Prevalence of Zinc Deficiency in Healthy 1–3-Year-Old Children from Three Western European Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Procedure
2.3. Laboratory Analysis and Definitions
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Serum Zn Concentrations, ZnD Prevalence and Dietary Zn Intake
3.3. Factors Associated with ZnD
4. Discussion
4.1. ZnD Prevalence
4.2. Factors Associated with ZnD
4.3. Strengths and Limitations
4.4. Defining ZnD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vallee, B.L.; Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118. [Google Scholar] [CrossRef]
- Cousins, R.J. Metal elements and gene expression. Annu. Rev. Nutr. 1994, 14, 449–469. [Google Scholar] [CrossRef]
- MacDonald, R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000, 130, 1500s–1508s. [Google Scholar] [CrossRef] [Green Version]
- Imdad, A.; Bhutta, Z.A. Effect of preventive zinc supplementation on linear growth in children under 5 years of age in developing countries: A meta-analysis of studies for input to the lives saved tool. BMC Public Health 2011, 11 (Suppl. 3), S22. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Liu, E.; Pimpin, L.; Shulkin, M.; Kranz, S.; Duggan, C.P.; Mozaffarian, D.; Fawzi, W.W. Effect of zinc supplementation on growth outcomes in children under 5 years of age. Nutrients 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc and skin disorders. Nutrients 2018, 10, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.S. Zinc: The missing link in combating micronutrient malnutrition in developing countries. Proc. Nutr. Soc. 2006, 65, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo-Wilson, E.; Junior, J.A.; Imdad, A.; Dean, S.; Chan, X.H.; Chan, E.S.; Jaswal, A.; Bhutta, Z.A. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age. Cochrane Database Syst. Rev. 2014, Cd009384. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Brazier, A.K.M.; Lowe, N.M. Zinc deficiency in low- and middle-income countries: Prevalence and approaches for mitigation. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2020, 33, 624–643. [Google Scholar] [CrossRef] [PubMed]
- Persson, L.A.; Lundström, M.; Lönnerdal, B.; Hernell, O. Are weaning foods causing impaired iron and zinc status in 1-year-old Swedish infants? A cohort study. Acta Paediatr. (Oslo, Norway: 1992) 1998, 87, 618–622. [Google Scholar] [CrossRef]
- Bouglé, D.; Laroche, D.; Bureau, F. Zinc and iron status and growth in healthy infants. Eur. J. Clin. Nutr. 2000, 54, 764–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kattelmann, K.K.; Ho, M.; Specker, B.L. Effect of timing of introduction of complementary foods on iron and zinc status of formula fed infants at 12, 24, and 36 months of age. J. Am. Diet. Assoc. 2001, 101, 443–447. [Google Scholar] [CrossRef]
- Taylor, A.; Redworth, E.W.; Morgan, J.B. Influence of diet on iron, copper, and zinc status in children under 24 months of age. Biol. Trace. Elem. Res. 2004, 97, 197–214. [Google Scholar] [CrossRef]
- Morgan, E.J.; Heath, A.L.; Szymlek-Gay, E.A.; Gibson, R.S.; Gray, A.R.; Bailey, K.B.; Ferguson, E.L. Red meat and a fortified manufactured toddler milk drink increase dietary zinc intakes without affecting zinc status of New Zealand toddlers. J. Nutr. 2010, 140, 2221–2226. [Google Scholar] [CrossRef] [Green Version]
- Daniels, L.; Williams, S.M.; Gibson, R.S.; Taylor, R.W.; Samman, S.; Heath, A.M. Modifiable “predictors” of zinc status in toddlers. Nutrients 2018, 10, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkermans, M.D.; Eussen, S.R.; van der Horst-Graat, J.M.; van Elburg, R.M.; van Goudoever, J.B.; Brus, F. A micronutrient-fortified young-child formula improves the iron and vitamin D status of healthy young European children: A randomized, double-blind controlled trial. Am. J. Clin. Nutr. 2017, 105, 391–399. [Google Scholar] [CrossRef] [Green Version]
