Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results of the Systematic Review
3.1. Kaempferol
3.1.1. Preclinical Studies
3.1.2. Clinical Studies
3.2. Fisetin
Preclinical Studies
3.3. Myricetin
3.3.1. Preclinical Studies
3.3.2. Clinical Studies
4. Metabolism and Bioavailability
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rescigno, P.; Buonerba, C.; Bellmunt, J.; Sonpavde, G.; De Placido, S.; Di Lorenzo, G. New Perspectives in the Therapy of Castration Resistant Prostate Cancer. Curr. Drug Targets 2012, 13, 1676–1686. [Google Scholar] [CrossRef]
- Pagliuca, M.; Buonerba, C.; Fizazi, K.; Di Lorenzo, G. The Evolving Systemic Treatment Landscape for Patients with Advanced Prostate Cancer. Drugs 2019, 79, 381–400. [Google Scholar] [CrossRef]
- Park, I.; Lee, J.L. Systemic treatment for advanced urothelial cancer: An update on recent clinical trials and current treatment options. Korean J. Intern. Med. 2020, 35, 834–853. [Google Scholar] [CrossRef] [PubMed]
- Schröder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.J.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Prostate-cancer mortality at 11 years of follow-up. N. Engl. J. Med. 2012, 366, 981–990. [Google Scholar] [CrossRef]
- Bladder and Other Urothelial Cancers Screening (PDQ®): Health Professional Version; National Cancer Institute (US): Bethesda, MD, USA, 2002.
- Crocetto, F.; Arcaniolo, D.; Napolitano, L.; Barone, B.; La Rocca, R.; Capece, M.; Caputo, V.F.; Imbimbo, C.; De Sio, M.; Calace, F.P.; et al. Impact of Sexual Activity on the Risk of Male Genital Tumors: A Systematic Review of the Literature. Int. J. Environ. Res. Public Health 2021, 18, 8500. [Google Scholar] [CrossRef] [PubMed]
- Perdana, N.R.; Mochtar, C.A.; Umbas, R.; Hamid, A.R.A. The Risk Factors of Prostate Cancer and Its Prevention: A Literature Review. Acta Med. Indones. 2017, 48, 228–238. [Google Scholar]
- Tarantino, G.; Crocetto, F.; Vito, C.D.; Martino, R.; Pandolfo, S.D.; Creta, M.; Aveta, A.; Buonerba, C.; Imbimbo, C. Clinical factors affecting prostate-specific antigen levels in prostate cancer patients undergoing radical prostatectomy: A retrospective study. Futur. Sci. OA 2021, 7, FSO643. [Google Scholar] [CrossRef]
- Lenis, A.T.; Lec, P.M.; Chamie, K. MSHS MD Bladder Cancer: A Review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Crocetto, F.; Di Vito, C.; Creta, M.; Martino, R.; Pandolfo, S.D.; Pesce, S.; Napolitano, L.; Capone, D.; Imbimbo, C. Association of NAFLD and Insulin Resistance with Non Metastatic Bladder Cancer Patients: A Cross-Sectional Retrospective Study. J. Clin. Med. 2021, 10, 346. [Google Scholar] [CrossRef]
- Ferro, M.; Terracciano, D.; Buonerba, C.; Lucarelli, G.; Bottero, D.; Perdonà, S.; Autorino, R.; Serino, A.; Cantiello, F.; Damiano, R.; et al. The emerging role of obesity, diet and lipid metabolism in prostate cancer. Futur. Oncol. 2017, 13, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Al-Zalabani, A.H.; Stewart, K.F.J.; Wesselius, A.; Schols, A.M.W.J.; Zeegers, M.P. Modifiable risk factors for the prevention of bladder cancer: A systematic review of meta-analyses. Eur. J. Epidemiol. 2016, 31, 811–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, K.L. The Etiology of Prostate Cancer; Bott, S.R.J., Ng, K.L., Eds.; Exon Publications: Brisbane, Australia, 2021; ISBN 978-0-6450017-5-4. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Leo, C.-H.; Woodman, O.L. Flavonols in the Prevention of Diabetes-induced Vascular Dysfunction. J. Cardiovasc. Pharmacol. 2015, 65, 532–544. [Google Scholar] [CrossRef]
