The Dose-Effects of Caffeine on Lower Body Maximal Strength, Muscular Endurance, and Rating of Perceived Exertion in Strength-Trained Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Supplementation Protocol
2.4. Exercise Protocol
2.5. Dietary Standardisation
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Suggestions for Future Research
4.2. Practical Implications
4.3. Strengths and Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chester, N.; Wojek, N. Caffeine Consumption Amongst British Athletes Following Changes to the 2004 WADA Prohibited List. Int. J. Sports Med. 2008, 29, 524–528. [Google Scholar]
- Tallis, J.; Clarke, N.; Morris, R.; Richardson, D.; Ellis, M.; Eyre, E.; Duncan, M.; Noon, M. The prevalence and practices of caffeine use as an ergogenic aid in English professional soccer. Biol. Sport 2021, 38, 525–534. [Google Scholar]
- Keisler, B.D.; Thomas, A.D. Caffeine as an Ergogenic Aid. Curr. Sports Med. Rep. 2006, 5, 215–219. [Google Scholar]
- Guest, N.; Van Dusseldorp, T.; Nelson, M.; Grgic, J.; Schoenfeld, B.; Jenkins, N.; Arent, S.; Antonio, J.; Stout, J.; Trexler, E.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1–37. [Google Scholar]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar]
- Braun, H.; Currell, K.; Stear, S.J. Supplements and Ergogenic Aids. In Sport and Exercise Nutrition, 1st ed.; Lanham-New, S.A., Stear, S.J., Shirreffs, S.M., Collins, A.L., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 89–119. [Google Scholar]
- Jodra, P.; Lago-Rodríguez, A.; Sánchez-Oliver, A.; López-Samanes, A.; Pérez-López, A.; Veiga-Herreros, P.; San Juan, A.; Domínguez, R. Effects of caffeine supplementation on physical performance and mood dimensions in elite and trained-recreational athletes. J. Int. Soc. Sports Nutr. 2020, 17, 1–11. [Google Scholar]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar]
- Costill, D.L.; Dalsky, G.P.; Fink, W.J. Effects of caffeine ingestion on metabolism and exercise performance. Med. Sci. Sports Exerc. 1978, 10, 155–158. [Google Scholar]
- Kovacs, E.M.R.; Stegen, J.H.C.H.; Brouns, F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J. Appl. Physiol. 1998, 85, 709–715. [Google Scholar]
- Graham, T.E.; Helge, J.W.; MacLean, D.A.; Kiens, B.; Richter, E.A. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J. Physiol. 2000, 529, 837–847. [Google Scholar]
- Hulston, C.J.; Jeukendrup, A.E. Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Med. Sci. Sports Exerc. 2008, 40, 2096–2104. [Google Scholar]
- Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, D.; et al. International society of sports nutrition position stand: Caffeine and performance. J. Int. Soc. Sports Nutr. 2010, 7, 1–15. [Google Scholar]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019, 54, 681–688. [Google Scholar]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med. 2021, 1–18. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The influence of caffeine supplementation on resistance exercise: A review. Sports Med. 2018, 49, 17–30. [Google Scholar]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, R.D.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar]
- Grgic, J.; Del Coso, J. Ergogenic Effects of Acute Caffeine Intake on Muscular Endurance and Muscular Strength in Women: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5773. [Google Scholar] [CrossRef]
- Norum, M.; Risvang, L.; Bjørnsen, T.; Dimitriou, L.; Rønning, P.; Bjørgen, M.; Raastad, T. Caffeine increases strength and power performance in resistance-trained females during early follicular phase. Scand. J. Med. Sci. Sports 2020, 30, 2116–2129. [Google Scholar]
- Romero-Moraleda, B.; Del Coso, J.; Gutiérrez-Hellín, J.; Lara, B. The Effect of Caffeine on the Velocity of Half-Squat Exercise during the Menstrual Cycle: A Randomized Controlled Trial. Nutrients 2019, 11, 2662. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, E.; Jacobs, P.L.; Whitehurst, M.; Penhollow, T.; Antonio, J. Caffeine enhances upper body strength in resistance-trained women. J. Int. Soc. Sports Nutr. 2010, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Harriss, D.J.; Macsween, A.; Atkinson, G. Ethical standards in sport and exercise science research:2020 update. Int. J. Sports Med. 2019, 40, 813–817. [Google Scholar]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test-Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: A Systematic Review. Sports Med. Open 2020, 6, 31. [Google Scholar] [CrossRef]
