Sensory Perception of an Oral Rehydration Solution during Exercise in the Heat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Familiarisation Procedures
2.3. Study Design and Procedures
2.4. Exercise Measures
2.5. Drinks for Sensory Analysis
2.6. Urine and Saliva Sampling
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results
3.1. Physiological and Perceptual Responses to Exercise
3.2. Sensory Analyses
3.2.1. Liking of Saltiness
3.2.2. Liking of Sweetness
3.2.3. Thirst-Quenching Ability
3.2.4. Overall Liking
3.2.5. Predictors of Overall Liking
4. Discussion
4.1. Liking of Saltiness
4.2. Liking of Sweetness
4.3. Osmolality
4.4. Thirst Quenching Ability
4.5. Overall Liking
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, L.B.; Barnes, K.A.; Anderson, M.L.; Passe, D.H.; Stofan, J.R. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes. J. Sports Sci. 2016, 34, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Hughes, F.; Mythen, M.; Montgomery, H. The sensitivity of the human thirst response to changes in plasma osmolality: A systematic review. Perioper. Med. 2018, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, L.J.; Funnell, M.P.; James, R.M.; Mears, S.A. Does Hypohydration Really Impair Endurance Performance? Methodological Considerations for Interpreting Hydration Research. Sports Med. 2019, 49 (Suppl. 2), 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casa, D.J.; Armstrong, L.E.; Kenny, G.P.; O’Connor, F.G.; Huggins, R.A. Exertional heat stroke: New concepts regarding cause and care. Curr. Sports Med. Rep. 2012, 11, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Cheuvront, S.N.; Kenefick, R.W. Dehydration: Physiology, assessment, and performance effects. Compr. Physiol. 2014, 4, 257–285. [Google Scholar] [CrossRef] [PubMed]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. Hypohydration and Human Performance: Impact of Environment and Physiological Mechanisms. Sports Med. 2015, 45 (Suppl. 1), S51–S60. [Google Scholar] [CrossRef] [Green Version]
- Figaro, M.K.; Mack, G.W. Regulation of fluid intake in dehydrated humans: Role of oropharyngeal stimulation. Am. J. Physiol. 1997, 272 Pt 2, R1740–R1746. [Google Scholar] [CrossRef]
- Kenefick, R.W. Drinking Strategies: Planned Drinking Versus Drinking to Thirst. Sports Med. 2018, 48 (Suppl. 1), 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passe, D.; Horn, M.; Stofan, J.; Horswill, C.; Murray, R. Voluntary dehydration in runners despite favorable conditions for fluid intake. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 284–295. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S.; American Dietetic Association; Dietitians of Canada; American College of Sports Medicine. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar] [CrossRef]
- Desbrow, B.; Jansen, S.; Barrett, A.; Leveritt, M.D.; Irwin, C. Comparing the rehydration potential of different milk-based drinks to a carbohydrate-electrolyte beverage. Appl. Physiol. Nutr. Metab. 2014, 39, 1366–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, G.H.; James, L.J.; Shirreffs, S.M.; Maughan, R.J. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J. Appl. Physiol. 2017, 122, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.; Stofan, J. Formulating Carbohydrate-Electrolyte Drinks for Optimal Efficacy. In Sports Drinks: Basic Science and Practical Aspects; CRC Press: Boca Raton, FL, USA, 2000; pp. 197–224. [Google Scholar] [CrossRef]