- Rauter, A.; Ennis, M.; Hellwich, K.-H.; Herold, B.; Horton, D.; Moss, G.; Schomburg, I. Nomenclature of flavonoids (IUPAC Recommendations 2017). Pure Appl. Chem. 2018, 90. [Google Scholar] [CrossRef] [Green Version]
- Perez-Vizcaino, F.; Duarte, J. Flavonols and cardiovascular disease. Mol. Asp. Med. 2010, 31, 478–494. [Google Scholar] [CrossRef]
- Guo, X.-F.; Ruan, Y.; Li, Z.-H.; Li, D. Flavonoid subclasses and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 2850–2862. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2014, 111, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zamora-Ros, R.; Sacerdote, C.; Ricceri, F.; Weiderpass, E.; Roswall, N.; Buckland, G.; St-Jules, D.E.; Overvad, K.; Kyrø, C.; Fagherazzi, G.; et al. Flavonoid and lignan intake in relation to bladder cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Cancer 2014, 111, 1870–1880. [Google Scholar] [CrossRef] [Green Version]
- Reale, G.; Russo, G.I.; Di Mauro, M.; Regis, F.; Campisi, D.; Giudice, A.L.; Marranzano, M.; Ragusa, R.; Castelli, T.; Cimino, S.; et al. Association between dietary flavonoids intake and prostate cancer risk: A case-control study in Sicily. Complement. Ther. Med. 2018, 39, 14–18. [Google Scholar] [CrossRef]
- Materska, M. Quercetin and Its Derivatives: Chemical Structure and Bioactivity—A Review. Polish J. food Nutr. Sci. 2008, 58, 407–413. [Google Scholar]
- Buonerba, C.; De Placido, P.; Bruzzese, D.; Pagliuca, M.; Ungaro, P.; Bosso, D.; Ribera, D.; Iaccarino, S.; Scafuri, L.; Liotti, A.; et al. Isoquercetin as an adjunct therapy in patients with kidney cancer receiving first-line sunitinib (QUASAR): Results of a phase I trial. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Zwicker, J.I.; Schlechter, B.L.; Stopa, J.D.; Liebman, H.A.; Aggarwal, A.; Puligandla, M.; Caughey, T.; Bauer, K.A.; Kuemmerle, N.; Wong, E.; et al. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases. Exp. Ther. Med. 2019, 18, 2759–2776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grynkiewicz, G.; Demchuk, O.M. New Perspectives for Fisetin. Front. Chem. 2019, 7, 697. [Google Scholar] [CrossRef] [PubMed]
- Verdoorn, B.P.; Evans, T.K.; Hanson, G.J.; Zhu, Y.; Langhi Prata, L.G.P.; Pignolo, R.J.; Atkinson, E.J.; Wissler-Gerdes, E.O.; Kuchel, G.A.; Mannick, J.B.; et al. Fisetin for COVID-19 in Skilled Nursing Facilities (COVID-FIS): Senolytic Trials in the COVID Era. J. Am. Geriatr. Soc. 2021. [Google Scholar] [CrossRef]
- Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A review of the most recent research. Biomed. Pharmacother. 2021, 134, 111017. [Google Scholar] [CrossRef]
- PRISMA 2020 Statement—An-Updated-Guideline-for-Reporting-Systematic-Reviews. 2021. Available online: http://prisma-statement.org/ (accessed on 15 August 2021).
