium and cadmium compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100C, 121–145. [Google Scholar]
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Suppl. S7; International Agency for Research on Cancer: Lyon, France, 1987.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Inorganic and organic lead compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 2006, 87, 39–468. [Google Scholar]
- EFSA. Scientifc opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Benzene. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100F, 249–294. [Google Scholar]
- Lachenmeier, D.W.; Kuballa, T.; Reusch, H.; Sproll, C.; Kersting, M.; Alexy, U. Benzene in infant carrot juice: Further insight into formation mechanism and risk assessment including consumption data from the DONALD study. Food Chem. Toxicol. 2010, 48, 291–297. [Google Scholar] [CrossRef]
- Loch, C.; Reusch, H.; Ruge, I.; Godelmann, R.; Pflaum, T.; Kuballa, T.; Schumacher, S.; Lachenmeier, D.W. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages. Food Chem. 2016, 206, 74–77. [Google Scholar] [CrossRef]
- Steinbrenner, N.; Löbell-Behrends, S.; Reusch, H.; Kuballa, T.; Lachenmeier, D.W. Benzol in Lebensmitteln – ein Überblick. J. Verbrauchersch. Lebensm. 2010, 5, 443–452. [Google Scholar] [CrossRef]
- Long, D.G. From cobalt to chloropropanol: De tribulationibus aptis cerevisiis imbibendis. J. Inst. Brew. 1999, 105, 79–84. [Google Scholar] [CrossRef]
- Wu, Q.-J.; Lin, H.; Fan, W.; Dong, J.-J.; Chen, H.-L. Investigation into Benzene, Trihalomethanes and Formaldehyde in Chinese Lager Beers. J. Inst. Brew. 2006, 112, 291–294. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Furan. IARC Monogr. Eval. Carcinog. Risks Hum. 1995, 63, 393–407. [Google Scholar]
- Chen, L.J.; Hecht, S.S.; Peterson, L.A. Identification of cis-2-butene-1,4-dial as a microsomal metabolite of furan. Chem. Res. Toxicol. 1995, 8, 903–906. [Google Scholar] [CrossRef]
- Peterson, L.A.; Cummings, M.E.; Vu, C.C.; Matter, B.A. Glutathione trapping to measure microsomal oxidation of furan toto cis-2-butene-1,4-dial. Drug Metab. Dispos. 2005, 33, 1453–1458. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Update on furan levels in food from monitoring years 2004–2010 and exposure assessment. EFSA J. 2011, 9, 2347. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Glyphosate. IARC Monogr. Eval. Carcinog. Risks Hum. 2015, 112, 321–399. [Google Scholar]
- Nagatomi, Y.; Yoshioka, T.; Yanagisawa, M.; Uyama, A.; Mochizuki, N. Simultaneous LC-MS/MS Analysis of Glyphosate, Glufosinate, and Their Metabolic Products in Beer, Barley Tea, and Their Ingredients. Biosci. Biotechnol. Biochem. 2013, 77, 2218–2221. [Google Scholar] [CrossRef] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Alcohol consumption and ethyl carbamate. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 96, 1–1428. [Google Scholar]
- Uthurry, C.A.; Varela, F.; Colomo, B.; Suárez Lepe, J.A.; Lombardero, J.; García del Hierro, J.R. Ethyl carbamate concentrations of typical Spanish red wines. Food Chem. 2004, 88, 329–336. [Google Scholar] [CrossRef]
- Anderson, L.M.; Souliotis, V.L.; Chhabra, S.K.; Moskal, T.J.; Harbaugh, S.D.; Kyrtopoulos, S.A. N-nitrosodimethylamine-derived O(6)-methylguanine in DNA of monkey gastrointestinal and urogenital organs and enhancement by ethanol. Int. J. Cancer 1996, 66, 130–134. [Google Scholar] [CrossRef]
- Lijinsky, W. N-Nitroso compounds in the diet. Mutat. Res. Toxicol. Environ. Mutagen. 1999, 443, 129–138. [Google Scholar] [CrossRef]
