Next Article in Journal
The Association between Vitamin D and Gut Microbiota: A Systematic Review of Human Studies
Previous Article in Journal
Targeting Probiotics in Rheumatoid Arthritis
Previous Article in Special Issue
Chronic Kidney Disease: Role of Diet for a Reduction in the Severity of the Disease
Review

The Effects of Almonds on Gut Microbiota, Glycometabolism, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials

1
Faculty of Education, Health and Human Sciences, School of Health Sciences, University of Greenwich, Avery Hill Campus, Avery Hill Road, London SE9 2UG, UK
2
The School of Nursing, Soochow University, Suzhou 215006, China
3
South London and Maudsley NHS Foundation Trust, University Hospital, Lewisham High Street, London SE13 6LH, UK
4
Faculty of Health and Life Sciences, School of Nursing, Midwifery and Health, Coventry University, Priory Street, Coventry CV1 5FB, UK
*
Author to whom correspondence should be addressed.
Academic Editor: Roberto Cangemi
Nutrients 2021, 13(10), 3377; https://doi.org/10.3390/nu13103377
Received: 1 September 2021 / Revised: 20 September 2021 / Accepted: 23 September 2021 / Published: 26 September 2021
(This article belongs to the Special Issue Nutrition in Chronic Conditions)
The use of nutritional interventions for managing diabetes is one of the effective strategies aimed at reducing the global prevalence of the condition, which is on the rise. Almonds are the most consumed tree nut and they are known to be rich sources of protein, monounsaturated fatty acids, essential minerals, and dietary fibre. Therefore, the aim of this review was to evaluate the effects of almonds on gut microbiota, glycometabolism, and inflammatory parameters in patients with type 2 diabetes. Methods: This systematic review and meta-analysis was carried out according to the preferred reporting items for systematic review and meta-analysis (PRISMA). EBSCOhost, which encompasses the Health Sciences Research Databases; Google Scholar; EMBASE; and the reference lists of articles were searched based on population, intervention, control, outcome, and study (PICOS) framework. Searches were carried out from database inception until 1 August 2021 based on medical subject headings (MesH) and synonyms. The meta-analysis was carried out with the Review Manager (RevMan) 5.3 software. Results: Nine randomised studies were included in the systematic review and eight were used for the meta-analysis. The results would suggest that almond-based diets have significant effects in promoting the growth of short-chain fatty acid (SCFA)-producing gut microbiota. Furthermore, the meta-analysis showed that almond-based diets were effective in significantly lowering (p < 0.05) glycated haemoglobin (HbA1c) levels and body mass index (BMI) in patients with type 2 diabetes. However, it was also found that the effects of almonds were not significant (p > 0.05) in relation to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and Tumour necrosis factor α, TNF-α), glucagon-like peptide-1 (GLP-1), homeostatic model assessment of insulin resistance (HOMA–IR), and fasting insulin. The biological mechanisms responsible for the outcomes observed in this review in relation to reduction in HbA1c and BMI may be based on the nutrient composition of almonds and the biological effects, including the high fibre content and the low glycaemic index profile. Conclusion: The findings of this systematic review and meta-analysis have shown that almond-based diets may be effective in promoting short-chain fatty acid-producing bacteria and lowering glycated haemoglobin and body mass index in patients with type 2 diabetes compared with control. However, the effects of almonds were not significant (p > 0.05) with respect to fasting blood glucose, 2 h postprandial blood glucose, inflammatory markers (C-reactive protein and TNF-α), GLP-1, HOMA–IR, and fasting insulin. View Full-Text
Keywords: type 2 diabetes; almonds; tree nuts; glycated haemoglobin; gut microbiota; body mass index type 2 diabetes; almonds; tree nuts; glycated haemoglobin; gut microbiota; body mass index
Show Figures

Figure 1

MDPI and ACS Style

Ojo, O.; Wang, X.-H.; Ojo, O.O.; Adegboye, A.R.A. The Effects of Almonds on Gut Microbiota, Glycometabolism, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2021, 13, 3377. https://doi.org/10.3390/nu13103377

AMA Style

Ojo O, Wang X-H, Ojo OO, Adegboye ARA. The Effects of Almonds on Gut Microbiota, Glycometabolism, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients. 2021; 13(10):3377. https://doi.org/10.3390/nu13103377

Chicago/Turabian Style

Ojo, Omorogieva, Xiao-Hua Wang, Osarhumwese O. Ojo, and Amanda R.A. Adegboye. 2021. "The Effects of Almonds on Gut Microbiota, Glycometabolism, and Inflammatory Markers in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials" Nutrients 13, no. 10: 3377. https://doi.org/10.3390/nu13103377

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop