Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Desing
2.2. Experimental Protocol and Assessment Plan
2.3. Body Composition and Anthropometric Measures
2.4. Dietary Assessment
2.5. Blood Collection and Analysis
2.6. Performance Testing
2.6.1. Aerobic
2.6.2. Anaerobic
2.7. Statistical Data Analyses
3. Results
4. Discussion
Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jeukendrup, A.E.; Craig, N.P.; Hawley, J.A. The bioenergetics of world class cycling. J. Sci. Med. Sport 2000, 3, 414–433. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D. Ergogenic Strategies for Optimizing Performance and Health in Regular Physical Activity Participants: Evaluation of the Efficacy of Compressive Cryotherapy, Exposure to Intermittent Hypoxia at Rest and Sectorized Training of the Inspiratory Muscles. Ph.D. Thesis, University of León, León, Spain, 2020. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=286163&info=resumen&idioma=SPA (accessed on 17 May 2021).
- Saw, A.; Halson, S.; Mujika, I. Monitoring athletes during training camps: Observations and translatable strategies from elite road cyclists and swimmers. Sports 2018, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.; Bangsbo, J.; Jensen, J.; Krause-Jensen, M.; Bibby, B.M.; Sollie, O.; Hall, U.A.; Madsen, K. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. J. Int. Soc. Sports Nutr. 2016, 13, 9. [Google Scholar] [CrossRef] [Green Version]
- Córdova, A.; Mielgo-Ayuso, J.; Fernandez-Lazaro, C.I.; Caballero-García, A.; Roche, E.; Fernández-Lázaro, D. Effect of iron supplementation on the modulation of iron metabolism, muscle damage biomarkers and cortisol in professional cyclists. Nutrients 2019, 11, 500. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 11, 501–528. [Google Scholar] [CrossRef]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur. J. Sport Sci. 2013, 13, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Harty, P.S.; Zabriskie, H.A.; Erickson, J.L.; Molling, P.E.; Kerksick, C.M.; Jagim, A.R. Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: A brief review. J. Int. Soc. Sports Nutr. 2018, 15, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Calleja-González, J.; Mielgo-Ayuso, J.; Sampaio, J.; Delextrat, A.; Ostojic, S.M.; Marques-Jiménez, D.; Arratibel, I.; Sánchez-Ureña, B.; Dupont, G.; Schelling, X.; et al. Brief ideas about evidence-based recovery in team sports. J. Exerc. Rehabil. 2018, 14, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.; Rosenbloom, C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr. Rev. 2018, 76, 243–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, K.; Getzin, A. Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [Green Version]
- Moriones, V.S.; Santos, J.I. Ergogenic aids in sport. Nutr. Hosp. 2017, 34, 204–215. [Google Scholar]
- Kaczka, P.; Batra, A.; Kubicka, K.; Maciejczyk, M.; Rzeszutko-Bełzowska, A.; Pezdan-Śliż, I.; Michałowska-Sawczyn, M.; Przydział, M.; Płonka, A.; Cięszczyk, P.; et al. Effects of p6e-workout multi-ingredient supplement on anaerobic performance: Randomized double-blind crossover study. Int. J. Environ. Res. Public Health 2020, 17, 8262. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Mandler, W.K.; Thomas, D.D.; Ward, E.G.; Kinsey, A.W.; Simonavice, E.; Panton, L.B.; Kim, J.S. The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men. J. Int. Soc. Sports Nutr. 2012, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Directo, D.; Wong, M.W.H.; Elam, M.L.; Falcone, P.; Osmond, A.; Jo, E. The effects of a multi-ingredient performance supplement combined with resistance training on exercise volume, muscular strength, and body composition. Sports 2019, 7, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Landa, J.; Fernández-Lázaro, D.; Calleja-González, J.; Caballero-García, A.; Córdova, A.; León-Guereño, P.; Mielgo-Ayuso, J. Long-term effect of combination of creatine monohydrate plus β-hydroxy β-methylbutyrate (HMB) on exercise-induced muscle damage and Anabolic/Catabolic hormones in elite male endurance athletes. Biomolecules 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Landa, J.; Fernández-Lázaro, D.; Calleja-González, J.; Caballero-García, A.; Córdova Martínez, A.; León-Guereño, P.; Mielgo-Ayuso, J. Effect of ten weeks of creatine monohydrate plus HMB supplementation on athletic performance tests in elite male endurance athletes. Nutrients 2020, 12, 193. [Google Scholar] [CrossRef] [Green Version]
- Lucía, A.; Hoyos, J.; Chicharro, J.L. Physiology of professional road cycling. Sports Med. 2001, 31, 325–337. [Google Scholar] [CrossRef]
- Arent, S.M.; Cintineo, H.P.; McFadden, B.A.; Chandler, A.J.; Arent, M.A. Nutrient timing: A garage door of opportunity? Nutrients 2020, 12, 1948. [Google Scholar] [CrossRef]
- Ivy, J.L.; Ferguson-Stegall, L.M. Nutrient timing: The means to improved exercise performance, recovery, and training adaptation. Am. J. Lifestyle Med. 2014, 8, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Kerksick, C.; Harvey, T.; Stout, J.; Campbell, B.; Wilborn, C.; Kreider, R.; Kalman, D.; Ziegenfuss, T.; Lopez, H.; Landis, J.; et al. International Society of Sports Nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2008, 5, 1–12. [Google Scholar]
- Lemon, P.W.R.; Berardi, J.M.; Noreen, E.E. The role of protein and amino acid supplements in the athlete’s diet: Does type or timing of ingestion matter? Curr. Sports Med. Rep. 2002, 1, 214–221. [Google Scholar] [CrossRef]
- Munteanu, A.M.; Manuc, D.; Caramoci, A.; Vasilescu, M.; Ionescu, A. Nutrition timing in top athletes. Sport Med. J. 2014, 10, 2357–2363. [Google Scholar]
- Spillane, M.; Schwarz, N.; Leddy, S.; Correa, T.; Minter, M.; Longoria, V.; Willoughby, D.S. Effects of 28 days of resistance exercise while consuming commercially available pre-and post-workout supplements, NO-Shotgun® and NO-Synthesize® on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers in males. Nutr. Metab. 2011, 8, 78. [Google Scholar]
- Ormsbee, M.J.; Thomas, D.D.; Mandler, W.K.; Ward, E.G.; Kinsey, A.W.; Panton, L.B.; Scheett, T.P.; Hooshmand, S.; Simonavice, E.; Kim, J.S. The effects of pre-and post-exercise consumption of multi-ingredient performance supplements on cardiovascular health and body fat in trained men after six weeks of resistance training: A stratified, randomized, double-blind study. Nutr. Metab. 2013, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielgo-Ayuso, J.; Maroto-Sánchez, B.; Luzardo-Socorro, R.; Palacios, G.; Palacios, N.; González-Gross, M.; EXERNET Study Group. Evaluation of nutritional status and energy expenditure in athletes. Rev. Esp. Nutr. Comunitaria 2015, 21, 225–234. [Google Scholar]
- Palacios Gil de Antuñano, N.; Manonelles Marqueta, P.; Blasco Redondo, R.; Contreras Fernández, C.; Franco Bonafonte, L.; Gaztañaga Aurrekoetxea, T.; Manuz González, B.; Teresa Galván, C.; del Valle Soto, M. Nutritional Supplements for the Athlete. Ergogenic aids in sport-2019. Consensus document of the Spanish Society of Sports Medicine. Arch. Med. Deporte 2019, 36, 7–83. [Google Scholar]
- European Food Safety Authority. Nutrition Applications: Regulations and Guidance. Available online: https://www.efsa.europa.eu/en/applications/nutrition/regulationsandguidance (accessed on 2 August 2021).
- U.S. Food and Drug Administration. Dietary Supplement Health and Education Act of 1994. Technical Report. 1994. Available online: https://ods.od.nih.gov/About/DSHEA_Wording.aspx (accessed on 2 August 2021).