- Tricker, A.R.; Kubacki, S.J. Review of the occurrence and formation of non-volatile N -nitroso compounds in foods. Food Addit. Contam. 1992, 9, 39–69. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Fügel, D. Reduction of nitrosamines in beer—Review of a success story. Brew Sci. 2007, 60, 84–89. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Pulegone. IARC Monogr. Eval. Carcinog. Risks Hum. 2015, 108, 141–154. [Google Scholar]
- National Toxicology Program. Toxicology and carcinogenesis studies of pulegone (CAS No. 89-82-7) in F344/N rats and B6C3F1 mice (gavage studies). Natl. Toxicol. Program Tech. Rep. Ser. 2011, 563, 1–201. [Google Scholar]
- SCF. Opinion of the Scientifc Committee on Food on the Safety of the Presence of Safrole (1-allyl-3,4-methylene Dioxy Benzene) in Flavouring and Other Food Ingredients with Flavouring Properties; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Curro, P.; Micali, G.; Lanuzza, F. Determination of beta-asarone, safrole, isosafrole and anethole in alcoholic drinks by high-performance liquid chromatography. J Chromatogr. 1987, 404, 273–278. [Google Scholar] [CrossRef]
- Gutsche, B.; Weißhaar, R.; Buhlert, J. Acrylamide in food - Screening results from food control in Baden-Württemberg. Deut. Lebensm. Rundsch. 2002, 98, 437–443. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the European Commission on Ethyl Carbamate and Hydrocyanic Acid in Food and Beverages (Question No EFSA-Q-2006-076). EFSA J. 2007, 1–44. [Google Scholar]
- Donhauser, S.; Wagner, D.J.F. Critical trace-elements in brewing technology. 2. Occurrence of arsenic, lead, cadmium, chromium, mercury and selenium in beer. Monatsschr. Brauwiss. 1987, 40, 328–333. [Google Scholar]
- Andrey, D. A simple gas chromatography method for the determination of ethylcarbamate in spirits. Z. Lebensm. Unters. Forsch. 1987, 185, 21–23. [Google Scholar] [CrossRef]
- Klejdus, B.; Moravcová, J.; Lojková, L.; Vacek, J.; Kubán, V. Solid-phase extraction of 4(5)-methylimidazole (4MeI) and 2-acetyl-4(5)-(1,2,3,4-tetrahydroxybutyl)-imidazole (THI) from foods and beverages with subsequent liquid chromatographic-electrospray mass spectrometric quantification. J. Sep. Sci. 2006, 29, 378–384. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Fujiwara, M. Determination of 4 (5)-Methylimidazole in Food by Thin Layer Chromatography. Food Hyg. Saf. Sci. (Shokuhin Eiseigaku Zasshi) 1981, 22, 189–196. [Google Scholar] [CrossRef] [Green Version]
- European Commission. European Commission Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Council Regulation (EEC) No 1601/91, Regulations (EC). Off. J. Eur. Union 2008, L 354/34, 34–50. [Google Scholar]
- BfR Provisional Assessment of Glyphosate in Beer; BfR Communication No. 005/2016; Bundesinstitut für Risikobewertung (BfR): Berlin, Germany, 25 February 2016.
- Lachenmeier, D.W.; Przybylski, M.C.; Rehm, J. Comparative risk assessment of carcinogens in alcoholic beverages using the margin of exposure approach. Int. J. Cancer 2012, 131, 995–1003. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Gill, J.S.; Chick, J.; Rehm, J. The total margin of exposure of ethanol and acetaldehyde for heavy drinkers consuming cider or vodka. Food Chem. Toxicol. 2015, 83, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Lachenmeier, D.W.; Rehm, J. Comparative risk assessment of alcohol, tobacco, cannabis and other illicit drugs using the margin of exposure approach. Sci. Rep. 2015, 5, 8126. [Google Scholar] [CrossRef] [Green Version]
