A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups
Abstract
:1. Introduction
1.1. Prediabetes and Its Subgroups
1.2. Proposed Mechanisms of Action of Plant Extracts on Prediabetes Subgroups
2. Human Clinical Trials Examining Effect of Plant Extracts on Glycemic Responses in the Prediabetes Cohort
Plant Extract | Study Design | Total Participant Analyzed and Gender N (Male:Female) | Treatment Dose | Duration | Glycemic Measurements | Findings | Adverse Events | Reference |
---|---|---|---|---|---|---|---|---|
Sajabalssuk (Artemisia princeps Pampanini) | RCT, parallel study | Prediabetes IFG 99 (42:57) | Placebo, positive control or 3000 mg/day | 9 weeks | FBG, FI, HOMA-IR, HbA1c, lipid profile (TG, TC, HDL, non-HDL, HTR, AI and PL), SBP, DBP, BMI, WHR, BFP, ALT and AST | Significant reduction in FBG and HbA1c compared to positive control, placebo and baseline. Significant reduction in HOMA-IR compared to placebo but not to positive control or baseline. No significant change in FI compared to positive control, placebo and baseline. Significant increase in HDL and decrease in non-HDL compared to positive control, placebo and baseline. Significant reduction in TC compared to positive control and baseline but not placebo. No significant changes in TG, HTR, AI, PL, SBP and DBP compared to positive control, placebo and baseline. No significant changes in BMI, WHR, BFP, ALT and AST compared to positive control, placebo and baseline. | Nil | [66] |
Sajabalssuk (Artemisia princeps Pampanini) | RCT, parallel study | Prediabetes IFG and borderline diabetic 80 (51:29) | Placebo or positive control | 8 weeks | FBG, FI, FCP, HOMA-IR, glucagon, HbA1c, FFA, ALT, AST, SBP and DBP | Significant reduction in FBG and HbA1c with both doses compared to baseline. No significant changes in FI, FCP, HOMA-IR, glucagon and DBP with both doses compared to baseline. Significant reduction in FFA and SBP with higher dose (4000 mg/day) compared to baseline. Significant reduction in AST with both doses compared to baseline and a significant reduction in AST with lower dose (2000 mg/day) compared to positive control, but no significant change in ALT with both doses compared to baseline. | Nil | [67] |
2000 mg/day | ||||||||
4000 mg/day | ||||||||
Elaeis guineensis leaf | Randomized, parallel study | Prediabetes IFG 28 (gender not specified) | 500 mg/day | 8 weeks | FBG, FI, insulin sensitivity (%), HOMA-IR, PG AUC, PI AUC, BW and WC | Significant reduction in FBG, FI, insulin sensitivity (%) and WC compared to baseline, but no significant changes in HOMA-IR, PG AUC, PI AUC and BW compared to baseline. | Light-headedness (n = 1) | [68] |
1000 mg/day | Significant reduction in PG AUC, PI AUC and WC compared to baseline but no significant changes to FBG, FI, HOMA-IR, insulin sensitivity (%) and BW compared to baseline. | |||||||
Ficus deltoidea leaf | Randomized, parallel study | 1000 mg/day | No significant changes observed. | |||||
Soy (Glycine max (L.) Merrill) leaf | RCT, parallel study | Overweight and prediabetes IFG 30 (16:14) | Placebo or 2000 mg/day | 12 weeks | FBG, FI, HOMA-IR, HbA1c, BW, BMI, WC, WHR, BFP, lipid profile (TG, TC, HDL, LDL, HTR, and AI), ALT, AST, SBP and DBP | Significant reduction in FBG, HOMA-IR, HbA1c, WC, BFP, TG, AI, ALT and AST compared to placebo but not when compared to baseline. Significant increase in HDL and HTR compared to placebo but not when compared to baseline. No significant changes in FI, BW, BMI, WHR, TC, LDL, SBP and DBP compared to placebo and baseline. | Nil | [69] |
Pterocarpan-high Soy (Glycine max (L.) Merrill) leaf | RCT, parallel study | Overweight and obese, with borderline metabolic syndrome and prediabetes IFG 49 (11:38) | Placebo or 2000 mg/day | 12 weeks | FBG, FI, HOMA-IR, HbA1c, BW, BMI, BFP, WHR, lipid profile (TG, FFA, TC, HDL, non-HDL, LDL, and AI), SBP, DBP, PAI-1, TNF-α, IL-6, MCP-1, adiponectin, and leptin, AST and ALT | Significant reduction in HOMA-IR and HbA1c compared to placebo and baseline. Significant reduction in FBG, FI, TC and SBP compared to baseline but not when compared to placebo. No significant changes to BW, BMI, BFP, WHR, DBP, AST and ALT compared to placebo and baseline. No significant changes to lipid profile except significant reductions in FFA and non-HDL compared to placebo and baseline. No significant changes to plasma adipokine and cytokine levels except significant reductions in PAI-1 and TNF-α compared to placebo and baseline, and significant reduction in IL-6 compared to baseline. | Nil | [70] |
White mulberry (Morus alba Linn.) leaf and white kidney bean extract | RCT, parallel study | Prediabetes, IFG 65 (25:40) | 1500 mg (500 mg mulberry extract with 10% DNJ, 1000 mg white kidney bean extract) | Acute | PG iAUC, PI iAUC, PCP iAUC | Significant reduction in PG iAUC, PI iAUC and PCP iAUC compared to control group in the acute study. | Not reported | [74] |
4500 mg/day | 4 weeks | No significant changes to PG iAUC, PI iAUC, PCP iAUC HOMA-IR, HbA1c, and GSP compared to control group in the chronic study | ||||||
White mulberry (Morus alba Linn.) leaf and onion extract | RCT, parallel study | Prediabetes IFG 46 (5:41) | Placebo or cooked rice coated with extract (8.8 mg DNJ) | Acute | PG and PG AUC | Significant reduction in PG and PG AUC compared to placebo. | Not reported | [71] |
White mulberry (Morus alba Linn.) leaf | RCT, parallel study | Prediabetes IFG 65 (43:22) | Placebo or extract with 6 mg DNJ | 12 weeks | FBG, FI, GA, 1,5AG, HbA1c | Significant reduction in HbA1c from week 4 and GA from week 8 compared to baseline, but not when compared to placebo. No significant changes in FBG and FI compared to baseline and placebo. Significant increase in 1,5 AG from week 4, 8 and 12 compared to baseline, and overall significant increase compared to placebo. | Nil | [72] |
White mulberry (Morus alba Linn.) leaf | RCT, parallel study | Prediabetes IFG 38 (15:23) | Placebo or 5000 mg/day (18 mg DNJ) | 4 weeks | PG and PG iAUC, PI and PI iAUC, PCP and PCP iAUC, ALT and AST | Significant reduction in PG and PI only at 30 min compared to placebo. Significant reduction in PCP at 30 and 60 min compared to placebo. No significant changes in PG iAUC, PCP iAUC, ALT and AST but only PI iAUC was significantly lower than placebo. | Nil | [73] |
Persimmon (Diospyros kaki) leaf | RCT, parallel study | Prediabetes IGT 68 (gender not specified) | Placebo or 2000 mg/day | 8 weeks | PG | Significant reduction in PG compared to placebo. | Not reported | [75] |
