Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project
Abstract
1. Introduction
2. Materials and Methods
Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Pearson, C.; Janz, T.; Ali, J. Mental and Substance Use Disorders in Canada; Statistics Canada: Ottawa, ON, Canada, 2013.
- Whiteford, H.A.; Degenhardt, L.; Rehm, J.; Baxter, A.J.; Ferrari, A.J.; Erskine, H.E.; Charlson, F.J.; Norman, R.E.; Flaxman, A.D.; Johns, N. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 382, 1575–1586. [Google Scholar] [CrossRef]
- Smetanin, P.; Stiff, D.; Briante, C.; Adair, C.; Ahmad, S.; Khan, M. The Life and Economic Impact of Major Mental Illnesses in Canada: 2011 to 2041; RiskAnalytica on behalf of the Mental Health Commission of Canada: Toronto, ON, Canada, 2011. [Google Scholar]
- Public Health Agency of Canada. Report from the Canadian Chronic Disease Surveillance System; Public Health Agency of Canada: Ottawa, ON, Canada, 2015.
- Johansen, H.; Finès, P. Acute care hospital days and mental diagnoses. Health Rep. 2012, 23, 61–65. [Google Scholar]
- Tugault-Lafleur, C.N.; Black, J.L. Differences in the Quantity and Types of Foods and Beverages Consumed by Canadians between 2004 and 2015. Nutrients 2019, 11, 526. [Google Scholar] [CrossRef] [PubMed]
- Lieffers, J.R.; Ekwaru, J.P.; Ohinmaa, A.; Veugelers, P.J. The economic burden of not meeting food recommendations in Canada: The cost of doing nothing. PLoS ONE 2018, 13, e0196333. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; Stubbs, B.; Schuch, F.B.; Carvalho, A.F.; Jacka, F.; et al. The Effects of Dietary Improvement on Symptoms of Depression and Anxiety: A Meta-Analysis of Randomized Controlled Trials. Psychosom. Med. 2019, 81, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Opie, R.S.; O’Neil, A.; Itsiopoulos, C.; Jacka, F.N. The impact of whole-of-diet interventions on depression and anxiety: A systematic review of randomised controlled trials. Public Health Nutr. 2015, 18, 2074–2093. [Google Scholar] [CrossRef]
- Satija, A.; Yu, E.; Willett, W.C.; Hu, F.B. Understanding nutritional epidemiology and its role in policy. Adv. Nutr. 2015, 6, 5–18. [Google Scholar] [CrossRef]
- Satija, A.; Stampfer, M.J.; Rimm, E.B.; Willett, W.; Hu, F.B. Perspective: Are Large, Simple Trials the Solution for Nutrition Research? Adv. Nutr. 2018, 9, 378–387. [Google Scholar] [CrossRef]
- Nicolaou, M.; Colpo, M.; Vermeulen, E.; Elstgeest, L.E.M.; Cabout, M.; Gibson-Smith, D.; Knuppel, A.; Sini, G.; Schoenaker, D.A.; Mishra, G.D. Association of a priori dietary patterns with depressive symptoms: A harmonized meta-analysis of observational studies. Psychol. Med. 2019, 1–12. [Google Scholar] [CrossRef]
- Molendijk, M.; Molero, P.; Ortuño Sánchez-Pedreño, F.; Van der Does, W.; Angel Martínez-González, M. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, M.R.; Wei, Y.J.; Sun, L.; Zhang, J.X.; Zhang, H.G.; Li, B. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.S.; Hiles, S.; Bisquera, A.; Hure, A.J.; McEvoy, M.; Attia, J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am. J. Clin. Nutr. 2014, 99, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the Beck Depression Inventory-II; Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- World Health Organization. Composite International Diagnostic Interview–Version 1.1; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Parslow, R.A.; Jorm, A.F. Who uses mental health services in Australia? An analysis of data from the National Survey of Mental Health and Wellbeing. Aust. N. Z. J. Psychiatry 2000, 34, 997–1008. [Google Scholar] [CrossRef]
- Bryant, H.; Robson, P.J.; Ullman, R.; Friedenreich, C.; Dawe, U. Population-based cohort development in Alberta, Canada: A feasibility study. Chronic Dis. Can. 2006, 27, 51–59. [Google Scholar]
- Csizmadi, I.; Kahle, L.; Ullman, R.; Dawe, U.; Zimmerman, T.P.; Friedenreich, C.M.; Bryant, H.; Subar, A.F. Adaptation and evaluation of the National Cancer Institute’s Diet History Questionnaire and nutrient database for Canadian populations. Public Health Nutr. 2007, 10, 88–96. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Courneya, K.S.; Neilson, H.K.; Matthews, C.E.; Willis, G.; Irwin, M.; Troiano, R.; Ballard-Barbash, R. Reliability and validity of the Past Year Total Physical Activity Questionnaire. Am. J. Epidemiol. 2006, 163, 959–970. [Google Scholar] [CrossRef]
- Ye, M.; Robson, P.J.; Eurich, D.T.; Vena, J.E.; Xu, J.Y.; Johnson, J.A. Cohort Profile: Alberta’s Tomorrow Project. Int. J. Epidemiol. 2017, 46, 1097–1098l. [Google Scholar] [CrossRef]
- National Institutes of Health. Diet History Questionnaire; National Institutes of Health: Washington, DC, USA, 2007. [Google Scholar]
- Subar, A.F.; Midthune, D.; Kulldorff, M.; Brown, C.C.; Thompson, F.E.; Kipnis, V.; Schatzkin, A. Evaluation of alternative approaches to assign nutrient values to food groups in food frequency questionnaires. Am. J. Epidemiol. 2000, 152, 279–286. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Eating Well with Canada’s Food Guide; Health Canada: Ottawa, ON, Canada, 2007.