- International Zinc Nutrition Consultative Group. IZiNCG Technical Brief 2007: Assessing Population Zinc Status with Serum Zinc Concentration; International Zinc Nutrition Consultative Group (IZiNCG): Davis, CA, USA, 2007. [Google Scholar]
- Geleijnse, J.M.; Giltay, E.J.; Schouten, E.G.; de Goede, J.; Oude Griep, L.M.; Teitsma-Jansen, A.M.; Katan, M.B.; Kromhout, D. Effect of low doses of n-3 fatty acids on cardiovascular diseases in 4837 post-myocardial infarction patients: Design and baseline characteristics of the Alpha Omega Trial. Am. Heart J. 2010, 159, 539–546.e532. [Google Scholar] [CrossRef]
- Uijterschout, L.; Vloemans, J.; Vos, R.; Teunisse, P.P.; Hudig, C.; Bubbers, S.; Verbruggen, S.; Veldhorst, M.; de Leeuw, T.; van Goudoever, J.B.; et al. Prevalence and risk factors of iron deficiency in healthy young children in the southwestern Netherlands. J. Pediatric Gastroenterol. Nutr. 2014, 58, 193–198. [Google Scholar] [CrossRef]
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM) (Dutch Institute for Public Health and Environment). Nederlands Voedingsstoffenbestand (NEVO) (Dutch Food Composition Database). Available online: https://www.rivm.nl/nederlands-voedingsstoffenbestand (accessed on 2 February 2021).
- Galloway, P.; McMillan, D.C.; Sattar, N. Effect of the inflammatory response on trace element and vitamin status. Ann. Clin. Biochem. 2000, 37 Pt 3, 289–297. [Google Scholar] [CrossRef]
- Wieringa, F.T.; Dijkhuizen, M.A.; West, C.E.; Muhilal, C.A.N.-C. Estimation of the effect of the acute phase response on indicators of micronutrient status in Indonesian infants. J. Nutr. 2002, 132, 3061–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mburu, A.S.; Thurnham, D.I.; Mwaniki, D.L.; Muniu, E.M.; Alumasa, F.M. The influence of inflammation on plasma zinc concentration in apparently healthy, HIV+ Kenyan adults and zinc responses after a multi-micronutrient supplement. Eur. J. Clin. Nutr. 2010, 64, 510–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Zinc Nutrition Consultative Group. IZiNCG Technical Brief 2020: Adjusting Plasma or Serum Zinc Concentrations for Inflammation; International Zinc Nutrition Consultative Group (IZiNCG): Davis, CA, USA, 2020. [Google Scholar]
- Lönnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378s–1383s. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.M.; Medina, M.W.; Stammers, A.L.; Patel, S.; Souverein, O.W.; Dullemeijer, C.; Serra-Majem, L.; Nissensohn, M.; Hall Moran, V. The relationship between zinc intake and serum/plasma zinc concentration in adults: A systematic review and dose-response meta-analysis by the EURRECA Network. Br. J. Nutr. 2012, 108, 1962–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, V.H.; Stammers, A.L.; Medina, M.W.; Patel, S.; Dykes, F.; Souverein, O.W.; Dullemeijer, C.; Pérez-Rodrigo, C.; Serra-Majem, L.; Nissensohn, M.; et al. The relationship between zinc intake and serum/plasma zinc concentration in children: A systematic review and dose-response meta-analysis. Nutrients 2012, 4, 841–858. [Google Scholar] [CrossRef] [PubMed]
- King, J.C. Yet again, serum zinc concentrations are unrelated to zinc intakes. J. Nutr. 2018, 148, 1399–1401. [Google Scholar] [CrossRef] [Green Version]
- Hennigar, S.R.; Lieberman, H.R.; Fulgoni, V.L., 3rd; McClung, J.P. Serum zinc concentrations in the us population are related to sex, age, and time of blood draw but not dietary or supplemental zinc. J. Nutr. 2018, 148, 1341–1351. [Google Scholar] [CrossRef] [Green Version]
- Haase, H.; Ellinger, S.; Linseisen, J.; Neuhäuser-Berthold, M.; Richter, M. Revised D-A-CH-reference values for the intake of zinc. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2020, 61, 126536. [Google Scholar] [CrossRef]
- Foundation, B.N. Nutrition Requirements. Available online: https://www.nutrition.org.uk/attachments/article/907/Nutrition%20Requirements_Revised%20August%202019.pdf (accessed on 9 April 2021).