Citrus junos Tanaka peel | RCT, crossover study | Prediabetes IFG/IGT 35 (gender not specified) | Placebo, or 4250 mg/day | 8 weeks | FBG, FI, FCP, PG, HOMA-IR | Significant reduction in FBG, FI and HOMA-IR compared to placebo but not when compared to baseline. No significant change in PG compared to placebo or baseline. No significant change in FCP when compared to placebo but significant reduction in FCP when compared to baseline. | Nil | [76] |
Acacia. Mearnsii bark | RCT, parallel study | Prediabetes, IFG/IGT 34 (26:8) | Placebo, or 250 mg/day | 8 weeks | FBG, FI, HOMA-IR, PG and PG AUC and PI and PI AUC and HbA1c | Significant reduction in PG at 90 min and PI at 90 and 120 min compared to baseline. Significant reduction in PG at 120 min and PI at 90 min after 8 weeks compared to placebo. No significant changes in PG AUC and PI AUC compared to placebo but a significant reduction compared to baseline after 8 weeks. No significant changes in FBG, FI, HOMA-IR and HbA1c after 8 weeks compared to placebo and baseline. | Nil | [77] |
White mulberry (Morus alba Linn.) leaf | RCT, crossover study | Prediabetes IFG/IGT 10 (8:2) | Placebo | Acute | PG and PI | Not applicable. | Nil | [72] |
Extract with 3 mg DNJ | No significant change in PG compared to placebo but a significant reduction in PI at 30 min compared to placebo. | |||||||
Extract with 6 mg DNJ | Significant reduction in PG at 30 min and significant reduction in PI at 30 min compared to placebo. | |||||||
Extract with 9 mg DNJ | Significant reduction in PG at 30 min and significant reduction in PI at 30 min compared to placebo. |
3. Effectiveness of Plant Extracts on Glycemic Responses in the Prediabetes Subgroups
3.1. Hypoglycemic Effects of Plant Extracts on Impaired Fasting Glucose (IFG)
3.1.1. Artemisia princeps Pampanini
3.1.2. Elaeis guineensis Leaf
3.1.3. Ficus deltoidea Leaf
3.1.4. Soy (Glycine max (L.) Merrill) Leaf
3.1.5. White mulberry Leaf
3.2. Hypoglycemic Effects of Plant Extracts on Impaired Glucose Tolerance (IGT)
Persimmon Leaf
3.3. Hypoglycemic Effects of Plant Extracts on Combined Impaired Fasting Glucose and Impaired Glucose Tolerance (IFG/IGT)
3.3.1. Citrus junos Tanaka Peel
3.3.2. Acacia. mearnsii bark
3.3.3. White mulberry Leaf
4. Does Each Prediabetes Subgroup Benefit from Different Plant Extracts?
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; IDF: Brussels, Belgium, 2019. [Google Scholar]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.W.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandeira, S.D.M.; Da Fonseca, L.J.S.; Guedes, G.D.S.; Rabelo, L.A.; Goulart, M.O.F.; Vasconcelos, S.M.L. Oxidative Stress as an Underlying Contributor in the Development of Chronic Complications in Diabetes Mellitus. Int. J. Mol. Sci. 2013, 14, 3265–3284. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; Da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Bansal, N. Prediabetes diagnosis and treatment: A review. World J. Diabetes 2015, 6, 296–303. [Google Scholar] [CrossRef] [PubMed]
- The Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus; Seino, Y.; Nanjo, K.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. J. Diabetes Investig. 2010, 1, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Gerstein, H.C.; Santaguida, P.; Raina, P.; Morrison, K.; Balion, C.; Hunt, D.; Yazdi, H.; Booker, L. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: A systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pr. 2007, 78, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- Brannick, B.; Wynn, A.; Dagogo-Jack, S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp. Biol. Med. 2016, 241, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- Faerch, K.; Hulman, A.; Solomon, T. Heterogeneity of Pre-diabetes and Type 2 Diabetes: Implications for Prediction, Prevention and Treatment Responsiveness. Curr. Diabetes Rev. 2015, 12, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Kengne, A.P.; Ali, M. Issues in Defining the Burden of Prediabetes Globally. Curr. Diabetes Rep. 2018, 18, 105. [Google Scholar] [CrossRef]
- Færch, K.; Borch-Johnsen, K.; Holst, J.J.; Vaag, A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: Does it matter for prevention and treatment of type 2 diabetes? Diabetologia 2009, 52, 1714–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Haeften, T.W.; Pimenta, W.; Mitrakou, A.; Korytkowski, M.; Jenssen, T.; Yki-Jarvinen, H.; Gerich, J.E. Disturbances in beta-cell function in impaired fasting glycemia. Diabetes 2002, 51, S265–S270. [Google Scholar] [CrossRef] [Green Version]
- Writing Committee; Unwin, N.; Shaw, J.; Zimmet, P.; Alberti, K.G.M.M. Impaired glucose tolerance and impaired fasting glycaemia: The current status on definition and intervention. Diabet. Med. 2002, 19, 708–723. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Lindstrom, J.; Keinanen-Kiukaanniemie, S.; Hiltunen, L.; Kivela, S.L.; Gallus, G.; Garancini, M.P.; Schranz, A.; Bouter, L.M.; Dekker, J.M.; et al. Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care 2003, 26, 61–69. [Google Scholar]
- Shaw, J.E.; Zimmet, P.Z.; De Courten, M.; Dowse, G.K.; Chitson, P.; Gareeboo, H.; Hemraj, F.; Fareed, D.; Tuomilehto, J.; Alberti, K.G. Impaired fasting glucose or impaired glucose tolerance. What best predicts future diabetes in Mauritius? Diabetes Care 1999, 22, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, M.A.; DeFronzo, R.A. Pathophysiology of prediabetes. Curr. Diabetes Rep. 2009, 9, 193–199. [Google Scholar] [CrossRef]
- DECODA Study Group. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care 2003, 26, 1770–1780. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Reaven, G.M. Isolated Impaired Fasting Glucose and Peripheral Insulin Sensitivity: Not a simple relationship. Diabetes Care 2007, 31, 347–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Ghani, M.A.; Jenkinson, C.P.; Richardson, D.K.; Tripathy, D.; DeFronzo, R.A. Insulin Secretion and Action in Subjects With Impaired Fasting Glucose and Impaired Glucose Tolerance: Results From the Veterans Administration Genetic Epidemiology Study. Diabetes 2006, 55, 1430–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanefeld, M.; Koehler, C.; Fuecker, K.; Henkel, E.; Schaper, F.; Temelkova-Kurktschiev, T. Insulin Secretion and Insulin Sensitivity Pattern Is Different in Isolated Impaired Glucose Tolerance and Impaired Fasting Glucose: The Risk Factor in Impaired Glucose Tolerance for Atherosclerosis and Diabetes Study. Diabetes Care 2003, 26, 868–874. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Ghani, A.M.; Tripathy, D.; De Fronzo, R.A. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006, 29, 1130–1139. [Google Scholar] [CrossRef]