- Mueller, U.; Agudo, A.; Carrington, C.; Doerge, D.; Hellenäs, K.E.; Leb-lanc, J.C.; Rao, M.; Renwick, A.; Slob, W.; Wu, Y. Acrylamide (Addendum). In Safety Evaluation of Certain Contaminants in Food. Prepared by the Seventysecond Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series 63; WHO and FAO: Geneva, Switzerland, 2011; pp. 1–51. [Google Scholar]
- National Toxology Program NTP. Technical Report on the Toxicology and Carcinogenesis Studies of Acrylamide in F344/N Rats and B6C3F1 Mice (Feed and Drinking Water Studies). Natl. Toxicol. Progr. Tech. Rep. Ser. 2012, 575, 1–236. [Google Scholar]
- EFSA. Opinion of the scientific panel on contaminants in the food chain [CONTAM] related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived prod. EFSA J. 2007, 446, 1–127. [Google Scholar]
- Yeh, F.S.; Yu, M.C.; Mo, C.C.; Luo, S.; Tong, M.J.; Henderson, B.E. Hepatitis B virus, aflatoxins, and hepatocellular carcinoma in southern Guangxi, China. Cancer Res. 1989, 49, 2506–2509. [Google Scholar] [CrossRef]
- Benford, D.J.; Alexander, J.; Baines, J.; Bellinger, D.C.; Carrington, C.; Peréz, V.A.; Uxbury, J.; Fawell, J.; Hailemariam, K.; Montoro, R.; et al. Arsenic (Addendum). In Safety Evaluation of Certain Contaminants in Food. Prepared by the Seventy-Second Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series 63; WHO and FAO: Geneva, Switzerland, 2011; pp. 153–316. [Google Scholar]
- Chen, C.-L.; Chiou, H.-Y.; Hsu, L.-I.; Hsueh, Y.-M.; Wu, M.-M.; Chen, C.-J. Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ. Res. 2010, 110, 455–462. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Benzene (CASRN 71-43-2). Integrated Risk Information System. Document 0276; US Environmental Protection Agency: Washington, DC, USA, 2003.
- Rothman, N.; Li, G.L.; Dosemeci, M.; Bechtold, W.E.; Marti, G.E.; Wang, Y.Z.; Linet, M.; Xi, L.Q.; Lu, W.; Smith, M.T.; et al. Hematotoxicity among Chinese workers heavily exposed to benzene. Am. J. Ind. Med. 1996, 29, 236–246. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Kanteres, F.; Rehm, J. Epidemiology-based risk assessment using the benchmark dose/margin of exposure approach: The example of ethanol and liver cirrhosis. Int. J. Epidemiol. 2011, 40, 210–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beland, F.A.; Benson, R.W.; Mellick, P.W.; Kovatch, R.M.; Roberts, D.W.; Fang, J.-L.; Doerge, D.R. Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice. Food Chem. Toxicol. 2005, 43, 1–19. [Google Scholar] [CrossRef]
- National Toxicology Program. NTP technical report on the toxicology and carcino- gensis. Studies of urethane, ethanol, and urethane/ethanol (urethane, CAS No. 51-79-6; ethanol, CAS No. 64-17-5) in B6C3F1 mice (drinking water studies). Natl. Toxicol. Progr. Tech. Rep. Ser. 2004, 510, 1–346. [Google Scholar]
- Vavasour, E.; Renwick, A.G.; Engeli, B.; Barlow, S.; Castle, L.; DiNovi, M.; Slob, W.; Schlatter, J.; Bolger, M. Ethyl carbamate. In Safety Evaluation of Certain Contaminants in Food. Prepared by the Sixty-Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series 55; WHO and FAO: Geneva, Switzerland, 2006. [Google Scholar]
- IPCS. Environmental Health Criteria 239: Principles for Modelling Dose-Response for the Risk Assessment of Chemicals; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Til, H.P.; Woutersen, R.A.; Feron, V.J.; Hollanders, V.H.; Falke, H.E.; Clary, J.J. Two-year drinking-water study of formaldehyde in rats. Food Chem. Toxicol. 1989, 27, 77–87. [Google Scholar] [CrossRef]