- Da, J.; Xu, M.; Wang, Y.; Li, W.; Lu, M.; Wang, Z. Kaempferol promotes apoptosis while inhibiting cell proliferation via androgen-dependent pathway and suppressing vasculogenic mimicry and invasion in prostate cancer. Anal. Cell. Pathol. 2019, 2019, 1907698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, A.M.; Lin, H.; Meadows, G.G.; Meier, G.P. Synthesis and anticancer activity of new flavonoid analogs and inconsistencies in assays related to proliferation and viability measurements. Int. J. Oncol. 2014, 45, 831–842. [Google Scholar] [CrossRef]
- Gasmi, J.; Sanderson, J.T. Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells. J. Agric. Food Chem. 2010, 58, 12149–12156. [Google Scholar] [CrossRef]
- Pham, H.N.T.; Sakoff, J.A.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Comparative cytotoxic activity between kaempferol and gallic acid against various cancer cell lines. Data Br. 2018, 21, 1033–1036. [Google Scholar] [CrossRef]
- Dar, A.A.; Dangroo, N.A.; Raina, A.; Qayum, A.; Singh, S.; Kumar, A.; Sangwan, P.L. Biologically active xanthones from Codonopsis ovata. Phytochemistry 2016, 132, 102–108. [Google Scholar] [CrossRef]
- Wu, P.; Meng, X.; Zheng, H.; Zeng, Q.; Chen, T.; Wang, W.; Zhang, X.; Su, J. Kaempferol attenuates ROS-Induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules 2018, 23, 2592. [Google Scholar] [CrossRef] [Green Version]
- Dang, Q.; Song, W.; Xu, D.; Ma, Y.; Li, F.; Zeng, J.; Zhu, G.; Wang, X.; Chang, L.S.; He, D.; et al. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Mol. Carcinog. 2015, 54, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Knowles, L.M.; Zigrossi, D.A.; Tauber, R.A.; Hightower, C.; Milner, J.A. Flavonoids suppress androgen-independent human prostate tumor proliferation. Nutr. Cancer 2000, 38, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Ryu, K.; Park, J.; Jeon, D.K.; Jo, S.; Lee, H.K.; Namkung, W. Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS ONE 2017, 12, e0174935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.C.; Kuan, C.Y.; Yang, C.C.; Yang, S. Der Bioflavonoids commonly and potently induce tyrosine dephosphorylation/inactivation of oncogenic proline-directed protein kinase FA in human prostate carcinoma cells. Anticancer Res. 1998, 18, 1117–1121. [Google Scholar] [PubMed]
- Muñoz-Espada, A.C.; Watkins, B.A. Cyanidin attenuates PGE2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells. J. Nutr. Biochem. 2006, 17, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 2005, 280, 5636–5645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santel, T.; Pflug, G.; Hemdan, N.Y.A.; Schäfer, A.; Hollenbach, M.; Buchold, M.; Hintersdorf, A.; Linder, I.; Otto, A.; Bigl, M.; et al. Curcumin inhibits glyoxalase 1—A possible link to its anti-inflammatory and anti-tumor activity. PLoS ONE 2008, 3, e3508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandyopadhyay, S.; Romero, J.R.; Chattopadhyay, N. Kaempferol and quercetin stimulate granulocyte-macrophage colony-stimulating factor secretion in human prostate cancer cells. Mol. Cell. Endocrinol. 2008, 287, 57–64. [Google Scholar] [CrossRef]
- Qiu, W.; Lin, J.; Zhu, Y.; Zhang, J.; Zeng, L.; Su, M.; Tian, Y. Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cell. Physiol. Biochem. 2017, 41, 1325–1335. [Google Scholar] [CrossRef]