- Kanat, M.; Mari, A.; Norton, L.; Winnier, D.; DeFronzo, R.A.; Jenkinson, C.; Abdul-Ghani, M.A. Distinct beta-Cell Defects in Impaired Fasting Glucose and Impaired Glucose Tolerance. Diabetes 2012, 61, 447–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; Heine, R.J.; Henry, R.R.; Pratley, R.; Zinman, B. Impaired Fasting Glucose and Impaired Glucose Tolerance: Implications for care. Diabetes Care 2007, 30, 753–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Færch, K.; Vaag, A.; Holst, J.J.; Glümer, C.; Pedersen, O.; Borch-Johnsen, K. Impaired fasting glycaemia vs impaired glucose tolerance: Similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia 2008, 51, 853–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Festa, A.; D’Agostino, R.; Hanley, A.J.; Karter, A.J.; Saad, M.F.; Haffner, S.M. Differences in Insulin Resistance in Nondiabetic Subjects with Isolated Impaired Glucose Tolerance or Isolated Impaired Fasting Glucose. Diabetes 2004, 53, 1549–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, C.; Pimenta, W.; Woerle, H.J.; Van Haeften, T.; Szoke, E.; Mitrakou, A.; Gerich, J. Different Mechanisms for Impaired Fasting Glucose and Impaired Postprandial Glucose Tolerance in Humans. Diabetes Care 2006, 29, 1909–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schianca, G.P.C.; Rossi, A.; Sainaghi, P.P.; Maduli, E.; Bartoli, E. The Significance of Impaired Fasting Glucose Versus Impaired Glucose Tolerance: Importance of insulin secretion and resistance. Diabetes Care 2003, 26, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Weyer, C.; Bogardus, C.; Pratley, R.E. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 1999, 48, 2197–2203. [Google Scholar] [CrossRef] [PubMed]
- Wasada, T.; Kuroki, H.; Katsumori, K.; Arii, H.; Sato, A.; Aoki, K.; Jimba, S.; Hanai, G. Who are more insulin resistant, people with IFG or people with IGT? Diabetologia 2004, 47, 759–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, G.; Chittilapilly, E.; Basu, R.; Toffolo, G.; Cobelli, C.; Chandramouli, V.; Landau, B.R.; Rizza, R.A. Contribution of Hepatic and Extrahepatic Insulin Resistance to the Pathogenesis of Impaired Fasting Glucose: Role of Increased Rates of Gluconeogenesis. Diabetes 2007, 56, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Godsland, I.F.; Jeffs, J.A.R.; Johnston, D.G. Loss of beta cell function as fasting glucose increases in the non-diabetic range. Diabetologia 2004, 47, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Kanat, M.; Norton, L.; Winnier, D.; Jenkinson, C.; DeFronzo, R.A.; Abdul-Ghani, M.A. Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol. 2011, 48, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Ahren, B.; Larsson, H. Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia 2001, 44, 1998–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Båvenholm, P.N.; Pigon, J.; Östenson, C.-G.; Efendic, S. Insulin Sensitivity of Suppression of Endogenous Glucose Production Is the Single Most Important Determinant of Glucose Tolerance. Diabetes 2001, 50, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.; Hemmingsen, B.; Metzendorf, M.-I.; Takwoingi, Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst. Rev. 2018, 10, CD012661. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, M.; DeFronzo, R.A. Fasting Hyperglycemia Impairs Glucose- But Not Insulin-Mediated Suppression of Glucagon Secretion. J. Clin. Endocrinol. Metab. 2007, 92, 1778–1784. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res. 2013, 57, 48–57. [Google Scholar] [CrossRef]
- Cheynier, V. Polyphenols in foods are more complex than often thought. Am. J. Clin. Nutr. 2005, 81, 223S–229S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, B.; Picconi, F.; Malandrucco, I.; Frontoni, S. Flavonoids and Insulin-Resistance: From Molecular Evidences to Clinical Trials. Int. J. Mol. Sci. 2019, 20, 2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton-Freeman, B.; Brzeziński, M.; Park, E.; Sandhu, A.; Xiao, D.; Edirisinghe, I. A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients 2019, 11, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [Google Scholar] [CrossRef]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Yang, C.; Wai, S.T.C.; Zhang, Y.; Portillo, M.P.; Paoli, P.; Wu, Y.; Cheang, W.S.; Liu, B.; Carpéné, C.; et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2018, 59, 830–847. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Johnson, I.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Martel, F.; Monteiro, R.; Calhau, C. Effect of polyphenols on the intestinal and placental transport of some bioactive compounds. Nutr. Res. Rev. 2010, 23, 47–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, B.J.; Högger, P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2015, 22, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S.; Varghese, G.K. The antidiabetic therapeutic potential of dietary polyphenols. Curr. Pharm. Biotechnol. 2014, 15, 391–400. [Google Scholar] [CrossRef]
- Potenza, M.V.; Mechanick, J.I. The Metabolic Syndrome: Definition, Global Impact, and Pathophysiology. Nutr. Clin. Pract. 2009, 24, 560–577. [Google Scholar] [CrossRef]
- Tahrani, A.; Barnett, A.A.T.A.H.; Bailey, C.J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2016, 12, 566–592. [Google Scholar] [CrossRef] [Green Version]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Gui, M.H.; Gu, W.Q.; Zhang, Y.F.; Xu, M.; Chi, Z.N.; Zhang, Y.; Li, X.Y.; Wang, W.Q.; Ning, G. Differences in insulin resistance and pancreatic B-cell function in obese subjects with isolated impaired glucose tolerance and isolated impaired fasting glucose. Diabet. Med. 2008, 25, 73–79. [Google Scholar]
- Tanveer, A.; Akram, K.; Farooq, U.; Hayat, Z.; Shafi, A. Management of diabetic complications through fruit flavonoids as a natural remedy. Crit. Rev. Food Sci. Nutr. 2017, 57, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Oliveira, P.F.; Casal, S.; Alves, M.; Dias, T. Promising Potential of Dietary (Poly)Phenolic Compounds in the Prevention and Treatment of Diabetes Mellitus. Curr. Med. Chem. 2017, 24, 334–354. [Google Scholar] [CrossRef] [PubMed]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.; O’Grada, C.; Ryan, M.; Roche, H.; Gibney, M.J.; Gibney, E.R.; Brennan, L. Identification of Differential Responses to an Oral Glucose Tolerance Test in Healthy Adults. PLoS ONE 2013, 8, e72890. [Google Scholar] [CrossRef]