- Fan, P.W.; Burns, S.F.; Lee, J.K.W. Efficacy of ingesting an oral rehydration solution after exercise on fluid balance and endurance performance. Nutrients 2020, 12, 3826. [Google Scholar] [CrossRef]
- Passe, D.H.; Horn, M.; Murray, R. Impact of beverage acceptability on fluid intake during exercise. Appetite 2000, 35, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Wilmore, J.H.; Morton, A.R.; Gilbey, H.J.; Wood, R.J. Role of taste preference on fluid intake during and after 90 min of running at 60% of VO2max in the heat. Med. Sci. Sports Exerc. 1998, 30, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, R.W.; Sandick, B.L.; Matthew, W.T.; Francesconi, R.P.; Sampson, J.B.; Durkot, M.J.; Engell, D.B. Voluntary dehydration and alliesthesia for water. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 57, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Wilk, B.; Bar-Or, O. Effect of drink flavor and NaCL on voluntary drinking and hydration in boys exercising in the heat. J. Appl. Physiol. 1996, 80, 1112–1117. [Google Scholar] [CrossRef]
- Passe, D.H.; Horn, M.; Murray, R. The effects of beverage carbonation on sensory responses and voluntary fluid intake following exercise. Int. J. Sport Nutr. 1997, 7, 286–297. [Google Scholar] [CrossRef]
- Cabanac, M. Physiological role of pleasure. Science 1971, 173, 1103–1107. [Google Scholar] [CrossRef]
- Appleton, K.M. Changes in the perceived pleasantness of fluids before and after fluid loss through exercise: A demonstration of the association between perceived pleasantness and physiological usefulness in everyday life. Physiol. Behav. 2005, 83, 813–819. [Google Scholar] [CrossRef]
- Horio, T.; Kawamura, Y. Influence of physical exercise on human preferences for various taste solutions. Chem. Senses 1998, 23, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Horio, T. Effect of physical exercise on human preference for solutions of various sweet substances. Percept. Mot. Skills 2004, 99 Pt 1, 1061–1070. [Google Scholar] [CrossRef]
- Leshem, M.; Abutbul, A.; Eilon, R. Exercise increases the preference for salt in humans. Appetite 1999, 32, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Takamata, A.; Mack, G.W.; Gillen, C.M.; Nadel, E.R. Sodium appetite, thirst, and body fluid regulation in humans during rehydration without sodium replacement. Am. J. Physiol. 1994, 266 Pt 2, R1493–R1502. [Google Scholar] [CrossRef]
- Passe, D.H.; Stofan, J.R.; Rowe, C.L.; Horswill, C.A.; Murray, R. Exercise condition affects hedonic responses to sodium in a sport drink. Appetite 2009, 52, 561–567. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Svebak, S.; Murgatroyd, S. Metamotivational dominance: A multimethod validation of reversal theory constructs. J. Personal. Soc. Psychol. 1985, 48, 107–116. [Google Scholar] [CrossRef]
- Hardy, C.J.; Rejeski, W.J. Not what, but how one feels: The measurement of affect during exercise. J. Sport Exerc. Psychol. 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Soto, J.A.H.; Hacker, F.T.; Casa, D.J.; Kavouras, S.A.; Maresh, C.M. Urinary indices during dehydration, exercise and rehydration. Int. J. Sport Nutr. 1998, 4, 345–355. [Google Scholar] [CrossRef]
- Rutherfurd-Markwick, K.J.; Starck, C.; Dulson, D.; Ali, A. Comparison of three saliva collection methods to assess physiological markers. J. Food Nutr. Metab. 2020, 01. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Hillsdale, N.J., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Narukawa, M.; Ue, H.; Morita, K.; Kuga, S.; Isaka, T.; Hayashi, Y. Change in Taste Sensitivity to Sucrose Due to Physical Fatigue. Food Sci. Technol. Res. 2009, 15, 195–198. [Google Scholar] [CrossRef]