- Voedingscentrum. Zink. Available online: https://www.voedingscentrum.nl/encyclopedie/zink.aspx (accessed on 9 April 2021).
- Maares, M.; Haase, H. A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef] [Green Version]
- King, J.C.; Shames, D.M.; Woodhouse, L.R. Zinc homeostasis in humans. J. Nutr. 2000, 130, 1360s–1366s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hambidge, M.; Krebs, N.F. Interrelationships of key variables of human zinc homeostasis: Relevance to dietary zinc requirements. Annu. Rev. Nutr. 2001, 21, 429–452. [Google Scholar] [CrossRef] [PubMed]
- Sandström, B.; Arvidsson, B.; Cederblad, A.; Björn-Rasmussen, E. Zinc absorption from composite meals. I. The significance of whest extraction rate, zinc, calcium, and protein content in meals based on bread. Am. J. Clin. Nutr. 1980, 33, 739–745. [Google Scholar] [CrossRef]
- Sandström, B.; Sandberg, A.S. Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. J. Trace. Elem. Electrolytes Health Dis. 1992, 6, 99–103. [Google Scholar]
- Sandström, B.; Cederblad, A. Zinc absorption from composite meals. II. Influence of the main protein source. Am. J. Clin. Nutr. 1980, 33, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Sandström, B.; Almgren, A.; Kivistö, B.; Cederblad, A. Effect of protein level and protein source on zinc absorption in humans. J. Nutr. 1989, 119, 48–53. [Google Scholar] [CrossRef]
- Wood, R.J. Assessment of marginal zinc status in humans. J. Nutr. 2000, 130, 1350s–1354s. [Google Scholar] [CrossRef]
- Hotz, C.; Peerson, J.M.; Brown, K.H. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: Reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980). Am. J. Clin. Nutr. 2003, 78, 756–764. [Google Scholar] [CrossRef]
- Karr, M.; Mira, M.; Causer, J.; Earl, J.; Alperstein, G.; Wood, F.; Fett, M.J.; Coakley, J. Age-specific reference intervals for plasma vitamins A, E and beta-carotene and for serum zinc, retinol-binding protein and prealbumin for Sydney children aged 9–62 months. Int. J. Vitam. Nutr. Res. 1997, 67, 432–436. [Google Scholar]
- Van Biervliet, S.; Van Biervliet, J.P.; Bernard, D.; Vercaemst, R.; Blaton, V. Serum zinc in healthy Belgian children. Biol. Trace Elem. Res. 2003, 94, 33–40. [Google Scholar] [CrossRef]
- Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of serum zinc concentration as an indicator of population zinc status. Food Nutr. Bull. 2007, 28, S403–S429. [Google Scholar] [CrossRef] [PubMed]
- Wessells, K.R.; King, J.C.; Brown, K.H. Development of a plasma zinc concentration cutoff to identify individuals with severe zinc deficiency based on results from adults undergoing experimental severe dietary zinc restriction and individuals with acrodermatitis enteropathica. J. Nutr. 2014, 144, 1204–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, N.M.; Fekete, K.; Decsi, T. Methods of assessment of zinc status in humans: A systematic review. Am. J. Clin. Nutr. 2009, 89, 2040s–2051s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All N = 278 | ZnD N = 87 | No ZnD N = 191 | p | |