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of sports medicine position stand: Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [PubMed] [Green Version]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; Ridder, H. International standards for anthropometric assessment. Int. Soc. Adv. Kinanthropometry 2011, 3, 50–53. [Google Scholar]
- Córdova, A.; Mielgo-Ayuso, J.; Roche, E.; Caballero-García, A.; Fernandez-Lázaro, D. Impact of magnesium supplementation in muscle damage of professional cyclists competing in a stage race. Nutrients 2019, 11, 1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Caballero-García, A.; Martínez, A.C.; Seco-Calvo, J.; Fernández-Lázaro, C.I. Compressive cryotherapy as a non-pharmacological muscle recovery strategy with no adverse effects in basketball. Arch. Med. Deporte 2020, 37, 183–190. [Google Scholar]
- World Anti-Doping Agency. Guidelines—Blood Sample Collection. 2016. Available online: https://www.wada-ama.org/en/resources/world-anti-doping-program/guidelines-blood-sample-collection (accessed on 7 July 2020).
- Córdova, A.; Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Seco-Calvo, J.; Caballero-García, A. Effect of magnesium supplementation on muscular damage markers in basketball players during a full season. J. Magnes. Res. 2017, 30, 61–70. [Google Scholar]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2016, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Eudy, A.E.; Gordon, L.L.; Hockaday, B.C.; Lee, D.A.; Lee, V.; Luu, D.; Martinez, C.A.; Ambrose, P.J. Efficacy and safety of ingredients found in preworkout supplements. Am. J. Heal. Pharm. 2013, 70, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Harty, P.S.; Camic, C.L. Common ingredient profiles of multi-ingredient pre-workout supplements. Nutrients 2019, 11, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Córodova, A.; Seco-Calvo, J. Iron and physical activity: Bioavailability enhancers, properties of black pepper (bioperine®) and potential applications. Nutrients 2020, 12, 1886. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Information for Consumers on Using Dietary Supplements|FDA. Available online: https://www.fda.gov/food/dietary-supplements/information-consumers-using-dietary-supplements (accessed on 3 August 2021).
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Calvo, J.S.; Martínez, A.C.; García, A.C.; Fernandez-Lazaro, C.I. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: A systematic review. Nutrients 2020, 12, 501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Lázaro, D.; Fernandez-Lazaro, C.I.; Mielgo-Ayuso, J.; Navascués, L.J.; Martínez, A.C.; Seco-Calvo, J. The role of selenium mineral trace element in exercise: Antioxidant defense system, muscle performance, hormone response, and athletic performance. A systematic review. Nutrients 2020, 12, 1790. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; González-Bernal, J.J.; Sánchez-Serrano, N.; Navascués, L.J.; Ascaso-del-Río, A.; Mielgo-Ayuso, J. Physical exercise as a multimodal tool for COVID-19: Could it be used as a preventive strategy? Int. J. Environ. Res. Public Health 2020, 17, 8496. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lázaro, D.; Gallego-Gallego, D.; Corchete, L.A.; Fernández Zoppino, D.; González-Bernal, J.J.; García Gómez, B.; Mielgo-Ayuso, J. Inspiratory muscle training program using the powerbreath®: Does it have ergogenic potential for respiratory and/or athletic performance? a systematic review with meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 6703. [Google Scholar] [CrossRef]
