Immunoreactive Trypsinogen and Free Carnitine Changes on Newborn Screening after Birth in Patients Who Develop Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamichhane, S.; Kemppainen, E.; Trošt, K.; Siljander, H.; Hyöty, H.; Ilonen, J.; Toppari, J.; Veijola, R.; Hyötyläinen, T.; Knip, M.; et al. Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia 2019, 62, 2287–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orešič, M.; Simell, S.; Sysi-Aho, M.; Näntö-Salonen, K.; Seppänen-Laakso, T.; Parikka, V.; Katajamaa, M.; Hekkala, A.; Mattila, I.; Keskinen, P.; et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J. Exp. Med. 2008, 205, 2975–2984. [Google Scholar] [CrossRef] [Green Version]
- Walter, J.H.; Patterson, A.; Till, J.; Besley, G.T.N.; Fleming, G.; Henderson, M.J. Bloodspot acylcarnitine and amino acid analysis in cord blood samples: Efficacy and reference data from a large cohort study. J. Inherit. Metab. Dis. 2009, 32, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Wilcken, B.; Wiley, V. Newborn screening. Pathology 2008, 40, 104–115. [Google Scholar] [CrossRef]
- Cetin, I.; de Santis, M.S.N.; Taricco, E.; Radaelli, T.; Teng, C.; Ronzoni, S. Maternal and fetal amino acid concentrations in nor-mal pregnancies and in pregnancies with gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2005, 192, 610–617. [Google Scholar] [CrossRef]
- Mai, M.; Tönjes, A.; Kovacs, P.; Stumvoll, M.; Fiedler, G.M.; Leichtle, A.B. Serum Levels of Acylcarnitines Are Altered in Prediabetic Conditions. PLoS ONE 2013, 8, e82459. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Liang, L.; Gao, X.; Zhang, H.; Yao, P.; Hu, Y.; Ma, Y.; Wang, F.; Jin, Q.; Li, H.; et al. Early Prediction of Developing Type 2 Diabetes by Plasma Acylcarnitines: A Population-Based Study. Diabetes Care 2016, 39, 1563–1570. [Google Scholar] [CrossRef] [Green Version]
- Nevalainen, J.; Sairanen, M.; Appelblom, H. First-Trimester Maternal Serum Amino Acids and Acylcarnitines Are Signif-icant Predictors of Gestational Diabetes. Rev. Diabet Stud. Winter 2016, 13, 236–245. [Google Scholar] [CrossRef]
- Anderson, S.G.; Dunn, W.B.; Banerjee, M.; Brown, M.; Broadhurst, D.I.; Goodacre, R.; Cooper, G.J.S.; Kell, D.B.; Cruickshank, J.K. Evidence That Multiple Defects in Lipid Regulation Occur before Hyperglycemia during the Prodrome of Type-2 Diabetes. PLoS ONE 2014, 9, e103217. [Google Scholar] [CrossRef] [Green Version]
- Fell, D.B.; Hawken, S.; Wong, C.A.; Wilson, L.A.; Murphy, M.S.Q.; Chakraborty, P.; Lacaze-Masmonteil, T.; Potter, B.K.; Wilson, K. Using newborn screening analytes to identi-fy cases of neonatal sepsis. Sci. Rep. 2017, 7, 18020. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; Hawken, S.; Potter, B.K.; Chakraborty, P.; Walker, M.; Ducharme, R.; Little, J. Accurate prediction of gestational age using newborn screening analyte data. Am. J. Obstet. Gynecol. 2016, 214, 513.e1–513.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvester, K.G.; Kastenberg, Z.J.; Moss, R.L.; Enns, G.M.; Cowan, T.M.; Shaw, G.M. Acylcarnitine Profiles Reflect Metabolic Vul-nerability for Necrotizing Enterocolitis in Newborns Born Premature. J. Pediatr. 2017, 181, 80–85.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horgan, R.P.; Broadhurst, D.I.; Walsh, S.K.; Dunn, W.B.; Brown, M.; Roberts, C.T.; North, R.A.; McCowan, L.M.; Kell, D.B.; Baker, P.N.; et al. Metabolic Profiling Uncovers a Phenotypic Signature of Small for Gestational Age in Early Pregnancy. J. Proteome Res. 2011, 10, 3660–3673. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, K.K.; Berberich, S.L.; Dagle, J.M. Predicting gestational age using neonatal metabolic markers. Am. J. Obstet. Gynecol. 2016, 214, 515.e1–515.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelliffe-Pawlowski, L.L.; Norton, M.E.; Baer, R.J.; Santos, N.; Rutherford, G.W. Gestational dating by metabolic profile at birth: A California cohort study. Am. J. Obstet. Gynecol. 2016, 214, 511.e1–511.e13. [Google Scholar] [CrossRef] [Green Version]