- Xie, F.; Su, M.; Qiu, W.; Zhang, M.; Guo, Z.; Su, B.; Liu, J.; Li, X.; Zhou, L. Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN. Int. J. Mol. Sci. 2013, 14, 21215–21226. [Google Scholar] [CrossRef]
- McCann, S.E.; Ambrosone, C.B.; Moysich, K.B.; Brasure, J.; Marshall, J.R.; Freudenheim, J.L.; Wilkinson, G.S.; Graham, S. Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in Western New York. Nutr. Cancer 2005, 53, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Geybels, M.S.; Verhage, B.A.J.; Arts, I.C.W.; Van Schooten, F.J.; Alexandra Goldbohm, R.; Van Den Brandt, P.A. Dietary flavonoid intake, black tea consumption, and risk of overall and advanced stage prostate cancer. Am. J. Epidemiol. 2013, 177, 1388–1398. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.; Gonzalez, C.A.; Agudo, A.; Riboli, E. High intake of specific carotenoids and flavonoids does not reduce the risk of bladder cancer. Nutr. Cancer 1999, 35, 212–214. [Google Scholar] [CrossRef]
- Rajaram, P.; Jiang, Z.; Chen, G.; Rivera, A.; Phasakda, A.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.-H. Nitrogen-containing derivatives of O-tetramethylquercetin: Synthesis and biological profiles in prostate cancer cell models. Bioorg. Chem. 2019, 87, 227–239. [Google Scholar] [CrossRef]
- Khan, M.I.; Adhami, V.M.; Lall, R.K.; Sechi, M.; Joshi, D.C.; Haidar, O.M.; Syed, D.N.; Siddiqui, I.A.; Chiu, S.-Y.; Mukhtar, H. YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin. Oncotarget 2014, 5, 2462–2474. [Google Scholar] [CrossRef]
- Khan, N.; Asim, M.; Afaq, F.; Abu Zaid, M.; Mukhtar, H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res. 2008, 68, 8555–8563. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, E.; Adhami, V.M.; Siddiqui, I.A.; Verma, A.K.; Mukhtar, H. Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells. Mol. Cancer Ther. 2016, 15, 2863–2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lall, R.K.; Syed, D.N.; Khan, M.I.; Adhami, V.M.; Gong, Y.; Lucey, J.A.; Mukhtar, H. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis. Carcinogenesis 2016, 37, 918–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharadwaj, A.G.; Rector, K.; Simpson, M.A. Inducible hyaluronan production reveals differential effects on prostate tumor cell growth and tumor angiogenesis. J. Biol. Chem. 2007, 282, 20561–20572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhtar, E.; Adhami, V.M.; Sechi, M.; Mukhtar, H. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett. 2015, 367, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szliszka, E.; Helewski, K.J.; Mizgala, E.; Krol, W. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int. J. Oncol. 2011, 39, 771–779. [Google Scholar] [CrossRef]
- Haddad, A.Q.; Fleshner, N.; Nelson, C.; Saour, B.; Musquera, M.; Venkateswaran, V.; Klotz, L. Antiproliferative mechanisms of the flavonoids 2,2′-dihydroxychalcone and fisetin in human prostate cancer cells. Nutr. Cancer 2010, 62, 668–681. [Google Scholar] [CrossRef]
- Khan, N.; Afaq, F.; Syed, D.N.; Mukhtar, H. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis 2008, 29, 1049–1056. [Google Scholar] [CrossRef] [Green Version]