- Krishnan, S.; Newman, J.W.; Hembrooke, T.A.; Keim, N.L. Variation in metabolic responses to meal challenges differing in glycemic index in healthy women: Is it meaningful? Nutr. Metab. 2012, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Dagogo-Jack, S.; Askari, H.; Tykodi, G. Glucoregulatory Physiology in Subjects with Low-Normal, High-Normal, or Impaired Fasting Glucose. J. Clin. Endocrinol. Metab. 2009, 94, 2031–2036. [Google Scholar] [CrossRef]
- Kabisch, S.; Meyer, N.M.T.; Honsek, C.; Gerbracht, C.; Dambeck, U.; Kemper, M.; Osterhoff, M.A.; Birkenfeld, A.L.; Arafat, A.M.; Hjorth, M.F.; et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019, 11, 2385. [Google Scholar] [CrossRef] [Green Version]
- Mohan, R.; Jose, S.; Mulakkal, J.; Karpinsky-Semper, D.; Swick, A.G.; Krishnakumar, I.M. Water-soluble polyphenol-rich clove extract lowers pre- and post-prandial blood glucose levels in healthy and prediabetic volunteers: An open label pilot study. BMC Complement. Altern. Med. 2019, 19, 99. [Google Scholar] [CrossRef]
- Shoji, T.; Yamada, M.; Miura, T.; Nagashima, K.; Ogura, K.; Inagaki, N.; Maeda-Yamamoto, M. Chronic administration of apple polyphenols ameliorates hyperglycaemia in high-normal and borderline subjects: A randomised, placebo-controlled trial. Diabetes Res. Clin. Pr. 2017, 129, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-Y.; Baek, N.-I.; Chung, H.-G.; Jeong, T.-S.; Lee, K.T.; Jeon, S.-M.; Kim, H.-J.; McGregor, R.A.; Choi, M.-S. Randomized controlled trial of Sajabalssuk (Artemisia princeps Pampanini) to treat pre-diabetes. Eur. J. Integr. Med. 2012, 4, e299–e308. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Shin, S.-K.; Jeon, S.-M.; Baek, N.-I.; Chung, H.-G.; Jeong, T.-S.; Lee, K.T.; Lee, M.-K.; Choi, M.-S. Dose–Response Study of Sajabalssuk Ethanol Extract from Artemisia princeps Pampanini on Blood Glucose in Subjects with Impaired Fasting Glucose or Mild Type 2 Diabetes. J. Med. Food 2011, 14, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Kalman, D.S.; Schwartz, H.I.; Feldman, S.; Krieger, D.R. Efficacy and safety of Elaeis guineensis and Ficus deltoidea leaf extracts in adults with pre-diabetes. Nutr. J. 2013, 12, 36. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.-S.; Ryu, R.; Seo, Y.R.; Jeong, T.-S.; Shin, D.-H.; Park, Y.B.; Kim, S.R.; Jung, U.J. The beneficial effect of soybean (Glycine max (L.) Merr.) leaf extracts in adults with prediabetes: A randomized placebo controlled trial. Food Funct. 2014, 5, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Ryu, R.; Jeong, T.-S.; Kim, Y.J.; Choi, J.-Y.; Cho, S.-J.; Kwon, E.-Y.; Jung, U.J.; Ji, H.-S.; Shin, D.-H.; Choi, M.-S. Beneficial Effects of Pterocarpan-High Soybean Leaf Extract on Metabolic Syndrome in Overweight and Obese Korean Subjects: Randomized Controlled Trial. Nutrients 2016, 8, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.H.; Li, H.M.; Lim, S.S.; Wang, Z.; Hong, J.S.; Huang, B. Evaluation of a Standardized Extract from Morus alba against alpha-Glucosidase Inhibitory Effect and Postprandial Antihyperglycemic in Patients with Impaired Glucose Tolerance: A Randomized Double-Blind Clinical Trial. Evid.-Based Complementary Altern. Med. 2016, 2016, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asai, A.; Nakagawa, K.; Higuchi, O.; Kimura, T.; Kojima, Y.; Kariya, J.; Miyazawa, T.; Oikawa, S. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. J. Diabetes Investig. 2011, 2, 318–323. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ok, H.M.; Kim, J.; Park, S.W.; Kwon, S.W.; Kwon, O. Mulberry Leaf Extract Improves Postprandial Glucose Response in Prediabetic Subjects: A Randomized, Double-Blind Placebo-Controlled Trial. J. Med. Food 2014, 18, 306–313. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Guo, H.; Zhao, A.; Shao, D.; Dong, Z.; Sun, Y.; Fan, Y.; Yang, F.; Li, P.; et al. Effects of mulberry leaf and white kidney bean extract mix on postprandial glycaemic control in pre-diabetic subjects aged 45–65 years: A randomized controlled trial. J. Funct. Foods 2020, 73, 104117. [Google Scholar] [CrossRef]
- Khan, M.M.; Tran, B.Q.; Jang, Y.-J.; Park, S.-H.; Fondrie, W.E.; Chowdhury, K.; Yoon, S.H.; Goodlett, D.R.; Chae, S.-W.; Chae, H.-J.; et al. Assessment of the Therapeutic Potential of Persimmon Leaf Extract on Prediabetic Subjects. Mol. Cells 2017, 40, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.-T.; Yang, H.J.; Ha, K.-C.; So, B.-O.; Choi, E.-K.; Chae, S.-W. A randomized, double-blind, placebo-controlled clinical trial to investigate the anti-diabetic effect of Citrus junos Tanaka peel. J. Funct. Foods 2015, 18, 532–537. [Google Scholar] [CrossRef]
- Ogawa, S.; Matsumae, T.; Kataoka, T.; Yazaki, Y.; Yamaguchi, H. Effect of acacia polyphenol on glucose homeostasis in subjects with impaired glucose tolerance: A randomized multicenter feeding trial. Exp. Ther. Med. 2013, 5, 1566–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, U.J.; Baek, N.I.; Chung, H.G.; Bang, M.H.; Yoo, J.S.; Jeong, T.S.; Lee, K.T.; Kang, Y.J.; Lee, M.K.; Kim, H.J.; et al. The anti-diabetic effects of ethanol extract from two variants of Artemisia princeps Pampanini in C57BL/KsJ-db/db mice. Food Chem. Toxicol. 2007, 45, 2022–2029. [Google Scholar] [CrossRef]
- Kim, M.-J.; Han, J.-M.; Jin, Y.-Y.; Baek, N.-I.; Bang, M.-H.; Chung, H.-G.; Choi, M.-S.; Lee, K.-T.; Sok, D.-E.; Jeong, T.-S. In Vitro antioxidant and anti-inflammatory activities of Jaceosidin from Artemisia princeps Pampanini cv. Sajabal. Arch. Pharmacal Res. 2008, 31, 429–437. [Google Scholar] [CrossRef]
- Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M.-L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol. 2002, 82, 97–103. [Google Scholar] [CrossRef]
- Tahraoui, A.; EL Hilaly, J.; Israili, Z.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol. 2007, 110, 105–117. [Google Scholar] [CrossRef]
- Ryu, S.N.; Han, S.S.; Yang, J.J.; Jeong, H.G.; Kang, S.S. Variation of eupatilin and jaceosidin content of mugwort. Korean J. Crop. Sci. 2005, 50, 204–207. [Google Scholar]