- Narukawa, M.; Ue, H.; Uemura, M.; Morita, K.; Kuga, S.; Isaka, T.; Hayashi, Y. Influence of Prolonged Exercise on Sweet Taste Perception. Food Sci. Technol. Res. 2010, 16, 513–516. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Duizer, L.; Foster, K.; Grigor, J.; Wei, W. Changes in sensory perception of sports drinks when consumed pre, during and post exercise. Physiol. Behav. 2011, 102, 437–443. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine; Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.R.; Cote, T.R.; Lawhorne, L.; Levenson, S.A.; Rubenstein, L.Z.; Smith, D.A.; Dehydration, C. Understanding clinical dehydration and its treatment. J. Am. Med. Dir. Assoc. 2008, 9, 292–301. [Google Scholar] [CrossRef]
Ingredient | Oral Rehydration Solution (ORS) | Sports Drink (TS) | Placebo (PL) |
---|---|---|---|
Glucose (mmol/L) | 72 | 0 | 0 |
Sucrose (mmol/L) | 23.4 | 172.4 | 0 |
Fructose (mmol/L) | 16.6 | 0 | 0 |
Maltodextrin (mmol/L) | 0 | 31.7 | 0 |
Sodium (mmol/L) | 52.25 | 4.79 | 0 |
Potassium (mmol/L) | 30.06 | 0.46 | 0 |
Citrate (mmol/L) | 12.00 | 1.45 | 0 |
Chloride (mmol/L) | 71.3 | 4.79 | 0 |
Osmolarity (mmol/L) | 278 | 216 | 0 |
Exercise Sample Time | 0 min | 20 min | 40 min | 60 min |
---|---|---|---|---|
Body mass (kg) † | 69.01 ± 8.63 | 68.81 ± 8.59 | 68.51 ± 8.54 | 68.07 ± 8.49 |
Body mass loss (kg) † | - | 0.20 ± 0.11 | 0.50 ± 0.18 | 0.94 ± 0.30 ** |
Body mass loss (%) † | - | 0.29 ± 0.16 | 0.72 ± 0.24 | 1.36 ± 0.39 ** |
Saliva osmolality (mOsmol/kg) ⊥ | 85 (78, 92) | 91 (85, 98) | 101 (94, 109) | 113 (102, 124) ** |
Saliva protein concentration (mg/mL) ⊥ | 1.27 (1.06, 1.49) | 1.59 (1.27, 1.94) | 2.33 (1.90, 2.83) | 3.17 (2.51, 3.96) ** |
Urine specific gravity ‡ | 1.014 (1.01, 1.02) | - | - | 1.017 (1.014, 1.025) * |
Urine osmolality (mOsmol/kg) ‡ | 516 (227, 876) | - | - | 586 (476, 796) |
Urine colour ‡ | 3.0 (1.0, 4.0) | - | - | 4.0 (3.0, 7.0) ** |
Aural temperature (°C) † | 36.1 ± 0.6 | 37.4 ± 0.2 | 38.3 ± 0.4 | 38.4 ± 0.6 * |
Heart rate (bpm) † | 82.9 ± 19.0 | 152.4 ± 19.8 | 160.7 ± 22.8 | 169.7 ± 20.2 ** |
Ratings of perceived exertion † | - | 13.2 ± 1.5 | 15.6 ± 1.3 | 17.2 ± 1.3 ** |
Felt arousal scale † | - | 3.5 ± 1.0 | 3.8 ± 1.0 | 3.7 ± 1.2 |
Feeling Scale † | - | 1.3 ± 1.9 | −0.6 ± 1.9 | −1.4 ± 1.8 ** |
Thermal comfort † | - | 5.1 ± 1.3 | 6.7 ± 1.1 | 7.5 ± 1.4 ** |
Work rate (W) † | - | 98 ± 23 | 97.7 ± 24 | 96 ± 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitson, O.; Rutherfurd-Markwick, K.; Foskett, A.; Lee, J.K.W.; Diako, C.; Wong, M.; Ali, A. Sensory Perception of an Oral Rehydration Solution during Exercise in the Heat. Nutrients 2021, 13, 3313. https://doi.org/10.3390/nu13103313
Kitson O, Rutherfurd-Markwick K, Foskett A, Lee JKW, Diako C, Wong M, Ali A. Sensory Perception of an Oral Rehydration Solution during Exercise in the Heat. Nutrients. 2021; 13(10):3313. https://doi.org/10.3390/nu13103313
Chicago/Turabian StyleKitson, Olivia, Kay Rutherfurd-Markwick, Andrew Foskett, Jason Kai Wei Lee, Charles Diako, Marie Wong, and Ajmol Ali. 2021. "Sensory Perception of an Oral Rehydration Solution during Exercise in the Heat" Nutrients 13, no. 10: 3313. https://doi.org/10.3390/nu13103313
APA StyleKitson, O., Rutherfurd-Markwick, K., Foskett, A., Lee, J. K. W., Diako, C., Wong, M., & Ali, A. (2021). Sensory Perception of an Oral Rehydration Solution during Exercise in the Heat. Nutrients, 13(10), 3313. https://doi.org/10.3390/nu13103313