- Rusconi, B.; Warner, B.B. The Hidden Treasure of Neonatal Screening: Identifying New Risk Factors and Possible Mechanisms of Necrotizing Enterocolitis Through Big Data. J. Pediatr. 2016, 181, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Kyvsgaard, J.N.; Overgaard, A.J.; Thorsen, S.U.; Hansen, T.H.; Pipper, C.B.; Mortensen, H.B.; Pociot, F.; Svensson, J. High Neonatal Blood Iron Content Is Associated with the Risk of Childhood Type 1 Diabetes Mellitus. Nutrients 2017, 9, 1221. [Google Scholar] [CrossRef] [Green Version]
- McDonald, T.J.; Besser, R.E.; Perry, M.; Babiker, T.; Knight, B.A.; Shepherd, M.H.; Ellard, S.; Flanagan, S.; Hattersley, A. Screening for neonatal diabetes at day 5 of life using dried blood spot glucose measurement. Diabetologia 2017, 60, 2168–2173. [Google Scholar] [CrossRef] [Green Version]
- Cadario, F.; Savastio, S.; Pagliardini, V.; Bagnati, M.; Vidali, M.; Cerutti, F.; Rabbone, I.; Fontana, F.; Valori, A.; Gabriella, G.; et al. Vitamin D levels at birth and risk of type 1 dia-betes in childhood: A case–control study. Acta Diabetol. 2015, 52, 1077–1081. [Google Scholar] [CrossRef]
- Jacobsen, R.; Thorsen, S.U.; Cohen, A.S.; Lundqvist, M.; Frederiksen, P.; Pipper, C.B. Neonatal vitamin D status is not associat-ed with later risk of type 1 diabetes: Results from two large Danish population-based studies. Diabetologia 2016, 59, 1871–1881. [Google Scholar] [CrossRef] [Green Version]
- Kyvsgaard, J.N.; Overgaard, A.J.; Jacobsen, L.D.; Thorsen, S.U.; Pipper, C.B.; Hansen, T.H. Low perinatal zinc status is not associ-ated with the risk of type 1 diabetes in children. Pediatric Diabetes 2017, 18, 637–642. [Google Scholar] [CrossRef]
- Sánchez-Pintos, P.; De Castro, M.-J.; Roca, I.; Rite, S.; López, M.; Couce, M.L. Similarities between acylcarnitine profiles in large for gestational age newborns and obesity. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- La Marca, G.; Malvagia, S.; Toni, S.; Piccini, B.; Di Ciommo, V.; Bottazzo, G.F. Children who develop type 1 diabetes early in life show low levels of carnitine and amino acids at birth: Does this finding shed light on the etiopathogenesis of the disease? Nutr. Diabetes 2013, 3, e94. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.W.; Olchowski, A.E.; Gilreath, T.D. How many imputations are really needed? Some practical clarifi-cations of multiple imputation theory. Prev. Sci. 2007, 8, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Rubin, D.B. Multiple Imputation for Nonresponse in Surveys; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Bene, J.; Hadzsiev, K.; Melegh, B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr. Diabetes 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Fortin, G.; Yurchenko, K.; Collette, C.; Rubio, M.; Villani, A.-C.; Bitton, A.; Sarfati, M.; Franchimont, D. L-carnitine, a diet component and organic cation transporter OCTN ligand, displays immunosuppressive properties and abrogates intestinal inflammation. Clin. Exp. Immunol. 2009, 156, 161–171. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Jabbari, M.; Hariri, M. The effect of L-carnitine on inflammatory mediators: A systematic review and meta-analysis of randomized clinical trials. Eur. J. Clin. Pharmacol. 2019, 75, 1037–1046. [Google Scholar] [CrossRef]
- El-Hattab, A.W. Systemic Primary Carnitine Deficiency. In GeneReviews® [Internet]; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Eds.; University of Washington: Seattle, WA, USA, 2012; pp. 1993–2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK84551/ (accessed on 17 October 2021).