- Kang, Y.J.; Jung, U.J.; Lee, M.K.; Kim, H.J.; Jeon, S.M.; Park, Y.B.; Chung, H.G.; Baek, N.I.; Lee, K.T.; Jeong, T.S.; et al. Eupatilin, isolated from Artemisia princeps Pampanini, enhances hepatic glucose metabolism and pancreatic beta-cell function in type 2 diabetic mice. Diabetes Res. Clin. Pract. 2008, 82, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Kanemoto, Y.; Ueda, M.; Kawasaki, K.; Fukuda, I.; Ashida, H. Anti-obesity and anti-diabetic effects of ethanol extract of Artemisia princeps in C57BL/6 mice fed a high-fat diet. Food Funct. 2011, 2, 45–52. [Google Scholar] [CrossRef]
- Rosalina Tan, R.T.; Mohamed, S.; Samaneh, G.F.; Noordin, M.M.; Goh, Y.M.; Manap, M.Y. Polyphenol rich oil palm leaves extract reduce hyperglycaemia and lipid oxidation in STZ-rats. Int. Food Res. J. 2011, 18, 179–188. [Google Scholar]
- Rajavel, V.; Sattar, M.Z.A.; Abdulla, M.A.; Kassim, N.M.; Abdullah, N.A. Chronic Administration of Oil Palm (Elaeis guineensis) Leaves Extract Attenuates Hyperglycaemic-Induced Oxidative Stress and Improves Renal Histopathology and Function in Experimental Diabetes. Evid.-Based Complement. Altern. Med. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jaffri, J.M.; Mohamed, S.; Rohimi, N.; Ahmad, I.N.; Noordin, M.M.; Manap, M.Y.A. Antihypertensive and Cardiovascular Effects of Catechin-Rich Oil Palm (Elaeis guineensis) Leaf Extract in Nitric Oxide–Deficient Rats. J. Med. Food 2011, 14, 775–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahir, N.I.; Shaari, K.; Abas, F.; Parveez, G.K.A.; Ishak, Z.; Ramli, U.S. Characterization of Apigenin and Luteolin Derivatives from Oil Palm (Elaeis guineensis Jacq.) Leaf Using LC–ESI-MS/MS. J. Agric. Food Chem. 2012, 60, 11201–11210. [Google Scholar] [CrossRef]
- Abeywardena, M.; Runnie, I.; Nizar, M.; Head, R.; Momamed, S. Polyphenol-enriched extract of oil palm fronds (Elaeis guineensis) promotes vascular relaxation via endothelium-dependent mechanisms. Asia Pac. J. Clin. Nutr. 2002, 11, S467–S472. [Google Scholar] [CrossRef]
- Choi, J.S.; Islam, N.; Ali, Y.; Kim, E.J.; Kim, Y.M.; Jung, H.A. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food Chem. Toxicol. 2014, 64, 27–33. [Google Scholar] [CrossRef]
- Ruiz, P.A.; Haller, D. Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappa B, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J. Nutr. 2006, 136, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Bunawan, H.; Amin, N.M.; Bunawan, S.N.; Baharum, S.N.; Noor, N.M. Ficus deltoideaJack: A Review on Its Phytochemical and Pharmacological Importance. Evid.-Based Complement. Altern. Med. 2014, 2014, 902734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakiman, M.; Maziah, M. Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus deltoidea accessions. J. Med. Plants Res. 2009, 3, 120–131. [Google Scholar]
- Omar, M.H.; Mullen, W.; Crozier, A. Identification of Proanthocyanidin Dimers and Trimers, Flavone C-Glycosides, and Antioxidants in Ficus deltoidea, a Malaysian Herbal Tea. J. Agric. Food Chem. 2011, 59, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, R.F.; Ezzat, S.M.; Ogaly, H.A.; Abd-Elsalam, R.M.; Hessin, A.F.; Fekry, M.I.; Mansour, D.F.; Mohamed, S.O. Ficus deltoidea extract down-regulates protein tyrosine phosphatase 1B expression in a rat model of type 2 diabetes mellitus: A new insight into its antidiabetic mechanism. J. Nutr. Sci. 2020, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahaya, N.; Dom, N.S.M.; Adam, Z.; Hamid, M. Insulinotropic Activity of Standardized Methanolic Extracts of Ficus deltoidea from Seven Varieties. Evid.-Based Complement. Altern. Med. 2018, 2018, 3769874. [Google Scholar] [CrossRef] [Green Version]
- Adam, Z.; Khamis, S.; Ismail, A.; Hamid, M. Ficus deltoidea: A Potential Alternative Medicine for Diabetes Mellitus. Evid.-Based Complement. Altern. Med. 2012, 2012, 632763. [Google Scholar] [CrossRef] [Green Version]
- Aminudin, N.; Chung, Y.S.; Chee, E.S.; Kang, I.N.; Lee, R. Blood glucose lowering effect of Ficus deltoidea aqueous extract. Malays. J. Sci. 2007, 26, 73–78. [Google Scholar]
- Adam, Z.; Khamis, S.; Ismail, A.; Hamid, M. Inhibitory Properties of Ficus deltoidea on α-Glucosidase Activity. Res. J. Med. Plant 2010, 4, 61–75. [Google Scholar] [CrossRef]
- Choo, C.; Sulong, N.; Man, F.; Wong, T. Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. J. Ethnopharmacol. 2012, 142, 776–781. [Google Scholar] [CrossRef]
- Ilyanie, Y.; Wong, T.W.; Choo, C.-Y. Evaluation of Hypoglycemic Activity and Toxicity Profiles of the Leaves of Ficus deltoidea in Rodents. J. Complement. Integr. Med. 2011, 8. [Google Scholar] [CrossRef]
- Shafaei, A.; Farsi, E.; Ahamed, M.B.K.; Siddiqui, M.A.; Attitalla, I.H.; Zhari, I.; Asmawi, M.Z. Evaluation of Toxicological and Standardization Parameters and Phytochemical Investigation of Ficus deltoidea Leaves. Am. J. Biochem. Mol. Biol. 2011, 1, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Farsi, E.; Ahmad, M.; Hor, S.Y.; Ahamed, M.B.K.; Yam, M.F.; Asmawi, M.Z. Standardized extract of Ficus deltoidea stimulates insulin secretion and blocks hepatic glucose production by regulating the expression of glucose-metabolic genes in streptozitocin-induced diabetic rats. BMC Complement. Altern. Med. 2014, 14, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, Z.; Ismail, A.; Khamis, S.; Mokhtar, M.H.; Hamid, M. Antihyperglycemic Activity of F. deltoidea Ethanolic Extract in Normal Rats. Sains Malays. 2011, 40, 489–495. [Google Scholar]
- Nurdiana, S.; Goh, Y.M.; Ahmad, H.; Dom, S.M.; Azmi, N.S.; Zin, N.S.N.M.; Ebrahimi, M. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC Complement. Altern. Med. 2017, 17, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farsi, E.; Shafaei, A.; Hor, S.Y.; Ahamed, M.B.; Attitalla, I.H.; Asmawi, Z.; Ismail, Z. Farsi Correlation between enzymes inhibitory effects and antioxidant activities of standardized fractions of methanolic extract obtained from Ficus deltoidea leaves. Afr. J. Biotechnol. 2011, 10, 15184–15194. [Google Scholar] [CrossRef] [Green Version]
- Kim, U.H.; Yoon, J.H.; Li, H.; Kang, J.H.; Ji, H.S.; Park, K.H.; Shin, D.H.; Park, H.Y.; Jeong, T.S. Pterocarpan-Enriched Soy Leaf Extract Ameliorates Insulin Sensitivity and Pancreatic beta-Cell Proliferation in Type 2 Diabetic Mice. Molecules 2014, 19, 18493–18510. [Google Scholar] [CrossRef]
- Yuk, H.J.; Lee, J.H.; Long, M.; Lee, J.W.; Kim, Y.S.; Ryu, H.W.; Park, C.G.; Jeong, T.-S.; Park, K.H. The most abundant polyphenol of soy leaves, coumestrol, displays potent α-glucosidase inhibitory activity. Food Chem. 2011, 126, 1057–1063. [Google Scholar] [CrossRef]