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Galbete, C.; Schwingshackl, L.; Schwedhelm, C.; Boeing, H.; Schulze, M.B. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: An umbrella review of meta-analyses. Eur. J. Epidemiol. 2018, 33, 909–931. [Google Scholar] [CrossRef] [PubMed]
- Fransoo, R.; Martens, P.; Burland, E.; The Need to Know Team; Prior, H.; Burchill, C. Manitoba RHA Indicators Atlas 2009; Manitoba Centre for Health Policy: Winnipeg, MB, Canada, 2009. [Google Scholar]
- Burchill, C.; Burland, E.; Chateau, D.; De Coster, C.; Ekuma, O.; Fransoo, R.; Jebamani, L.; Martens, P.J.; McKeen, N.; Metge, C.; et al. Patterns of Regional Mental Illness Disorder Diagnoses and Service Use in Manitoba: A Population-Based Study; Manitoba Centre for Health Policy: Winnipeg, MB, Canada, 2004. [Google Scholar]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Lewis, J.D.; Bilker, W.B.; Weinstein, R.B.; Strom, B.L. The relationship between time since registration and measured incidence rates in the General Practice Research Database. Pharmacoepidemiol. Drug Saf. 2005, 14, 443–451. [Google Scholar] [CrossRef]
- McMartin, S.E.; Kuhle, S.; Colman, I.; Kirk, S.F.; Veugelers, P.J. Diet quality and mental health in subsequent years among Canadian youth. Public Health Nutr. 2012, 15, 2253–2258. [Google Scholar] [CrossRef]
- Timonen, M.; Horrobin, D.; Jokelainen, J.; Laitinen, J.; Herva, A.; Räsänen, P. Fish consumption and depression: The Northern Finland 1966 birth cohort study. J. Affect. Disord. 2004, 82, 447–452. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Toledo, E.; de Irala, J.; Ruiz-Canela, M.; Pla-Vidal, J.; Martínez-González, M.A. Fast-food and commercial baked goods consumption and the risk of depression. Public Health Nutr. 2012, 15, 424–432. [Google Scholar] [CrossRef]
- Loewen, O.K.; Maximova, K.; Ekwaru, J.P.; Faught, E.L.; Asbridge, M.; Ohinmaa, A.; Veugelers, P.J. Lifestyle Behavior and Mental Health in Early Adolescence. Pediatrics 2019, 143, e20183307. [Google Scholar] [CrossRef]
- Copeland, K.T.; Checkoway, H.; McMichael, A.J.; Holbrook, R.H. Bias due to misclassification in the estimation of relative risk. Am. J. Epidemiol. 1977, 105, 488–495. [Google Scholar] [CrossRef] [PubMed]
Number of Physician Visits | ||||
---|---|---|---|---|
Total (n = 25,016) | 0 (n = 17,227) | 1–2 (n = 3881) | 3+ (n = 3908) | |
% or Mean (SD) | % or Mean (SD) | % or Mean (SD) | % or Mean (SD) | |
Age (years) | 50.39 (9.17) | 50.56 (9.21) | 50.49 (9.28) | 49.50 (8.87) |
Sex | ||||
Male | 37.18% | 42.70% | 28.45% | 21.52% |
Female | 62.82% | 57.30% | 71.55% | 78.48% |
BMI (kg/m2) | ||||