- Zaromskyte, G.; Prokopidis, K.; Ioannidis, T.; Tipton, K.D.; Witard, O.C. Evaluating the leucine trigger hypothesis to explain the post-prandial regulation of muscle protein synthesis in young and older adults: A systematic review. Front. Nutr. 2021, 8, 685165. [Google Scholar] [CrossRef]
- Suryawan, A.; Jeyapalan, A.S.; Orellana, R.A.; Wilson, F.A.; Nguyen, H.V.; Davis, T.A. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E868–E875. [Google Scholar] [CrossRef] [Green Version]
- Fye, H.; Pass, C.; Dickman, K.; Bredahl, E.; Eckerson, J.; Siedlik, J. The effect of a multi-ingredient pre-workout supplement on time to fatigue in NCAA division I cross-country athletes. Nutrients 2021, 13, 1823. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; McLellan, T.M.; Lieberman, H.R. The effects of protein supplements on muscle mass, strength, and aerobic and anaerobic power in healthy adults: A systematic review. Sports Med. 2015, 45, 111–131. [Google Scholar] [CrossRef]
- Jagim, A.R.; Jones, M.T.; Wright, G.A.; Antoine, C.S.; Kovacs, A.; Oliver, J.M. The acute effects of multi-ingredient pre-workout ingestion on strength performance, lower body power, and anaerobic capacity. J. Int. Soc. Sports Nutr. 2016, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, N.A.; McKinley-Barnard, S.K. Acute oral ingestion of a multi-ingredient preworkout supplement increases exercise performance and alters Postexercise hormone responses: A randomized crossover, double-blinded, placebo-controlled trial. J. Diet. Suppl. 2020, 17, 211–226. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E.; Cooper, R.; Jimenez, A.; Goss-Sampson, M. Effect of a carbohydrate-protein multi-ingredient supplement on intermittent sprint performance and muscle damage in recreational athletes. Appl. Physiol. Nutr. Metab. 2014, 39, 1151–1158. [Google Scholar] [CrossRef]
- Naclerio, F.; Larumbe-Zabala, E.; Cooper, R.; Allgrove, J.; Earnest, C.P. A multi-ingredient containing carbohydrate, proteins L-glutamine and L-carnitine attenuates fatigue perception with no effect on performance, muscle damage or immunity in soccer players. PLoS ONE 2015, 10, e0125188. [Google Scholar] [CrossRef]
- Figueiredo, C.; Lira, F.S.; Rossi, F.E.; Billaut, F.; Loschi, R.; Padilha, C.S. Multi-ingredient pre-workout supplementation changes energy system contribution and improves performance during high-intensity intermittent exercise in physically active individuals: A double-blind and placebo controlled study. J. Int. Soc. Sports Nutr. 2020, 17, 30. [Google Scholar] [CrossRef]
- Rhim, H.C.; Kim, S.J.; Park, J.; Jang, K.M. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis. J. Sport Health Sci. 2020, 9, 553–561. [Google Scholar] [CrossRef]
- Naclerio, F.; Seijo, M.; Earnest, C.P.; Puente-Fernández, J.; Larumbe-Zabala, E. Ingesting a Post-Workout Vegan-Protein Multi-Ingredient Expedites Recovery after Resistance Training in Trained Young Males. J. Diet. Suppl. 2020, 18, 698–713. [Google Scholar] [CrossRef]