- Zang, Y.; Sato, H.; Igarashi, K. Anti-Diabetic Effects of a Kaempferol Glycoside-Rich Fraction from Unripe Soybean (Edamame, Glycine max L. Merrill. ‘Jindai’) Leaves on KK-AyMice. Biosci. Biotechnol. Biochem. 2011, 75, 1677–1684. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.M.; Chen, R.Y.; Leung, L.K.; Chan, F.L.; Huang, Y.; Chen, Z.-Y. Difference in flavonoid and isoflavone profile between soybean and soy leaf. Biomed. Pharmacother. 2002, 56, 289–295. [Google Scholar] [CrossRef]
- Yuk, H.J.; Curtis-Long, M.J.; Ryu, H.W.; Jang, K.C.; Seo, W.D.; Kim, J.Y.; Kang, K.Y.; Park, K.H. Pterocarpan Profiles for Soybean Leaves at Different Growth Stages and Investigation of Their Glycosidase Inhibitions. J. Agric. Food Chem. 2011, 59, 12683–12690. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur. J. Pharmacol. 2011, 670, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Jeon, S.M.; Park, K.H.; Lee, W.S.; Jeong, T.S.; McGregor, R.A.; Choi, M.S. Does Glycine max leaves or Garcinia Cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: A randomized control trial. Nutr. J. 2011, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Ji, H.S.; Kang, J.H.; Shin, D.H.; Park, H.Y.; Choi, M.S.; Lee, C.H.; Lee, I.K.; Yun, B.S.; Jeong, T.S. Soy Leaf Extract Containing Kaempferol Glycosides and Pheophorbides Improves Glucose Homeostasis by Enhancing Pancreatic beta-Cell Function and Suppressing Hepatic Lipid Accumulation in db/db Mice. J. Agric. Food Chem. 2015, 63, 7198–7210. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, L.; Igarashi, K.; Yu, C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct. 2015, 6, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Gryn-Rynko, A.; Bazylak, G.; Olszewska-Słonina, D. New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves. Biomed. Pharmacother. 2016, 84, 628–636. [Google Scholar] [CrossRef]
- Phimarn, W.; Wichaiyo, K.; Silpsavikul, K.; Sungthong, B.; Saramunee, K. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur. J. Nutr. 2016, 56, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-O.; Seo, H.-J.; Park, H.; Song, H.J. Effects of mulberry leaf extract on blood glucose and serum lipid profiles in patients with type 2 diabetes mellitus: A systematic review. Eur. J. Integr. Med. 2016, 8, 602–608. [Google Scholar] [CrossRef]
- Kim, J.Y.; Chung, H.I.; Jung, K.-O.; Wee, J.-H.; Kwon, O. Chemical profiles and hypoglycemic activities of mulberry leaf extracts vary with ethanol concentration. Food Sci. Biotechnol. 2013, 22, 1–5. [Google Scholar] [CrossRef]
- Hunyadi, A.; Martins, A.; Hsieh, T.-J.; Seres, A.; Zupkó, I. Chlorogenic Acid and Rutin Play a Major Role in the In Vivo Anti-Diabetic Activity of Morus alba Leaf Extract on Type II Diabetic Rats. PLoS ONE 2012, 7, e50619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.-Q.; Jiang, L.; Zhang, J.-G.; Deng, W.; Wang, H.-L.; Wei, Z.-J. Quantitative determination of 1-deoxynojirimycin in mulberry leaves from 132 varieties. Ind. Crop. Prod. 2013, 49, 782–784. [Google Scholar] [CrossRef]
- Naowaboot, J.; Pannangpetch, P.; Kukongviriyapan, V.; Prawan, A.; Kukongviriyapan, U.; Itharat, A. Mulberry Leaf Extract Stimulates Glucose Uptake and GLUT4 Translocation in Rat Adipocytes. Am. J. Chin. Med. 2012, 40, 163–175. [Google Scholar] [CrossRef]
- Zhang, L.; Su, S.; Zhu, Y.; Guo, J.; Guo, S.; Qian, D.; Ouyang, Z.; Duan, J.A. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and TGF-beta/Smads signaling pathway. Biomed. Pharmacother. 2019, 112, 13. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Tassotti, M.; Del Rio, D.; Hernández, F.; Martínez, J.J.; Mena, P. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC–MS approach. Food Chem. 2016, 212, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Chung, J.Y.; Kim, J.Y.; Kwon, O. Comparison of 1-Deoxynojirimycin and Aqueous Mulberry Leaf Extract with Emphasis on Postprandial Hypoglycemic Effects: In Vivo and in Vitro Studies. J. Agric. Food Chem. 2011, 59, 3014–3019. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.A.; Díez-Sampedro, A.; Hirayama, B.A.; Loo, D.D.F.; Wright, E.M. Imino Sugars Are Potent Agonists of the Human Glucose Sensor SGLT3. Mol. Pharmacol. 2007, 71, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Xiang, W.; Yu, Y.; Shi, Z.Q.; Huang, X.Z.; Xu, L. Comparative analysis of 1-deoxynojirimycin contribution degree to alpha-glucosidase inhibitory activity and physiological distribution in Morus alba L. Ind. Crop. Prod. 2015, 70, 309–315. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Flaczyk, E.; Jeszka, J.; Krejpcio, Z.; Król, E.; Buchowski, M.S. Mulberry leaf extract intake reduces hyperglycaemia in streptozotocin (STZ)-induced diabetic rats fed high-fat diet. J. Funct. Foods 2014, 8, 9–17. [Google Scholar] [CrossRef]
- Chung, H.I.; Kim, J.; Kim, J.Y.; Kwon, O. Acute intake of mulberry leaf aqueous extract affects postprandial glucose response after maltose loading: Randomized double-blind placebo-controlled pilot study. J. Funct. Foods 2013, 5, 1502–1506. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Ruengsamran, T.; Kampa, P.; Sompong, W. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complement. Altern. Med. 2012, 12, 110. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Nakagawa, K.; Kubota, H.; Kojima, Y.; Goto, Y.; Yamagishi, K.; Oita, S.; Oikawa, S. Food-Grade Mulberry Powder Enriched with 1-Deoxynojirimycin Suppresses the Elevation of Postprandial Blood Glucose in Humans. J. Agric. Food Chem. 2007, 55, 5869–5874. [Google Scholar] [CrossRef]
- Riche, D.M.; Riche, K.D.; East, H.E.; Barrett, E.K.; May, W.L. Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): A randomized, placebo-controlled pilot study. Complement. Ther. Med. 2017, 32, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Lown, M.; Fuller, R.; Lightowler, H.; Fraser, A.; Gallagher, A.; Stuart, B.; Byrne, C.; Lewith, G. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study. PLoS ONE 2017, 12, e0172239. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Nakamura, S.; Oku, T. Suppressive response of confections containing the extractive from leaves of Morus Alba on postprandial blood glucose and insulin in healthy human subjects. Nutr. Metab. 2009, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudra, M.; Ercan-Fang, N.; Zhong, L.; Furne, J.; Levitt, M. Influence of Mulberry Leaf Extract on the Blood Glucose and Breath Hydrogen Response to Ingestion of 75 g Sucrose by Type 2 Diabetic and Control Subjects. Diabetes Care 2007, 30, 1272–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Józefczuk, J.; Malikowska, K.; Glapa, A.; Stawińska-Witoszyńska, B.; Nowak, J.K.; Bajerska, J.; Lisowska, A.; Walkowiak, J. Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects—A randomized, placebo-controlled, crossover study. Adv. Med Sci. 2017, 62, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, Y.; Mu, W.; Li, Z.; Sun, J.; Wang, B.; Zhong, Z.; Luo, X.; Xie, C.; Huang, Y. Mulberry leaf extract reduces the glycemic indexes of four common dietary carbohydrates. Medicine 2018, 97, e11996. [Google Scholar] [CrossRef] [PubMed]