- Haddad, A.Q.; Venkateswaran, V.; Viswanathan, L.; Teahan, S.J.; Fleshner, N.E.; Klotz, L.H. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis. 2006, 9, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Suh, Y.; Afaq, F.; Khan, N.; Johnson, J.J.; Khusro, F.H.; Mukhtar, H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis 2010, 31, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Chien, C.-S.; Shen, K.-H.; Huang, J.-S.; Ko, S.-C.; Shih, Y.-W. Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells. Mol. Cell. Biochem. 2010, 333, 169–180. [Google Scholar] [CrossRef]
- Ren, Q.; Cheng, L.; Guo, F.; Tao, S.; Zhang, C.; Ma, L.; Fu, P. Fisetin Improves Hyperuricemia-Induced Chronic Kidney Disease via Regulating Gut Microbiota-Mediated Tryptophan Metabolism and Aryl Hydrocarbon Receptor Activation. J. Agric. Food Chem. 2021. [Google Scholar] [CrossRef]
- Crocetto, F.; Boccellino, M.; Barone, B.; Di Zazzo, E.; Sciarra, A.; Galasso, G.; Settembre, G.; Quagliuolo, L.; Imbimbo, C.; Boffo, S.; et al. The Crosstalk between Prostate Cancer and Microbiota Inflammation: Nutraceutical Products Are Useful to Balance This Interplay? Nutrients 2020, 12, 2648. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, Y.; Qu, W.; Sun, Y.; Wang, Z.; Wang, H.; Tian, B. Fisetin, a Dietary Flavonoid, Induces Cell Cycle Arrest and Apoptosis through Activation of p53 and Inhibition of NF-Kappa B Pathways in Bladder Cancer Cells. Basic Clin. Pharmacol. Toxicol. 2011, 108, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qu, W.; Cheng, Y.; Sun, Y.; Jiang, Y.; Zou, T.; Wang, Z.; Xu, Y.; Zhao, H. The inhibitory effect of intravesical fisetin against bladder cancer by induction of p53 and down-regulation of NF-kappa B pathways in a rat bladder carcinogenesis model. Basic Clin. Pharmacol. Toxicol. 2014, 115, 321–329. [Google Scholar] [CrossRef]
- Makena, P.S.; Chung, K.-T. Effects of various plant polyphenols on bladder carcinogen benzidine-induced mutagenicity. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2007, 45, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Zhang, C.; Huang, H.; Yang, B.; Xiao, G.; Kong, D.; Tian, Q.; Song, Q.; Song, Y.; Tan, H.; et al. The Natural Compound Myricetin Effectively Represses the Malignant Progression of Prostate Cancer by Inhibiting PIM1 and Disrupting the PIM1/CXCR4 Interaction. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 48, 1230–1244. [Google Scholar] [CrossRef]
- Zhang, X.; Song, M.; Kundu, J.K.; Lee, M.-H.; Liu, Z.-Z. PIM Kinase as an Executional Target in Cancer. J. Cancer Prev. 2018, 23, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Zhang, Y.; Ye, X.; Xue, S.; Shi, J.; Pan, J.; Chen, Q. Inhibition effects and induction of apoptosis of flavonoids on the prostate cancer cell line PC-3 in vitro. Food Chem. 2013, 138, 48–53. [Google Scholar] [CrossRef]
- Chaudhary, A.; Willett, K.L. Inhibition of human cytochrome CYP 1 enzymes by flavonoids of St. John’s wort. Toxicology 2006, 217, 194–205. [Google Scholar] [CrossRef]
- Prasain, J.K.; Rajbhandari, R.; Keeton, A.B.; Piazza, G.A.; Barnes, S. Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells. Food Funct. 2016, 7, 4012–4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Zheng, X.Y.; Ye, J.; Wu, T.T.; Wang, J.L.; Chen, W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr. Cancer 2012, 64, 599–606. [Google Scholar] [CrossRef]
- Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 2020, 25, 4073. [Google Scholar] [CrossRef]
- DuPont, M.S.; Day, A.J.; Bennett, R.N.; Mellon, F.A.; Kroon, P.A. Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans. Eur. J. Clin. Nutr. 2004, 58, 947–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.-Y.; Lin, C.-C.; Hsieh, Y.-S.; Wu, Y.-T. Nanoformulation Development to Improve the Biopharmaceutical Properties of Fisetin Using Design of Experiment Approach. Molecules 2021, 26, 3031. [Google Scholar] [CrossRef]
- Shia, C.-S.; Tsai, S.-Y.; Kuo, S.-C.; Hou, Y.-C.; Chao, P.-D.L. Metabolism and pharmacokinetics of 3,3′,4′,7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites. J. Agric. Food Chem. 2009, 57, 83–89. [Google Scholar] [CrossRef]
- Dang, Y.; Lin, G.; Xie, Y.; Duan, J.; Ma, P.; Li, G.; Ji, G. Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability. Drug Res. (Stuttg). 2014, 64, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, G.D.; Pagliuca, M.; Perillo, T.; Zarrella, A.; Verde, A.; Placido, S.D.; Buonerba, C. Complete response and fatigue improvement with the combined use of cyclophosphamide and quercetin in a patient with metastatic bladder cancer a case report. Medicine 2016, 95. [Google Scholar] [CrossRef] [PubMed]
- Stopa, J.D.; Neuberg, D.; Puligandla, M.; Furie, B.; Flaumenhaft, R.; Zwicker, J.I. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI Insight 2017. [Google Scholar] [CrossRef]
- Perdomo, R.T.; Defende, C.P.; da Silva Mirowski, P.; Freire, T.V.; Weber, S.S.; Garcez, W.S.; da Rosa Guterres, Z.; de Fátima Cepa Matos, M.; Garcez, F.R. Myricitrin from Combretum lanceolatum Exhibits Inhibitory Effect on DNA-Topoisomerase Type IIα and Protective Effect Against In Vivo Doxorubicin-Induced Mutagenicity. J. Med. Food 2021, 24, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Buonerba, C.; Pond, G.R.; Sonpavde, G.; Federico, P.; Rescigno, P.; Puglia, L.; Bosso, D.; Virtuoso, A.; Policastro, T.; Izzo, M.; et al. Potential value of Gleason score in predicting the benefit of cabazitaxel in metastatic castration-resistant prostate cancer. Futur. Oncol. 2013, 9, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Tourinho-Barbosa, R.; Srougi, V.; Nunes-Silva, I.; Baghdadi, M.; Rembeyo, G.; Eiffel, S.S.; Barret, E.; Rozet, F.; Galiano, M.; Cathelineau, X.; et al. Biochemical recurrence after radical prostatectomy: What does it mean? Int. Braz J Urol 2018, 44, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinsenveld, F.J.; Boormans, J.L.; van der Poel, H.G.; van der Schoot, D.K.E.; Vis, A.N.; Aben, K.K.H.; Arends, T.J.; Ausems, P.J.; Baselmans, D.; Berger, C.; et al. Intermediate-term survival of robot-assisted versus open radical cystectomy for muscle-invasive and high-risk non-muscle invasive bladder cancer in The Netherlands. Urol. Oncol. 2021. [Google Scholar] [CrossRef]
- Ferro, M.; Di Lorenzo, G.; Vartolomei, M.D.; Bruzzese, D.; Cantiello, F.; Lucarelli, G.; Musi, G.; Di Stasi, S.; Hurle, R.; Guazzoni, G.; et al. Absolute basophil count is associated with time to recurrence in patients with high-grade T1 bladder cancer receiving bacillus Calmette–Guérin after transurethral resection of the bladder tumor. World J. Urol. 2020, 38, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entries Found 1 | Excluded | Included | |||||