- Cheng, I.-S.; Wang, Y.-W.; Chen, I.-F.; Hsu, G.-S.; Hsueh, C.-F.; Chang, C.-K. The supplementation of branched-chain amino acids, arginine, and citrulline improves endurance exercise performance in two consecutive days. J. Sports Sci. Med. 2016, 15, 509–515. [Google Scholar]
- Gervasi, M.; Sisti, D.; Amatori, S.; Zeppa, S.D.; Annibalini, G.; Piccoli, G.; Vallorani, L.; Benelli, P.; Rocchi, M.B.L.; Barbieri, E.; et al. Effects of a commercially available branched-chain amino acid-alanine-carbohydrate-based sports supplement on perceived exertion and performance in high intensity endurance cycling tests. J. Int. Soc. Sports Nutr. 2020, 17, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsueh, C.-F.; Wu, H.-J.; Tsai, T.-S.; Wu, C.-L.; Chang, C.-K. The effect of branched-chain amino acids, citrulline, and arginine on high-intensity interval performance in young swimmers. Nutrients 2018, 10, 1979. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wu, C.; Chen, I.; Chang, C. Prevention of perceptual-motor decline by branched-chain amino acids, arginine, citrulline after tennis match. Scand. J. Med. Sci. Sports 2017, 27, 935–944. [Google Scholar] [CrossRef]
- Chen, I.-F.; Wu, H.-J.; Chen, C.-Y.; Chou, K.-M.; Chang, C.-K. Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2016, 13, 28. [Google Scholar] [CrossRef] [Green Version]
- Puente-Fernández, J.; Seijo, M.; Larumbe-Zabala, E.; Jiménez, A.; Liguori, G.; Rossato, C.J.L.; Mayo, X.; Naclerio, F. Effects of multi-ingredient preworkout supplementation across a five-day resistance and endurance training microcycle in middle-aged adults. Nutrients 2020, 12, 3778. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Adams, D.P.; González-Bernal, J.J.; Araque, A.F.; García, A.C.; Fernandez-Lazaro, C.I. Electromyography: A simple and accessible tool to assess physical performance and health during hypoxia training. A systematic review. Sustainability 2020, 12, 9137. [Google Scholar] [CrossRef]
- Outlaw, J.J.; Wilborn, C.D.; Smith-Ryan, A.E.; Hayward, S.E.; Urbina, S.L.; Taylor, L.W.; Foster, C.A. Acute effects of a commercially-available pre-workout supplement on markers of training: A double-blind study. J. Int. Soc. Sports Nutr. 2014, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Van, R.T.; Van, K.P.; Vanden, B.E.; Puype, J.; Lefere, T.; Hespel, P. β-alanine improves sprint performance in endurance cycling. Med. Sci. Sports Exerc. 2009, 41, 898–903. [Google Scholar]
- Hoffman, J.; Ratamess, N.; Kang, J.; Mangine, G.; Faigenbaum, A.; Stout, J. Effect of creatine and ß-alanine supplementation on performance and endocrine responses in strength/power athletes. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 430–446. [Google Scholar] [CrossRef] [Green Version]
- Zoeller, R.F.; Stout, J.R.; O’kroy, J.A.; Torok, D.J.; Mielke, M. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids 2007, 33, 505–510. [Google Scholar] [CrossRef]
- Bassit, R.A.; da Justa Pinheiro, C.H.; Vitzel, K.F.; Sproesser, A.J.; Silveira, L.R.; Curi, R. Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur. J. Appl. Physiol. 2010, 108, 945–955. [Google Scholar] [CrossRef]