- Banu, S.; Jabir, N.R.; Manjunath, N.C.; Khan, M.S.; Ashraf, G.M.; Kamal, M.A.; Tabrez, S. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J. Biol. Sci. 2015, 22, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Hashiguchi, M.; Yamaguchi, Y. Hypoglycemic Effects of Morus alba Leaf Extract on Postprandial Glucose and Insulin Levels in Patients with Type 2 Diabetes Treated with Sulfonylurea Hypoglycemic Agents. J. Diabetes Metab. 2011, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jung, U.J.; Park, Y.B.; Kim, S.R.; Choi, M.-S. Supplementation of Persimmon Leaf Ameliorates Hyperglycemia, Dyslipidemia and Hepatic Fat Accumulation in Type 2 Diabetic Mice. PLoS ONE 2012, 7, e49030. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Kang, S.; Choue, R.; Kim, H.; Leem, K.; Chung, S.; Kim, C.-J.; Chung, J. Free radical scavenging effect of Diospyros kaki, Laminaria japonica and Undaria pinnatifida. Fitoterapia 2002, 73, 710–712. [Google Scholar] [CrossRef]
- Heras, R.M.-L.; Pinazo, A.; Heredia, A.; Andrés, A. Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chem. 2017, 214, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, J.; Lu, X.; Zhang, L.; Zhang, Y. Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food Chem. Toxicol. 2011, 49, 2689–2696. [Google Scholar] [CrossRef] [PubMed]
- Thuong, P.T.; Lee, C.H.; Dao, T.T.; Nguyen, P.H.; Kim, W.G.; Lee, S.J.; Oh, W.K. Triterpenoids from the Leaves of Diospyros kaki (Persimmon) and Their Inhibitory Effects on Protein Tyrosine Phosphatase 1B. J. Nat. Prod. 2008, 71, 1775–1778. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.L.; Rasmussen, S.K.; Wang, M.H. Vomifoliol 9-O-alpha-arabinofuranosyl (1 -> 6)-beta-D-glucopyranoside from the leaves of Diospyros Kaki stimulates the glucose uptake in HepG2 and 3T3-L1 cells. Carbohydr. Res. 2011, 346, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, K.; Aketa, S.; Nakanami, M.; Iizuka, S.; Hirayama, M. Major Water-Soluble Polyphenols, Proanthocyanidins, in Leaves of Persimmon (Diospyros kaki) and Their α-Amylase Inhibitory Activity. Biosci. Biotechnol. Biochem. 2010, 74, 1380–1385. [Google Scholar] [CrossRef]
- Bae, U.-J.; Park, S.-H.; Jung, S.-Y.; Park, B.-H.; Chae, S.-W. Hypoglycemic effects of aqueous persimmon leaf extract in a murine model of diabetes. Mol. Med. Rep. 2015, 12, 2547–2554. [Google Scholar] [CrossRef] [Green Version]
- Sancheti, S.; Bafna, M.; Lee, S.H.; Seo, S.Y. Persimmon leaf (Diospyros kaki), a potent alpha-glucosidase inhibitor and antioxidant: Alleviation of postprandial hyperglycemia in normal and diabetic rats. J. Med. Plants Res. 2011, 5, 1652–1658. [Google Scholar]
- Yoo, K.M.; Lee, K.W.; Park, J.B.; Lee, H.J.; Hwang, I.K. Variation in Major Antioxidants and Total Antioxidant Activity of Yuzu (Citrus junos Sieb ex Tanaka) during Maturation and between Cultivars. J. Agric. Food Chem. 2004, 52, 5907–5913. [Google Scholar] [CrossRef] [PubMed]
- Assefa, A.D.; Saini, R.K.; Keum, Y.S. Extraction of antioxidants and flavonoids from yuzu (Citrus junos Sieb ex Tanaka) peels: A response surface methodology study. J. Food Meas. Charact. 2016, 11, 364–379. [Google Scholar] [CrossRef]
- Shim, J.-H.; Chae, J.-I.; Cho, S.-S. Identification and Extraction Optimization of Active Constituents in Citrus junos Seib ex TANAKA Peel and Its Biological Evaluation. Molecules 2019, 24, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Hur, H.J.; Yang, H.J.; Kim, H.J.; Kim, M.J.; Park, J.H.; Sung, M.J.; Kim, M.S.; Kwon, D.Y.; Hwang, J.T. Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR-gamma both In Vitro and In Vivo in Mice Fed a High-Fat Diet. Evid.-Based Complementary Altern. Med. 2013, 2013, 8. [Google Scholar]
- Yang, H.J.; Hwang, J.T.; Kwon, D.Y.; Kim, M.J.; Kang, S.; Moon, N.R.; Park, S. Yuzu Extract Prevents Cognitive Decline and Impaired Glucose Homeostasis in beta-Amyloid-Infused Rats. J. Nutr. 2013, 143, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Lee, M.K.; Jeong, K.S.; Choi, M.S. The Hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr. 2004, 134, 2499–2503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Xiong, J.; Huang, S.; Li, X.; Zhang, Y.; Zhang, L.; Wang, F. Analytical Profiling of Proanthocyanidins from Acacia mearnsii Bark and In Vitro Assessment of Antioxidant and Antidiabetic Potential. Molecules 2018, 23, 2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusano, R.; Ogawa, S.; Matsuo, Y.; Tanaka, T.; Yazaki, Y.; Kouno, I. α-Amylase and Lipase Inhibitory Activity and Structural Characterization of Acacia Bark Proanthocyanidins. J. Nat. Prod. 2011, 74, 119–128. [Google Scholar] [CrossRef]
- Ikarashi, N.; Takeda, R.; Ito, K.; Ochiai, W.; Sugiyama, K. The Inhibition of Lipase and Glucosidase Activities by Acacia Polyphenol. Evid.-Based Complement. Altern. Med. 2011, 2011, 272075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.; Grace, M.H.; Esposito, D.; Komarnytsky, S.; Wang, F.; Lila, M.A. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities. Chin. J. Nat. Med. 2017, 15, 816–824. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, J.; He, L.; Zhang, Y.; Li, X.; Zhang, L.; Wang, F. Effects of In Vitro Digestion on the Content and Biological Activity of Polyphenols from Acacia mearnsii Bark. Molecules 2018, 23, 1804. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, S.; Yazaki, Y. Tannins from Acacia mearnsii De Wild. Bark: Tannin Determination and Biological Activities. Molecules 2018, 23, 837. [Google Scholar] [CrossRef] [Green Version]
- Neilson, A.P.; O’Keefe, S.F.; Bolling, B.W. High-Molecular-Weight Proanthocyanidins in Foods: Overcoming Analytical Challenges in Pursuit of Novel Dietary Bioactive Components. In Annual Review of Food Science and Technology; Doyle, M.P., Klaenhammer, T.R., Eds.; Annual Reviews: Palo Alto, CA, USA, 2016; Volume 7, pp. 43–64. [Google Scholar]
- Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in Dietary Polyphenols as α-Glucosidases Inhibitors: A Review on Structure-Activity Relationship Aspect. Crit. Rev. Food Sci. Nutr. 2013, 53, 818–836. [Google Scholar] [CrossRef]
- Sun, L.; Miao, M. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Balion, C.M.; Raina, P.S.; Gerstein, H.C.; Santaguida, P.L.; Morrison, K.M.; Booker, L.; Hunt, D.L. Reproducibility of impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) classification: A systematic review. Clin. Chem. Lab. Med. 2007, 45, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, T.A.; Xiang, A.H.; Peters, R.K.; Kjos, S.L.; Marroquin, A.; Goico, J.; Ochoa, C.; Tan, S.; Berkowitz, K.; Hodis, H.N.; et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 2002, 51, 2796–2803. [Google Scholar] [CrossRef] [Green Version]
- Kahn, S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetol. 2003, 46, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchanan, T.A. Pancreatic beta-cell loss and preservation in type 2 diabetes. Clin. Ther. 2003, 25, B32–B46. [Google Scholar] [CrossRef]
- Salunkhe, V.A.; Veluthakal, R.; Kahn, S.E.; Thurmond, D.C. Novel approaches to restore beta cell function in prediabetes and type 2 diabetes. Diabetol. 2018, 61, 1895–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, V.T.; Shulman, G.I. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell 2012, 148, 852–871. [Google Scholar] [CrossRef] [Green Version]
Plant Extract | Dose | Total Phenolic Content | Bioactive Compound Concentration | Fasting State | Postprandial State | HbA1c | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FBG | FI | FCP | HOMA-IR | PG/PG AUC | PI/PI AUC | PCP/PCP AUC | ||||||
Human clinical trials on impaired fasting glucose (IFG) | ||||||||||||
Artemisia princeps Pampanini (Sajabalssuk) | 3000 mg/day | Total phenolic 232.4 mg GAE/g Total flavonoid 105.2 mg QE/g | 741.2 mg eupatilin /100 g, 610.3 mg jaceosidin /100 g | ↓, ↓ | -, - | na | ↓, - | na | na | na | ↓, ↓ | [66] |
Artemisia princeps Pampanini (Sajabalssuk) | 2000 mg/day | Total phenolic 232.4 mg GAE/g Total flavonoid 105.2 mg QE/g | 741.2 mg eupatilin /100 g, 610.3 mg jaceosidin/100 g | na, ↓ | na, - | na, - | na, - | na | na | na | na, ↓ | [67] |
4000 mg/day | na, ↓ | na, - | na, - | na, - | na | na | na | na, ↓ | ||||
Elaeis guineensis leaf | 500 mg/day | Not reported | Not reported | na, ↓ | na, ↓ | na | na, - | na, - | na, - | na | na | [68] |
1000 mg/day | na, - | na, - | na | na, - | na, ↓ | na, ↓ | na | na | ||||
Ficus deltoidea leaf | 1000 mg/day | Not reported | Not reported | na, - | na, - | na | na, - | na, - | na, - | na | na | |
Soy (Glycine max (L.) Merrill) leaf | 2000 mg/day | Total phenolic 54.1 ± 0.5 mg GAE/g Total flavonoid 90.2 ± 1.3 mg QE/g | 2.09 ± 0.04 mg 6”-O-malonygenistin/g, 1.48 ± 0.03 mg coumestrol/g | ↓, - | -. - | na | ↓, - | na | na | na | ↓, - | [69] |
Pterocarpan-high Soy (Glycine max (L.) Merrill) leaf | 2000 mg/day | Total phenolic 136.7 ± 0.0 mg GAE/g Total flavonoid 77.3 ± 0.2 mg QE/g | 10.85 ± 0.26 μg coumestrol/mg, 5.90 ± 0.11 μg phaseol/mg | -, ↓ | -, ↓ | na | ↓, ↓ | na | na | na | ↓, ↓ | [70] |
White mulberry (Morus alba Linn.) leaf and white kidney bean extract | 1500 mg | Total phenolic 46.7 mg GAE/g Total flavonoid 2.7 mg QE/g | 25 mg DNJ/1.5 g (10% DNJ) | na | na | na | na | ↓ | ↓ | ↓ | na | [74] |
4500 mg/day | na, na | na, na | na, na | -, na | -, na | -, na | -, na | -, na | ||||
White mulberry (Morus alba Linn.) leaf and onion extract | Cooked rice coated with extract (8.8 mg DNJ) | Not reported | 11.77 ± 1.67 mg DNJ/ 100 g cooked rice | na | na | na | na | ↓ | na | na | na | [71] |
White mulberry (Morus alba Linn.) leaf | Extract with 6 mg DNJ | Not reported | 6 mg DNJ | -, - | -, - | na | na | na | na | na | -, ↓ | [72] |
White mulberry (Morus alba Linn.) leaf | 5000 mg/day (18 mg DNJ) | Not reported | 3.6 mg DNJ/g | -, na | -, na | -, na | na | ↓, na | ↓, na | ↓, na | -, na | [73] |
Human clinical trials on impaired glucose tolerance (IGT) | ||||||||||||
Persimmon (Diospyros kaki) leaf | 2000 mg/day | Not reported | 7.5 mg quercetin 3-O-2”galloylglucoside and kaempferol 3-O-2” galloylglucoside/g | na | na | na | na | ↓, na | na | na | na | [75] |
Human clinical trials on combined impaired fasting glucose and impaired glucose tolerance (IFG/IGT) | ||||||||||||
Citrus junos Tanaka peel | 4250 mg/day | Not reported | 2.7 mg rutin/100 g, 1.7 mg quercetin/100 g, 0.7 mg tangeretin/100 g, 11.6 mg naringin/100 g, 36.3 mg hesperidin/100 g | ↓, - | ↓, - | -, ↓ | ↓, - | -, - | na | na | na | [76] |
Acacia. Mearnsii bark | 250 mg/day | Not reported | 250 mg acacia polyphenol | -, - | -, - | na | -, - | ↓, ↓ | ↓, ↓ | na | -, - | [77] |
White mulberry (Morus alba Linn.) leaf | Extract with 3 mg DNJ | Not reported | 3 mg DNJ | - | - | na | na | - | ↓ | na | na | [72] |
Extract with 6 mg DNJ | 6 mg DNJ | - | - | na | na | ↓ | ↓ | na | na | |||
Extract with 9 mg DNJ | 9 mg DNJ | - | - | na | na | ↓ | ↓ | na | na |
Plant Extracts with Potential Hypoglycemic Effects on Fasting Glycemic Measurements |
---|
Artemisia princeps Pampanini (Sajabalssuk) |
Elaeis guineensis leaf (500 mg/day) |
Soy (Glycine max (L.) Merrill) leaf |
Citrus junos Tanaka peel |
Plant extracts with potential hypoglycemic effects on postprandial glycemic measurements |
White mulberry (Morus alba Linn.) leaf |
Elaeis guineensis leaf (Higher dose, 1000 mg/day) |
Persimmon (Diospyros kaki) leaf |
Acacia. Mearnsii bark |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, W.X.J.; Gammon, C.S.; von Hurst, P.; Chepulis, L.; Page, R.A. A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups. Nutrients 2021, 13, 3733. https://doi.org/10.3390/nu13113733
Lim WXJ, Gammon CS, von Hurst P, Chepulis L, Page RA. A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups. Nutrients. 2021; 13(11):3733. https://doi.org/10.3390/nu13113733
Chicago/Turabian StyleLim, Wen Xin Janice, Cheryl S. Gammon, Pamela von Hurst, Lynne Chepulis, and Rachel A. Page. 2021. "A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups" Nutrients 13, no. 11: 3733. https://doi.org/10.3390/nu13113733
APA StyleLim, W. X. J., Gammon, C. S., von Hurst, P., Chepulis, L., & Page, R. A. (2021). A Narrative Review of Human Clinical Trials on the Impact of Phenolic-Rich Plant Extracts on Prediabetes and Its Subgroups. Nutrients, 13(11), 3733. https://doi.org/10.3390/nu13113733