- Williams, G.M.; Arisseto, A.P.; Baines, J.; DiNovi, M.; Feeley, M.; Schlatter, J.; Slob, W.; Toledo, M.C.F.; Vavasour, E. Furan. In Safety Evaluation of Certain Contaminants in food. Prepared by the Seventy-Second Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series 63; WHO and FAO: Geneva, Switzerland, 2011. [Google Scholar]
- Moser, G.J.; Foley, J.; Burnett, M.; Goldsworthy, T.L.; Maronpot, R. Furan-induced dose–response relationships for liver cytotoxicity, cell proliferation, and tumorigenicity (furan-induced liver tumorigenicity). Exp. Toxicol. Pathol. 2009, 61, 101–111. [Google Scholar] [CrossRef]
- EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015, 13, 4302. [Google Scholar]
- Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V. Blood Cadmium and Lead and Chronic Kidney Disease in US Adults: A Joint Analysis. Am. J. Epidemiol. 2009, 170, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Abraham, K.; Mielke, H.; Lampen, A. Hazard characterization of 3-MCPD using benchmark dose modeling: Factors influencing the outcome. Eur. J. Lipid Sci. Technol. 2012, 114, 1225–1226. [Google Scholar] [CrossRef]
- Cho, W.S.; Han, B.S.; Nam, K.T.; Park, K.; Choi, M.; Kim, S.H.; Jeong, J.; Jang, D.D. Carcinogenicity study of 3-monochloropropane-1,2-diol in Sprague-Dawley rats. Food Chem. Toxicol. 2008, 46, 3172–3177. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the re-evaluation of caramel colours (E 150 a,b,c,d) as food additives. EFSA J. 2011, 9, 2004. [Google Scholar]
- National Toxicology Program. Toxicology and carcinogenesis studies of 4-methylimidazole (Cas No. 822-36-6) in F344/N rats and B6C3F1 mice (feed studies). Natl. Toxicol. Program Tech. Rep. Ser. 2007, 535, 1–274. [Google Scholar]
- Zeilmaker, M.J.; Bakker, M.I.; Schothorst, R.; Slob, W. Risk Assessment of N-nitrosodimethylamine Formed Endogenously after Fish-with-Vegetable Meals. Toxicol. Sci. 2010, 116, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Peto, R.; Gray, R.; Brantom, P.; Grasso, P. Dose and time relationships for tumor induction in the liver and esophagus of 4080 inbred rats by chronic ingestion of N-nitrosodiethylamine or N-nitrosodimethylamine. Cancer Res. 1991, 51, 6452–6469. [Google Scholar]
- Peto, R.; Gray, R.; Brantom, P.; Grasso, P. Effects on 4080 rats of chronic ingestion of N-nitrosodiethylamine or N-nitrosodimethylamine: A detailed dose-response study. Cancer Res. 1991, 51, 6415–6451. [Google Scholar]
- Barlow, S.; Bolger, M.; Pitt, J.I.; Verger, P. Ochratoxin A (addendum). In Safety Evaluation of Certain Contaminants in Food. Prepared by the Sixty-Eighth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); WHO Food Additives Series 59; WHO and FAO: Geneva, Switzerland, 1989. [Google Scholar]
- National Toxicology Program. Toxicology and Carcinogenesis Studies of Ochratoxin A (CAS No. 303-47-9) in F344/N Rats (Gavage Studies). Natl. Toxicol. Program Tech. Rep. Ser. 1989, 358, 1–142. [Google Scholar]
- E.M.A. Public Statement on the Use of Herbal Medicinal Products Containing Pulegone and Menthofuran. EMEA/HMPC/138386/2005; European Medicines Agency: London, UK, 2016.
- Martati, E.; Boersma, M.G.; Spenkelink, A.; Khadka, D.B.; Punt, A.; Vervoort, J.; Bladeren, P.J.; Rietjens, I.M. Physiologically based biokinetic (PBBK) model for safrole bioactivation and detoxification in rats. Chem. Res. Toxicol. 2011, 24, 818–834. [Google Scholar] [CrossRef]