- Larsen, F.J.; Schiffer, T.A.; Borniquel, S.; Sahlin, K.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011, 13, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, D.N.D.; Bryk, F.F.; Fucs, P.M. Influence of nitric oxide in the improvement of muscle power. Acta Ortop. Bras. 2015, 23, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Sureda, A.; Córdova, A.; Ferrer, M.D.; Pérez, G.; Tur, J.A.; Pons, A. L-citrulline-malate influence over branched chain amino acid utilization during exercise. Eur. J. Appl. Physiol. 2010, 110, 341–351. [Google Scholar] [CrossRef]
- Collier, S.R.; Casey, D.P.; Kanaley, J.A. Growth hormone responses to varying doses of oral arginine. Growth Horm. IGF Res. 2005, 15, 136–139. [Google Scholar] [CrossRef]
- Kanaley, J.A. Growth hormone, arginine and exercise. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 50–54. [Google Scholar] [CrossRef]
- Zajac, A.; Poprzecki, S.; Zebrowska, A.; Chalimoniuk, M.; Langfort, J. Arginine and ornithine supplementation increases growth hormone and insulin-like growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletes. J. Strength Cond. Res. 2010, 24, 1082–1090. [Google Scholar] [CrossRef] [Green Version]
- Okovityi, S.V.; Shustov, E.B. Ornitine-dependent mechanisms of muscle fatigue correction and recovery from physical activity. Vopr. Kurortol. Fizioter. Lech. Fiz. Kult. 2020, 97, 74–83. [Google Scholar] [CrossRef]
- Eto, B.; Mod GLe Porquet, D.; Peres, G. Glutamate-arginine salts and hormonal responses to exercise. Arch. Physiol. Biochem. 1995, 103, 160–164. [Google Scholar] [CrossRef]
- Coqueiro, A.Y.; Rogero, M.M.; Tirapegui, J. Glutamine as an anti-fatigue amino acid in sports nutrition. Nutrients 2019, 11, 863. [Google Scholar] [CrossRef] [Green Version]
- Nakhostin-Roohi, B.; Javanamani, R.; Zardoost, N.; Ramazanzadeh, R. Influence of glutamine supplementation on muscle damage and oxidative stress indices following 14 km running. Hormozgan Med. J. 2016, 20, 323–331. [Google Scholar]
- Chen, Y.-M.; Li, H.; Chiu, Y.-S.; Huang, C.-C.; Chen, W.-C. Supplementation of L-Arginine, L-Glutamine, Vitamin C, Vitamin E, folic acid, and green tea extract enhances serum nitric oxide content and antifatigue activity in mice. Evid.-Based Complement. Alternat. Med. 2020, 1, 8312647. [Google Scholar] [CrossRef] [Green Version]
- Sutton, E.E.; Coll, M.R.; Deuster, P.A. Ingestion of tyrosine: Effects on endurance, muscle strength, and anaerobic performance. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 173–185. [Google Scholar] [CrossRef]
- Australian Institute of Sport. Supplements and Sports Foods in High Performance Sport. Available online: https://www.ais.gov.au/__data/assets/pdf_file/0014/1000841/Position-Statement-Supplements-and-Sports-Foods-abridged_v2.pdf (accessed on 10 October 2021).
- Fernández-Lázaro, D. Biological and molecular bases in the development of pathogenesis in multiple myeloma disease. Investig. Clin. 2019, 60, 247–264. [Google Scholar]
- Fernández-Lázaro, D.; Fernandez-Lazaro, C.I.; Caballero-García, A.; Córdova Martínez, A. Immunomodulatory agents (IMiDs): Tools for multiple myeloma treatment. Rev. Med. Chil. 2018, 146, 1444–1451. [Google Scholar] [CrossRef] [Green Version]
Control Group (CG) | PRE-MIPS Group | POST-MIPS Group | p | |
---|---|---|---|---|
Sample size (n) | 10 | 10 | 10 | |
Age (years) | 26.1 ± 4.6 | 25.7 ± 6.4 | 27.7 ± 2.4 | 0.801 |
Weight (kg) | 66.3 ± 4.6 | 65.9 ± 3.9 | 64.9 ± 4.7 | 0.833 |