---|---|---|---|---|---|---|---|
original work, but not experimental | not original work | not involving the single pure substance or the prostate/bladder cancer | Preclinical | Clinical | |||
Prostate cancer | Kaempferol | 53 | 3 | 6 | 25 | 17 | 2 |
Myricetin | 16 | 2 | 2 | 5 | 5 | 2 | |
Fisetin | 28 | 2 | 8 | 6 | 12 | 0 | |
Bladder cancer | Kaempferol | 13 | 1 | 4 | 4 | 4 | 1 |
Myricetin | 3 | 0 | 0 | 0 | 2 | 1 | |
Fisetin | 4 | 0 | 0 | 1 | 3 | 0 |
Flavonol (Kaempferol, Fisetin, Myricetin) | Model (Prostate vs. Bladder Cancers) | Cell Line | Assay | IC50 (uM) | Reference |
---|---|---|---|---|---|
Kaempferol | Prostate cancer | LNCaP | MTT assay | 28.8 ± 1.5 μM (with 1 nM DHT) | [33] |
PC-3 | 58.3 ± 3.5 μM (with 1 nM DHT) | ||||
RWPE-1 | 69.1 ± 1.2 μM (with 1 nM DHT) | ||||
DU-145 | Cell count with Trypan Blue | 38.35 ± 1.94 μM | [34] | ||
PC-3 | 33.29 ± 2.96 μM | ||||
LNCaP | WST-1 assay | 29 ± 6 μM | [35] | ||
DU-145 | MTT assay | 50 ± 0.00 μM | [36] | ||
PC-3 | WST-1 assay | 1.8 uM | [37] | ||
Bladder cancer | EJ | MTT assay | 54.7 μM | [38] | |
EJ | CCK-8 assay | 78.4 μM (T24 h) 38.1 μM (T48 h) | [47] | ||
T24 | 85.3 μM (T24 h) 54.2 μM (T48 h) | ||||
Fisetin | Prostate cancer | PC-3 | WST-1 assay | >50 μM | [52] |
DU-145 | >50 μM | ||||
LNCaP | 34.1 ± 7.7 μM | ||||
LNCaP | CyQuant cell proliferation assay | 22.65 μM | [62] | ||
PC-3 | 32.50 μM | ||||
Myricetin | Prostate cancer | PC-3 | CCK-8 assay | 47.6 μM | [68] |
DU-145 | 55.3 μM | ||||
C4-2 | 79.9 μM | ||||
RWPE1 | 362.1 μM | ||||
PC-3 | MTT assay | 94.48 μM | [70] | ||
Bladder cancer | SV-HUC SW-780 | CellTiterGlo reagent assay | >200 μM 20.9 μM | [72] | |
T24 | MTT assay | 85 μM | [73] |
Flavonol (Kaempferol, Fisetin, Myricetin) | Model (Prostate vs. Bladder Cancer) | Cell Line | Dose | Results | References |
---|---|---|---|---|---|
Kaempferol | Bladder cancer | 5637 | 50, 100, 150 mg/kg every day for 4 weeks | Tumor growth and metastasis suppression | [39] |
T24 | 150 mg/kg every day for 31 days | Tumor growth inhibition Tumor volume: control mice (≃3000 mm3) vs. Tumor volume in treated mice (≃1000 mm3) DNA methylation modulation by inhibiting DNMT3B | [47] | ||
Fisetin | Prostate cancer | NB26 | 1 mg/kg twice weekly for 28 days | Epithelial-to-mesenchymal transition inhibition | [53] |
CWR22Rυ1 | 1 mg/animal twice weekly for 46 days | Tumor growth inhibition Tumor reached a volume of 1200 mm3 after 26 days in control mice and after 46 days in treated mice-PSA secretion inhibition | [54] | ||
22Rν1 | 20 mg/kg; 3 times/week for 7 weeks | Tumor growth Inhibition by decreasing proliferation and inducing apoptosis Tumor volume: control mice (≃1800 mm3) vs. Tumor volume in treated mice (≃1300 mm3) Overall survival increase | [55] | ||
PC-3M-luc-6 | Tumor growth inhibition Tumor volume: control mice (≃600 mm3) vs. Tumor volume in treated mice (≃500 mm3)—Metastasis inhibition | ||||
NB11 NB26 | 40 mg/kg~1 mg/animal) twice weekly until tumors reached a volume of 1200 mm3 | Synthesis and degradation inhibition of hyaluronan, an enzyme involved in cancer progression | [56] | ||