- Boberg, E.W.; Miller, E.C.; Miller, J.A.; Poland, A.; Liem, A. Strong evidence from studies with brachymorphic mice and pentachlorophenol that 1’-sulfoöxysafrole is the major ultimate electrophilic and carcinogenic metabolite of 1’-hydroxysafrole in mouse liver. Cancer Res. 1983, 43, 5163–5173. [Google Scholar]
- Miller, E.C.; Swanson, A.B.; Phillips, D.H.; Fletcher, T.L.; Liem, A.; Miller, J.A. Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. Cancer Res. 1983, 43, 1124–1134. [Google Scholar]
- Burton, R.; Sheron, N. No level of alcohol consumption improves health. Lancet 2018, 392, 987–988. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.; Estruch, R. Alcohol and the global burden of disease. Lancet 2019, 393, 2390. [Google Scholar] [CrossRef] [Green Version]
- Room, R.; Babor, T.; Rehm, J. Alcohol and public health. Lancet 2005, 365, 519–530. [Google Scholar] [CrossRef]
- Rehm, J.; Room, R.; Monteiro, M.; Gmel, G.; Graham, K.; Rehn, N.; Sempos, C.T.; Jernigan, D. Alcohol as a risk factor for global burden of disease. Eur. Addict. Res. 2003, 9, 157–164. [Google Scholar] [CrossRef]
- Rehm, J.; Mathers, C.; Popova, S.; Thavorncharoensap, M.; Teerawattananon, Y.; Patra, J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009, 373, 2223–2233. [Google Scholar] [CrossRef]
- Bardach, A.E.; Alcaraz, A.O.; Ciapponi, A.; Garay, O.U.; Riviere, A.P.; Palacios, A.; Cremonte, M.; Augustovski, F. Alcohol consumption’s attributable disease burden and cost-effectiveness of targeted public health interventions: A systematic review of mathematical models. BMC Public Health 2019, 19, 1378. [Google Scholar] [CrossRef]
- Babor, T.; Holder, H.; Caetano, R.; Homel, R.; Casswell, S.; Livingston, M.; Edwards, G.; Österberg, E.; Giesbrecht, N.; Rehm, J.; et al. Strategies and interventions to reduce alcohol-related harm. In Alcohol: No Ordinary Commodity; Oxford University Press Inc.: New York, NY, USA, 2010; Volume 58, pp. 103–108. [Google Scholar]
- Rehm, J.; Lachenmeier, D.W.; Llopis, E.J.; Imtiaz, S.; Anderson, P. Evidence of reducing ethanol content in beverages to reduce harmful use of alcohol. Lancet Gastroenterol. Hepatol. 2016, 1, 78–83. [Google Scholar] [CrossRef]
- Segal, D.S.; Stockwell, T. Low alcohol alternatives: A promising strategy for reducing alcohol related harm. Int. J. Drug Policy 2009, 20, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Geller, E.S.; Kalsher, M.J.; Clarke, S.W. Beer versus mixed-drink consumption at fraternity parties: A time and place for low-alcohol alternatives. J. Stud. Alcohol 1991, 52, 197–204. [Google Scholar] [CrossRef] [PubMed]
Agent (IARC Group a) | Beverage Type | Concentration | Reference | |
---|---|---|---|---|
Average | Maximum | |||
Acetaldehyde in alcoholic beverages (1) | Beer | 9 mg/L | 63 mg/L | [4] |
Spirit | 66 mg/L | 1159 mg/L | ||
Wine | 34 mg/L | 211 mg/L | ||
Acrylamide b (2A) | Beer | 0–72 µg/kg | 363 µg/kg | [15,52] |
Aflatoxins (1) | Commercial beer | 0.002 µg/L | 0.230 µg/L | [17] |
Artisanal beer | 3.5 µg/L | 6.8 µg/L | [20] | |
Arsenic (1) | Beer | 0 µg/L | 102.4 µg/L | [1] |
Spirit | 13 µg/L | 27 µg/L | ||
Wine | 13 µg/L | 27 µg/L | ||
Benzene (1) | Beer | 10 µg/L | 20 µg/L | [1] |
Cadmium (1) | Beer | 0.9 µg/L | 14.3 µg/L | [1] |
Spirits | 6 µg/L | 40 µg/L | ||
Wine | 1.0 µg/L | 30 µg/L | ||
Ethanol (1) | Varies | 2% vol. | 80% vol. | [1] |
Ethyl carbamate (2A) | Beer | 0 µg/kg | 33 µg/kg | [53] |