Height (cm) | 176.1 ± 3.8 | 174.2 ± 4.3 | 172.2 ± 6.3 | 0.881 |
Σ6 skinfolds (mm) | 31.2 ± 4.5 | 32.4 ± 6.2 | 33.4 ± 7.2 | 0.911 |
Control Group (CG) | PRE-MIPS Group | POST-MIPS Group | p | |
---|---|---|---|---|
Sample size (n) | 10 | 10 | 10 | |
Energy (kcal) | 3175 ± 395 | 3190 ± 410 | 3268 ± 358 | 0.693 |
Energy (kcal/kg) | 43.1 ± 7.0 | 42.7 ± 6.3 | 41.0 ± 6.6 | 0.126 |
Protein (g) | 152.8 ± 25.6 | 150.5 ± 29.4 | 154.6 ± 25.5 | 0.786 |
Protein (%) | 16.2 ± 2.9 | 17.0 ± 3.2 | 16.9 ± 2.7 | 0.318 |
Protein (g/kg) | 1.7 ± 0.4 | 1.7 ± 0.7 | 1.8 ± 0.6 | 0.830 |
Animal protein (g) | 83.0 ± 25.3 | 83.1 ± 19.3 | 82.6 ± 24.6 | 0.531 |
Vegetal protein (g) | 57.4 ± 16.5 | 60.3 ± 19.1 | 59.3 ± 15.3 | 0.494 |
Fat (g) | 91.3 ± 21.8 | 93.8 ± 20.8 | 92.6 ± 21.0 | 0.252 |
Fat (%) | 26.5 ± 5.1 | 26.2 ± 4.8 | 25.6 ± 4.2 | 0.269 |
Fat (g/kg) | 1.3 ± 0.6 | 1.4 ± 0.6 | 1.2 ± 0.5 | 0.254 |
Total carbohydrates (g) | 552.9 ± 60.5 | 558.5 ± 58.2 | 560.2 ± 60.1 | 0.745 |
Carbohydrates (%) | 64.2 ± 4.7 | 64.8 ± 6.1 | 65.0 ± 5.2 | 0.720 |
Carbohydrates (g/kg) | 7.0 ± 1.2 | 7.1 ± 1.3 | 7.1 ± 1.1 | 0.980 |
Iron (Fe) (mg) | 33.3 ± 7.5 | 34.0 ± 6.9 | 33.9 ± 7.1 | 0.611 |
T1 | T2 | p (TXG) | η2p | |
---|---|---|---|---|
CREATINE KINASE (U/L) | ||||
CG * | 225.82 ± 117.82 | 336.83 ± 302.70 | 0.005 | 0.191 |
PRE-MIPS | 274.56 ± 267.12 | 238.89 ± 159.86 | ||
POST-MIPS * | 275.89 ± 189.28 | 163.89 ± 103.18 a | ||
LACTATE DEHYDROGENASE (U/L) | ||||
CG * | 391.19 ± 72.49 | 409.77 ± 73.90 | 0.008 | 0.201 |
PRE-MIPS | 342.43 ± 110.15 | 318.43 ± 100.53 | ||
POST-MIPS * | 357.68 ± 113.59 | 271.1212 ± 98.76 a | ||
MYOGLOBIN (ng·mL−1) | ||||
CG * | 21.60 ± 1.78 | 24.60 ± 2.08 | <0.001 | 0.197 |
PRE-MIPS | 24.43 ± 5.40 | 24.93 ± 5.10 | ||
POST-MIPS * | 25.43 ± 4.30 | 19.77 ± 4.74 a,b | ||
CORTISOL (µg·dL−1) | ||||
CG * | 18.16 ± 3.04 | 20.71 ± 3.96 | <0.001 | 0.329 |
PRE-MIPS | 19.86 ± 2.83 | 19.52 ± 2.99 | ||
POST-MIPS * | 21.31 ± 5.03 a | 15.67 ± 2.66 a,b | ||
TOTAL TESTOSTERONE (ng·dL−1) | ||||
CG * | 6.18 ± 1.33 | 5.87 ± 1.80 | <0.001 | 0.282 |
PRE-MIPS | 5.22 ± 1.37 | 5.41 ± 1.71 | ||
POST-MIPS * | 4.71 ± 1.04 | 5.66 ± 1.13 a | ||
TESTOSTERONE/CORTISOL RATIO | ||||
CG * | 0.34 ± 0.33 | 0.32 ± 0.88 | <0.001 | 0.300 |
PRE-MIPS | 0.27 ± 0.39 | 0.26 ± 0.76 | ||
POST-MIPS * | 0.22 ± 0.875 | 0.31 ± 0.62 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Lázaro, D.; Mielgo-Ayuso, J.; del Valle Soto, M.; Adams, D.P.; Gutiérrez-Abejón, E.; Seco-Calvo, J. Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial. Nutrients 2021, 13, 3746. https://doi.org/10.3390/nu13113746
Fernández-Lázaro D, Mielgo-Ayuso J, del Valle Soto M, Adams DP, Gutiérrez-Abejón E, Seco-Calvo J. Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial. Nutrients. 2021; 13(11):3746. https://doi.org/10.3390/nu13113746
Chicago/Turabian StyleFernández-Lázaro, Diego, Juan Mielgo-Ayuso, Miguel del Valle Soto, David P. Adams, Eduardo Gutiérrez-Abejón, and Jesús Seco-Calvo. 2021. "Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial" Nutrients 13, no. 11: 3746. https://doi.org/10.3390/nu13113746
APA StyleFernández-Lázaro, D., Mielgo-Ayuso, J., del Valle Soto, M., Adams, D. P., Gutiérrez-Abejón, E., & Seco-Calvo, J. (2021). Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial. Nutrients, 13(11), 3746. https://doi.org/10.3390/nu13113746