Bladder cancer | Rat model of bladder cancer induced by intravesical N-methyl-N-nitrosourea | 200 mg/kg weekly for 18 weeks | Apoptosis induction | [66] | |
Myricetin | Prostate cancer | PC-3 | 25 mg/kg every 2 days for 40 days | Cancer growth inhibition Tumor volume: control mice (≃1800 mm3) vs. Tumor volume in treated mice (≃600 mm3)-Epithelial-to-mesenchymal transition inhibition | [68] |
Flavonol (Kaempferol, Fisetin, Myricetin) | Prostate vs. Bladder Cancer | Total Sample Size | Estimated Daily Intake (Mean) | Results (Report p) | References | ||
---|---|---|---|---|---|---|---|
Kaempferol | Prostate cancer | 433 men with primary, histologically confirmed prostate cancer and 538 population-based controls | µg/day | OR (95% CI) | OR (95% CI) Further adjusted for vegetable intake. | Cancer risk reduction | [49] |
<1447.5 | 1.00 | 1.00 | |||||
1447.5–2990.5 | 0.90 (0.63–1.27) | 0.90 (0.63–1.28) | |||||
2990.5–6056.8 | 0.73 (0.51–1.04) | 0.74 (0.52–1.07) | |||||
>6056.8 | 0.83 (0.58–1.18) | 0.85 (0.59–1.22) | |||||
3362 prostate cancer patients | 6.5 (4.4–9.4) mg/day Hazard ratios of stage IV prostate cancer for the highest versus the lowest quartile of intake of kaempferol: 0.78 (95% CI: 0.61, 1.00;) | Dietary intake was not associated with overall or nonadvanced prostate cancer risk; decreased risk of advanced (stage III/IV) or stage IV prostate cancer. | [50] | ||||
Bladder cancer | Cases(n = 495) | 0.97 ± 1.15 mg/day | Intake of kaempferol is not protective against bladder cancer risk | [53] | |||
Controls (n = 1112) | 1.03 ± 1.18 mg/day | ||||||
Myricetin | Prostate cancer | 3362 prostate cancer patients | 1.4 mg/day (0.9–2.0) Hazard ratios of stage IV prostate cancer for the highest versus the lowest quartile of intake of myricetin: 0.71 (95% CI: 0.55, 0.91). | Dietary intake was not associated with overall or nonadvanced prostate cancer risk; decreased risk of advanced (stage III/IV) or stage IV prostate cancer. | [50] | ||
Bladder cancer | Cases (n = 495) | 0.23 ± 0.35 mg/day 0.21 ± 0.34 mg/day | Intake of myricetin is not protective against bladder cancer risk. | [51] | |||
Controls (n = 1112) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crocetto, F.; di Zazzo, E.; Buonerba, C.; Aveta, A.; Pandolfo, S.D.; Barone, B.; Trama, F.; Caputo, V.F.; Scafuri, L.; Ferro, M.; et al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021, 13, 3750. https://doi.org/10.3390/nu13113750
Crocetto F, di Zazzo E, Buonerba C, Aveta A, Pandolfo SD, Barone B, Trama F, Caputo VF, Scafuri L, Ferro M, et al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients. 2021; 13(11):3750. https://doi.org/10.3390/nu13113750
Chicago/Turabian StyleCrocetto, Felice, Erika di Zazzo, Carlo Buonerba, Achille Aveta, Savio Domenico Pandolfo, Biagio Barone, Francesco Trama, Vincenzo Francesco Caputo, Luca Scafuri, Matteo Ferro, and et al. 2021. "Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature" Nutrients 13, no. 11: 3750. https://doi.org/10.3390/nu13113750
APA StyleCrocetto, F., di Zazzo, E., Buonerba, C., Aveta, A., Pandolfo, S. D., Barone, B., Trama, F., Caputo, V. F., Scafuri, L., Ferro, M., Cosimato, V., Fusco, F., Imbimbo, C., & Di Lorenzo, G. (2021). Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients, 13(11), 3750. https://doi.org/10.3390/nu13113750