- Borg, G. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar]
- Gaetano, J. Holm-Bonferroni Sequential Correction: An EXCEL calculator—Ver.1.2. 2013. Available online: https://www.researchgate.net/publication/242331583_Holm-Bonferroni_Sequential_Correction_An_EXCEL_Calculator_-_Ver_12 (accessed on 30 April 2019). [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum: Hillsdale, MI, USA, 1988. [Google Scholar]
- Shield, A.; Zhou, S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004, 34, 253–267. [Google Scholar]
- Black, C.D.; Waddell, D.E.; Gonglach, A.R. Caffeine’s Ergogenic Effects on Cycling: Neuromuscular and Perceptual Factors. Med. Sci. Sports Exerc. 2015, 47, 1145–1158. [Google Scholar]
- Tarnopolsky, M.A. Effect of caffeine on the neuromuscular system-potential as an ergogenic aid. Appl. Physiol. Nutr. Metab. 2008, 33, 1284–1289. [Google Scholar]
- Sung, E.; Han, A.; Hinrichs, T.; Vorgerd, M.; Manchado, C.; Platen, P. Effects of follicular versus luteal phase-based strength training in young women. SpringerPlus 2014, 11, 668. [Google Scholar] [CrossRef] [Green Version]
- Lane, J.D.; Steege, J.F.; Rupp, S.L.; Kuhn, C.M. Menstrual cycle effects on caffeine elimination in the human female. Eur. J. Clin. Pharmacol. 1992, 43, 543–546. [Google Scholar]
- Dasa, M.; Kristoffersen, M.; Ersvær, E.; Bovim, L.; Bjørkhaug, L.; Moe-Nilssen, R.; Sagen, J.; Haukenes, I. The Female Menstrual Cycles Effect on Strength and Power Parameters in High-Level Female Team Athletes. Front. Physiol. 2021, 22, 164. [Google Scholar] [CrossRef]
- Sakamaki-Sunaga, M.; Min, S.; Kamemoto, K.; Okamoto, T. Effects of Menstrual Phase-Dependent Resistance Training Frequency on Muscular Hypertrophy and Strength. J. Strength Cond. Res. 2016, 30, 1727–1734. [Google Scholar]
- Nehlig, A. Individual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar]
- Elliott, K.J.; Cable, N.T.; Reilly, T.; Diver, M.J. Effect of menstrual cycle phase on the concentration of bioavailable 17-β oestradiol and testosterone and muscle strength. Clin. Sci. 2003, 105, 663–669. [Google Scholar]
- Karayigit, R.; Naderi, A.; Akca, F.; Gomes da Cruz, C.; Sarshin, A.; Yasli, B.; Ersoz, G.; Kaviani, M. Effects of Different Doses of Caffeinated Coffee on Muscular Endurance, Cognitive Performance, and Cardiac Autonomic Modulation in Caffeine Naive Female Athletes. Nutrients 2020, 13, 2. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Wilk, M.; Krzysztofik, M.; Tufano, J.; Zajac, A.; Del Coso, J. The effects of different doses of caffeine on maximal strength and strength-endurance in women habituated to caffeine. J. Int. Soc. Sports Nutr. 2021, 18, 1–10. [Google Scholar] [CrossRef]
- Abernethy, D.R.; Todd, E.L. Impairment of caffeine clearance by chronic use of low-dose oestrogen-containing oral contraceptives. Eur. J. Clin. Pharmacol. 1985, 28, 425–428. [Google Scholar]
- McLean, C.; Graham, T.E. Effects of exercise and thermal stress on caffeine pharmacokinetics in men and eumenorrheic women. J. Appl. Physiol. (1985) 2002, 93, 1471–1478. [Google Scholar]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of low- vs. high-load resistance training on muscle strength and hypertrophy in well-trained men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar]
- Harty, P.S.; Zabriskie, H.A.; Erickson, J.L.; Molling, P.E.; Kerksick, C.M.; Jagim, A.R. Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: A brief review. J. Int. Soc. Sports Nutr. 2018, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W. How to interpret changes in an athlete performance test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Desbrow, B.; Hughes, R.; Leveritt, M.; Scheelings, P. An examination of consumer exposure to caffeine from retail coffee outlets. Food Chem. Toxicol. 2007, 45, 1588–1592. [Google Scholar]
- Starbucks. Spring FY19 Starbucks Beverage Nutrition Information. 2019. Available online: https://globalassets.starbucks.com/assets/01D7B4F4783F4793A5113FAF415BA8D6.pdf (accessed on 30 April 2019).