---|---|---|---|---|
Characteristics | ||||
Age (years) | 1.7 (1.2–2.3) | 1.6 (1.1–2.3) | 1.7 (1.2–2.3) | 0.301 |
Sex (male) | 153 (55.0%) | 48 (55.2%) | 105 (55.0%) | 0.975 |
Ethnicity (Caucasian) | 267 (96.0%) | 85 (97.7%) | 182 (95.3%) | 0.511 |
From Germany | 237 (85.3%) | 86 (98.9%) | 151 (79.1%) | <0.001 * |
Parental educational level | (N = 231, M = 47) | (N = 74, M = 13) | (N = 157, M = 34) | |
At least one parent with university education | 53 (19.1%) | 16 (18.4%) | 38 (19.4%) | 0.743 |
Neither with university education | 178 (64.0%) | 58 (66.7%) | 120 (62.8%) | |
Parental professional status | (N = 219, M = 59) | (N = 69, M = 18) | (N = 150, M = 41) | |
At least one parent working | 210 (75.5%) | 67 (77.0%) | 143 (74.9%) | 0.723 |
Neither working | 9 (3.2%) | 2 (2.3%) | 7 (3.7%) | |
Daycare attendance | 117 (42.1%) | 36 (41.4%) | 81 (42.4%) | 0.817 |
(N = 276, M = 2) | (N = 189, M = 2) | |||
Weight-for-age-z-score | 0.22 (±0.94) | 0.20 (±0.99) | 0.24 (±0.92) | 0.727 |
(N = 276, M = 2) | (N = 189, M = 2) | |||
Height/length-for-age-z-score | −0.03 (±0.99) | 0.04 (±1.04) | −0.07 (±0.97) | 0.417 |
(N = 271, M = 7) | (N = 184, M = 7) | |||
Stunting | 3 (1.1%) | 1 (1.1%) | 2 (1.0%) | NA |
(N = 271, M = 7) | (N = 184, M = 7) | |||
Dietary intake | ||||
Ever breastfed § | 177 (63.7%) | 64 (73.6%) | 113 (59.2%) | 0.081 |
(N = 267, M = 11) | (N = 180, M = 11) | |||
Duration of breastfeeding § | ||||
0–<6 months | 102 (57.6%) | 34 (53.1%) | 68 (60.2%) | 0.362 |
≥6 months | 75 (42.4%) | 30 (46.9%) | 45 (39.8%) | |
Ever formula fed § | 251 (90.3%) | 79 (90.8%) | 172 (90.1%) | 0.125 |
(N = 267, M = 11) | (N = 180, M = 11) | |||
Age of introduction of solid foods (months) | (N = 273, M = 5) | (N = 86, M = 1) | (N = 187, M = 4) | |
0–6 months | 224 (80.6%) | 74 (85.1%) | 150 (78.5%) | 0.243 |
>6 months | 49 (17.6%) | 12 (13.8%) | 37 (19.4%) | |
Main type of milk intake †° | (N = 268, M = 10) | (N = 181, M = 10) | ||
Use of primarily cow’s milk | 119 (42.8%) | 40 (46.0%) | 79 (41.4%) | 0.719 |
Use of primarily formula | 147 (52.9%) | 47 (54.0%) | 100 (52.4%) | 0.850 |
Use of dietary supplements | 86 (30.9%) | 27 (31.0%) | 59 (30.9%) | 0.798 |
(unknown zinc content) | ||||
Total amount of milk per day ° (mL/day) | 420 (400–600) | 420 (300–600) | 420 (400–600) | 0.376 |
Zn intake from milk in general (mg/day) | 2.78 (1.95–3.57) | 2.76 (2.05–3.34) | 2.79 (1.84–3.68) | 0.481 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Meat (g/day) | 19.3 (11.7–29.7) | 19.3 (11.9–29.7) | 18.8 (11.0–29.7) | 0.611 |
Zn intake from meat (mg/day) | 0.63 (0.38–0.96) | 0.63 (0.38–0.96) | 0.61 (0.36–0.96) | 0.611 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Fish (g/day) | 2.3 (0.9–4.5) | 2.4 (1.2–4.7) | 2.0 (0.8–4.4) | 0.458 |
Zn intake from fish (mg/day) | 0.02 (0.01–0.03) | 0.02 (0.01–0.04) | 0.02 (0.01–0.03) | 0.458 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Vegetables (g/day) | 61.0 (35.3–112.4) | 63.0 (35.9–132.7) | 59.3 (34.6–108.1) | 0.369 |