- Winter, S.C.; Simon, M.; Zorn, E.M.; Szabo-Aczel, S.; Vance, W.H.; O’Hara, T. Linda Higashi Relative Carnitine Insufficiency in Children With Type I Diabetes Mellitus. Am. J. Dis. Child. 1989, 143, 1337–1339. [Google Scholar] [PubMed]
- Massie, J.; Curnow, L.; Tzanakos, N.; Francis, I.; Robertson, C.F. Markedly elevated neonatal immunoreactive trypsinogen levels in the absence of cystic fibrosis gene mutations is not an indication for further testing. Arch. Dis. Child. 2006, 91, 222–225. [Google Scholar] [CrossRef]
- Ross, J.J.; Wasserfall, C.H.; Bacher, R.; Perry, D.J.; McGrail, K.; Posgai, A.L.; Dong, X.; Muir, A.; Li, X.; Campbell-Thompson, M.; et al. Exocrine Pancreatic Enzymes Are a Serological Biomarker for Type 1 Diabetes Staging and Pancreas Size. Diabetes 2021, 70, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Campbell-Thompson, M.; Wasserfall, C.H.; McGrail, K.; Posgai, A.; Schultz, A.R.; Brusko, T.M.; Shuster, J.; Liang, F.; Muir, A.; et al. Serum Trypsinogen Levels in Type 1 Diabetes. Diabetes Care 2017, 40, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leete, P.; TIGI Study Team; Oram, R.A.; McDonald, T.J.; Shields, B.M.; Ziller, C.; Hattersley, A.T.; Richardson, S.J.; Morgan, N.G. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 2020, 63, 1258–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type 1 N = 159 | Controls N = 696 | p Value | |
---|---|---|---|
Demographics | |||
Gender | M: 80 (50.3%) F: 79 (49.7%) | M: 341 (49%) F: 355 (51%) | 0.95 |
Gestational age (days) | 273(259–280) | 280(272–280) | 0.00 |
Birth weight (kg) | 3.36 (3.06–3.75) | 3.43(3.16–3.72) | 0.66 |
Age at diagnosis(median) Antibody status Family history Other immune disorders | 8 years (1–16 years) 86/159 (54%) 14/159 (9%) 15/159 (9%) | - - |
NBS Analytes (Unit/Whole Blood) | Type 1 N = 159 | Controls N = 696 | Coefficient | T Statistic | p > |t | 95% Confidence Interval |
---|---|---|---|---|---|---|
Free carnitine (μmol/L) | 25.50 (18.98–33.61) | 27.26 (21.22–34.86) | 0.009 | −2.37 | 0.018 | −0.041 to −0.004 |
IRT (µg/L) * | 20.24 (16.15–29-52) | 18.71 (13.96–26.92) | 0.012 | 2.01 | 0.045 * | 0.001 to 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrella, J.F.G.L.; Wiley, V.C.; Simmons, D. Immunoreactive Trypsinogen and Free Carnitine Changes on Newborn Screening after Birth in Patients Who Develop Type 1 Diabetes. Nutrients 2021, 13, 3669. https://doi.org/10.3390/nu13103669
Estrella JFGL, Wiley VC, Simmons D. Immunoreactive Trypsinogen and Free Carnitine Changes on Newborn Screening after Birth in Patients Who Develop Type 1 Diabetes. Nutrients. 2021; 13(10):3669. https://doi.org/10.3390/nu13103669
Chicago/Turabian StyleEstrella, Jane Frances Grace Lustre, Veronica C. Wiley, and David Simmons. 2021. "Immunoreactive Trypsinogen and Free Carnitine Changes on Newborn Screening after Birth in Patients Who Develop Type 1 Diabetes" Nutrients 13, no. 10: 3669. https://doi.org/10.3390/nu13103669
APA StyleEstrella, J. F. G. L., Wiley, V. C., & Simmons, D. (2021). Immunoreactive Trypsinogen and Free Carnitine Changes on Newborn Screening after Birth in Patients Who Develop Type 1 Diabetes. Nutrients, 13(10), 3669. https://doi.org/10.3390/nu13103669