Spirits | 93 µg/kg | 6730 | ||
Stone spirits | 744 µg/kg | 22,000 µg/kg | ||
Wine | 5 µg/kg | 180 µg/kg | ||
Formaldehyde (1) | Beer | 0 mg/L | 0 mg/L | [8] |
Spirits | 0.50 mg/L | 14.37 mg/L | ||
Wine | 0.13 mg/L | 1.15 mg/L | ||
Furan (2B) | Beer | 3.3 µg/kg | 28 µg/kg | [39] |
Glyphosate c (2A) | Beer | 0–30 µg/L | [1] | |
Lead compounds, inorganic (2A) | Beer | 2 µg/L | 15 µg/L | [54] |
Spirits | 31 µg/L | 600 µg/L | [1] | |
Wine | 57 µg/L | 236 µg/L | [55] | |
MCPD d (2B) | Beer | 0–14 µg/kg | [12] | |
4-Methylimidazole e (2B) | Beere | 9 µg/L | 28 µg/L | [56] |
Spirit | 0 µg/L | 0.014 µg/L | [57] | |
NMDA (2A) | Beer | 0.1 µg/kg | 1.3 µg/kg | [1] |
Ochratoxin A (2B) | Beer | 0.05 µg/L | 1.5 µg/L | [1] |
Wine | 0.23 µg/L | 7.0 µg/L | ||
Pulegone f (2B) | 10.5 mg/kg | 100 mg/kg | [49,58] | |
Safrole (2B) | Liqueurs, aperitifs, and bitters | ND | 6.6 mg/L | [51] |
Carcinogenic Agent | Modeling Toxicological Endpoint | Animal Model | Route/Mode of Exposure | BMDL a | |
---|---|---|---|---|---|
(mg/kg bw/Day) | Reference | ||||
Acetaldehyde | Animal tumors [60] | Male rats | Oral | 56 | [60] |
Acrylamide | Harderian gland tumors [63] | Mice | Oral | 0.18 | [64] |
Aflatoxin B1 | Cancer of the lungs in humans [65] | NA | Food | 0.00087 | [66] |
Arsenic | Cancer of the lungs in humans [67] | NA | Water | BMDL0.5: 0.003 | [68] |
Benzene | Human lymphocyte count [69] | NA | Inhalation extrapolated to oral | 1.2 b | [70] |
Cadmium | Human studies [70] | NA | Food | NOAEL: 0.01 c | [70] |
Ethanol | Hepatocellular adenoma or carcinoma [71] | Rats | Oral | 700 | [72,73] |
Ethyl carbamate | Bronchiolar alveolar carcinoma [74] | Mice | Oral | 0.3 | [73] |
Formaldehyde | The aerodigestive tract, comprising the oral and gastrointestinal mucosa, undergoes histological alterations [75] | Rats | Oral | NOEL: 15 c | [76] |
Furan | Adenomas and carcinomas of the liver [77] | Female mice | Oral | 0.96 | [78] |
Glyphosate b | There are no dose–response data for the cancer outcome | NOAEL: 50 | [79] | ||
Lead | Human cardiovascular effects [29] | NA | Diet | BMDL10: 0015 d | [80] |
3-MCPD | Hyperplasia of the tubules of the kidneys e [81] | Rats | Oral | 0.27 | [82] |
4-Methylimidazole | Lung cancer [83] | Mice | Oral | NOAEL: 80 c | [84] |
N-Nitrosodimethylamine | Hepatocellular carcinoma [85] | Oral | 0.029 | [86,87] | |
Ochratoxin A | Renal adeno-carcinoma [88] | Male rats | Oral | 0.025 | [89] |
Pulegone | Urinary bladder tumors [90] | Rats | Oral | LOAEL: 20 c | [49] |
Safrole | Hepatic tumors [91] | Mice | Oral | 3 f | [92,93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okaru, A.O.; Lachenmeier, D.W. Margin of Exposure Analyses and Overall Toxic Effects of Alcohol with Special Consideration of Carcinogenicity. Nutrients 2021, 13, 3785. https://doi.org/10.3390/nu13113785
Okaru AO, Lachenmeier DW. Margin of Exposure Analyses and Overall Toxic Effects of Alcohol with Special Consideration of Carcinogenicity. Nutrients. 2021; 13(11):3785. https://doi.org/10.3390/nu13113785
Chicago/Turabian StyleOkaru, Alex O., and Dirk W. Lachenmeier. 2021. "Margin of Exposure Analyses and Overall Toxic Effects of Alcohol with Special Consideration of Carcinogenicity" Nutrients 13, no. 11: 3785. https://doi.org/10.3390/nu13113785
APA StyleOkaru, A. O., & Lachenmeier, D. W. (2021). Margin of Exposure Analyses and Overall Toxic Effects of Alcohol with Special Consideration of Carcinogenicity. Nutrients, 13(11), 3785. https://doi.org/10.3390/nu13113785