Zn intake from vegetables (mg/day) | 0.57 (0.33–1.05) | 0.59 (0.34–1.25) | 0.56 (0.32–1.01) | 0.369 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Dried fruits, seeds and nuts (g/day) | 0.6 (0.0–5.8) | 0.0 (0.0–3.6) | 0.8 (0.0–6.2) | 0.068 |
Zn intake from dried fruits, seeds and nuts (mg/day) | 0.01 (0.00–0.12) | 0.00 (0.00–0.07) | 0.02 (0.00–0.12) | 0.068 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Bread (g/day) | 33.7 (32.4–64.9) | 33.7 (32.4–64.9) | 46.2 (23.8–64.9) | 0.415 |
Zn intake from bread (mg/day) | 0.43 (0.41–0.83) | 0.43 (0.41–0.83) | 0.59 (0.30–0.83) | 0.415 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Sandwich spread (g/day) | 1.1 (0.0–4.5) | 0.9 (0.0–3.5) | 1.1 (0.1–4.8) | 0.436 |
Zn intake from sandwich spread (mg/day) | 0.01 (0.00–0.03) | 0.01 (0.00–0.03) | 0.01 (0.00–0.04) | 0.436 |
(N = 267, M = 11) | (N = 180, M = 11) | |||
Breakfast cereals (g/day) | 3.0 (0.0–24.1) | 5.9 (0.0–32.5) | 1.9 (0.0–23.0) | 0.230 |
Zn intake from breakfast cereals (mg/day) | 0.06 (0.00–0.47) | 0.12 (0.00–0.64) | 0.04 (0.00–0.45) | 0.230 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Eggs (g/day) | 6.7 (1.6–6.7) | 6.7 (1.6–6.7) | 3.9 (1.6–6.7) | 0.591 |
Zn intake from eggs (mg/day) | 0.10 (0.02–0.10) | 0.10 (0.02–0.10) | 0.06 (0.02–0.10) | 0.591 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Zn intake from solid foods (mg/day) | 2.52 (1.86–3.73) | 2.76 (2.20–3.73) | 2.33 (1.77–3.75) | 0.066 |
(N = 268, M = 10) | (N = 181, M = 10) | |||
Total dietary Zn intake (mg/day) | 5.71 (4.43–6.85) | 5.59 (4.57–6.74) | 5.83 (4.33–6.93) | 0.978 |
(from milk and solid foods) | (N = 268, M = 10) | (N = 181, M = 10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vreugdenhil, M.; Akkermans, M.D.; van der Merwe, L.F.; van Elburg, R.M.; van Goudoever, J.B.; Brus, F. Prevalence of Zinc Deficiency in Healthy 1–3-Year-Old Children from Three Western European Countries. Nutrients 2021, 13, 3713. https://doi.org/10.3390/nu13113713
Vreugdenhil M, Akkermans MD, van der Merwe LF, van Elburg RM, van Goudoever JB, Brus F. Prevalence of Zinc Deficiency in Healthy 1–3-Year-Old Children from Three Western European Countries. Nutrients. 2021; 13(11):3713. https://doi.org/10.3390/nu13113713
Chicago/Turabian StyleVreugdenhil, Mirjam, Marjolijn D. Akkermans, Liandré F. van der Merwe, Ruurd M. van Elburg, Johannes B. van Goudoever, and Frank Brus. 2021. "Prevalence of Zinc Deficiency in Healthy 1–3-Year-Old Children from Three Western European Countries" Nutrients 13, no. 11: 3713. https://doi.org/10.3390/nu13113713
APA StyleVreugdenhil, M., Akkermans, M. D., van der Merwe, L. F., van Elburg, R. M., van Goudoever, J. B., & Brus, F. (2021). Prevalence of Zinc Deficiency in Healthy 1–3-Year-Old Children from Three Western European Countries. Nutrients, 13(11), 3713. https://doi.org/10.3390/nu13113713