- Clarke, N.D.; Richardson, D.L.; Thie, J.; Taylor, R. Coffee ingestion enhances 1-mile running race performance. Int. J. Sports Physiol. Perform. 2018, 13, 789–794. [Google Scholar]
- Richardson, D.L.; Clarke, N.D. Effect of Coffee and Caffeine Ingestion on Resistance. Exercise Performance. J. Strength Cond. Res. 2018, 30, 2892–2900. [Google Scholar]
- Guette, M.; Gondin, J.; Martin, A. Time-of-day effect on the torque and neuromuscular properties of dominant and non-dominant quadriceps femoris. Chronobiol. Int. 2005, 22, 541–558. [Google Scholar]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Gonçalves, L.S.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G.G.; et al. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sports 2017, 27, 1240–1247. [Google Scholar]
- Brooks, J.H.; Wyld, K.; Chrismas, B.C.R. Acute effects of caffeine on strength performance in trained and untrained individuals. J. Athl. Enhanc. 2015, 4, 6. [Google Scholar] [CrossRef]
Age (years) | 23.3 ± 3.9 (19.0–30.0; 22.5) |
Height (m) | 1.64 ± 0.06 (1.53–1.73; 1.65) |
Body mass (kg) | 64.1 ± 10.4 (50.9–86.6; 61.1) |
Body Mass Index (kg/m2) | 23.6 ± 3.1 (20.1–30.7; 23.1) |
Training frequency (sessions·week−1) | 4.0 ± 1.0 (3.0–5.0; 4.0) |
Baseline 1RM (kg) | 249.5 ± 48.6 (148–322; 255) |
Habitual caffeine intake (mg·day−1) | 109.7 ± 73.4 (0.0–245.0; 116.5) |
Participant | Maximum Strength-1RM (kg) | Muscular Endurance-60% 1RM (n of Reps) | ||||
---|---|---|---|---|---|---|
PLA | 3 mg·kg BM | 6 mg·kg BM | PLA | 3 mg·kg BM | 6 mg·kg BM | |
1 | 323 | 323 | 333 | 23 | 36 | 30 |
2 | 253 | 253 | 253 | 23 | 35 | 26 |
3 | 263 | 253 | 283 | 19 | 22 | 26 |
4 | 283 | 303 | 323 | 50 | 80 | 100 |
5 | 303 | 323 | 303 | 20 | 25 | 25 |
6 | 373 | 353 | 353 | 35 | 35 | 32 |
7 | 263 | 283 | 243 | 53 | 55 | 60 |
8 | 193 | 203 | 223 | 50 | 62 | 78 |
9 | 273 | 253 | 258 | 38 | 34 | 40 |
10 | 283 | 293 | 278 | 34 | 40 | 43 |
11 | 248 | 213 | 238 | 30 | 34 | 40 |
12 | 161 | 148 | 156 | 46 | 55 | 50 |
13 | 262 | 263 | 272 | 40 | 55 | 77 |
Mean ± SD | 267.77 ± 52.86 | 266.46 ± 56.03 | 270.46 ± 51.95 | 35.46 ± 11.98 | 43.69 ± 16.50 | 48.23 ± 23.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, L.; Johnstone, I.; Day, C.; Le Marquer, S.; Hulton, A.T. The Dose-Effects of Caffeine on Lower Body Maximal Strength, Muscular Endurance, and Rating of Perceived Exertion in Strength-Trained Females. Nutrients 2021, 13, 3342. https://doi.org/10.3390/nu13103342
Jones L, Johnstone I, Day C, Le Marquer S, Hulton AT. The Dose-Effects of Caffeine on Lower Body Maximal Strength, Muscular Endurance, and Rating of Perceived Exertion in Strength-Trained Females. Nutrients. 2021; 13(10):3342. https://doi.org/10.3390/nu13103342
Chicago/Turabian StyleJones, Louise, Iona Johnstone, Charlotte Day, Sasha Le Marquer, and Andrew T. Hulton. 2021. "The Dose-Effects of Caffeine on Lower Body Maximal Strength, Muscular Endurance, and Rating of Perceived Exertion in Strength-Trained Females" Nutrients 13, no. 10: 3342. https://doi.org/10.3390/nu13103342
APA StyleJones, L., Johnstone, I., Day, C., Le Marquer, S., & Hulton, A. T. (2021). The Dose-Effects of Caffeine on Lower Body Maximal Strength, Muscular Endurance, and Rating of Perceived Exertion in Strength-Trained Females. Nutrients, 13(10), 3342. https://doi.org/10.3390/nu13103342