Underweight/normal weight (≤24.9) | 34.03% | 34.14% | 35.02% | 32.55% |
Overweight (25.0–29.9) | 39.11% | 40.29% | 37.64% | 35.36% |
Obese (≥30.0) | 26.63% | 25.37% | 27.11% | 31.70% |
Location | ||||
Rural | 23.64% | 24.50% | 22.78% | 20.70% |
Urban | 76.36% | 75.50% | 77.22% | 79.30% |
Smoking status | ||||
Never | 45.12% | 47.75% | 41.07% | 37.54% |
Former | 37.73% | 36.96% | 38.52% | 40.32% |
Current | 17.13% | 15.27% | 20.41% | 22.11% |
Household income | ||||
<$30,000 | 12.71% | 10.89% | 14.33% | 19.14% |
$30,000–59,999 | 26.89% | 26.09% | 28.06% | 29.25% |
$60,000–99,999 | 31.87% | 32.58% | 30.92% | 29.68% |
≥$100,000 | 26.29% | 28.22% | 24.19% | 19.83% |
Highest level of education | ||||
High school | 27.49% | 26.97% | 29.27% | 28.02% |
Some university | 46.94% | 46.18% | 47.46% | 49.80% |
Post-graduate | 25.56% | 26.85% | 23.27% | 22.16% |
Charlson comorbidity index | ||||
0 | 83.24% | 85.52% | 80.06% | 76.33% |
1 | 14.31% | 12.56% | 16.52% | 19.83% |
2+ | 2.45% | 1.92% | 3.43% | 3.84% |
Energy intake (Kcal/day) | 1826.81 (730.92) | 1840.59 (732.73) | 1797.23 (719.15) | 1795.47 (732.82) |
Category/Component | Possible Range | Mean (SD) |
---|---|---|
Overall HEI-C 2015 | 0–100 | 61.56 (11.02) |
Adequacy | 0–60 | 34.93 (8.88) |
Total vegetables and fruit | 0–10 | 8.02 (2.28) |
Whole fruits | 0–5 | 4.04 (1.40) |
Greens and beans | 0–5 | 2.53 (1.65) |
Whole grains | 0–10 | 3.64 (2.30) |
Dairy | 0–10 | 5.86 (3.14) |
Total protein foods | 0–5 | 3.43 (1.26) |
Seafood and plant proteins | 0–5 | 2.42 (1.44) |
Fatty acids | 0–10 | 4.98 (2.78) |
Moderation | 0–40 | 26.64 (6.33) |
Refined grains | 0–10 | 5.29 (2.33) |
Sodium | 0–10 | 7.08 (3.39) |
Added sugars | 0–10 | 7.86 (2.37) |
Saturated fats | 0–10 | 6.42 (2.90) |
Unadjusted | Parsimonious a | Fully Adjusted b | |||||||
---|---|---|---|---|---|---|---|---|---|
RR (95% CI) | (1-RR)% | p-Value | RR (95% CI) | (1-RR)% | p-Value | RR (95% CI) | (1-RR)% | p-Value | |
HEI-C 2015 c | 0.96 (0.94, 0.99) | 3.68% | 0.010 | 0.95 (0.92, 0.98) | 5.12% | 0.001 | 0.95 (0.92, 0.98) | 4.68% | 0.002 |
Moderation c | 0.94 (0.89, 0.99) | 6.03% | 0.016 | 0.93 (0.88, 0.99) | 6.55% | 0.034 | 0.96 (0.89, 1.02) | 4.48% | 0.172 |
Adequacy c | 0.97 (0.94, 1.01) | 2.75% | 0.122 | 0.92 (0.88, 0.96) | 8.10% | <0.001 | 0.91 (0.87,0.96) | 8.78% | <0.001 |
MMDS d | 0.94 (0.92, 0.96) | 5.76% | <0.001 | 0.97 (0.95, 0.99) | 2.75% | 0.004 | 0.98 (0.96, 0.99) | 2.48% | 0.010 |
Unadjusted | Parsimonious a | Fully Adjusted b | |||||||
---|---|---|---|---|---|---|---|---|---|
RR (95% CI) | (1-RR)% | p-Value | RR (95% CI) | (1-RR)% | p-Value | RR (95% CI) | (1-RR)% | p-Value | |
Six-Month Exclusion Prior to Enrollment (n = 22,419) | |||||||||
HEI-C 2015 c | 0.96 (0.93, 1.00) | 3.58% | 0.025 | 0.94 (0.91, 0.98) | 5.60% | 0.001 | 0.95 (0.91, 0.98) | 5.39% | 0.002 |
Moderation c | 0.94 (0.89, 1.00) | 5.85% | 0.033 | 0.92 (0.86, 0.99) | 7.69% | 0.026 | 0.93 (0.86, 1.00) | 7.00% | 0.056 |
Adequacy c | 0.97 (0.94, 1.01) | 2.53% | 0.202 | 0.92 (0.87, 0.96) | 8.36% | 0.001 | 0.91 (0.86, 0.96) | 8.98% | 0.001 |
MMDS d | 0.95 (0.93, 0.97) | 5.39% | <0.001 | 0.97 (0.95, 0.99) | 2.61% | 0.014 | 0.98 (0.96, 1.00) | 2.31% | 0.030 |
One-Year Exclusion Prior to Enrollment (n = 19,625) | |||||||||
HEI-C 2015 c | 0.96 (0.93, 0.99) | 4.07% | 0.023 | 0.94 (0.91, 0.98) | 5.85% | 0.002 | 0.95 (0.91, 0.98) | 5.38% | 0.006 |
Moderation c | 0.92 (0.86, 0.98) | 8.35% | 0.006 | 0.91 (0.84, 0.98) | 9.21% | 0.017 | 0.92 (0.84, 1.00) | 8.50% | 0.039 |
Adequacy c | 0.98 (0.94, 1.03) | 1.91% | 0.395 | 0.92 (0.87, 0.97) | 7.96% | 0.004 | 0.92 (0.86, 0.98) | 8.12% | 0.006 |
MMDS d | 0.94 (0.92, 0.97) | 5.58% | <0.001 | 0.97 (0.95, 0.99) | 2.84% | 0.017 | 0.98 (0.95, 1.00) | 2.50% | 0.036 |
Two-Year Exclusion Prior to Enrollment (n = 12,359) | |||||||||
HEI-C 2015 c | 0.99 (0.94, 1.03) | 1.50% | 0.537 | 0.96 (0.91, 1.01) | 4.39% | 0.088 | 0.98 (0.93, 1.03) | 2.14% | 0.426 |
Moderation c | 0.94 (0.86, 1.02) | 6.12% | 0.144 | 0.89 (0.80, 0.99) | 11.03% | 0.035 | 0.94 (0.84, 1.05) | 6.05% | 0.278 |
Adequacy c | 1.01 (0.95, 1.07) | −0.78% | 0.796 | 0.96 (0.89, 1.04) | 4.11% | 0.290 | 0.98 (0.90, 1.07) | 1.83% | 0.660 |
MMDS d | 0.96 (0.93, 0.99) | 3.94% | 0.013 | 0.98 (0.95, 1.00) | 2.27% | 0.160 | 0.98 (0.95, 1.01) | 2.06% | 0.203 |
Variable-Length Exclusion Prior to Enrollment (n = 17,335) | |||||||||
HEI-C 2015 c | 0.92 (0.89, 0.96) | 7.61% | <0.001 | 0.91 (0.87, 0.95) | 9.17% | <0.001 | 0.92 (0.88, 0.96) | 8.34% | <0.001 |
Moderation c | 0.88 (0.82, 0.94) | 11.87% | <0.001 | 0.87 (0.79, 0.95) | 13.45% | 0.002 | 0.87 (0.79, 0.96) | 12.85% | 0.005 |
Adequacy c | 0.94 (0.90, 0.99) | 5.74% | 0.022 | 0.87 (0.81, 0.93) | 13.04% | <0.001 | 0.87 (0.81, 0.93) | 12.76% | <0.001 |
MMDS d | 0.94 (0.92, 0.97) | 5.91% | <0.001 | 0.97 (0.95, 1.00) | 2.75% | 0.043 | 0.97 (0.95, 1.00) | 2.57% | 0.059 |
Exclusion of Visits Three Months Following Enrollment (n = 25,016) | |||||||||
HEI-C 2015 c | 0.96 (0.94, 0.99) | 3.75% | 0.009 | 0.95 (0.92, 0.98) | 5.08% | 0.001 | 0.95 (0.92, 0.98) | 4.68% | 0.002 |
Moderation c | 0.94 (0.89, 0.99) | 6.11% | 0.015 | 0.94 (0.88, 1.00) | 6.41% | 0.039 | 0.96 (0.89, 1.02) | 4.48% | 0.172 |
Adequacy c | 0.97 (0.94, 1.01) | 2.81% | 0.115 | 0.92 (0.88, 0.96) | 8.06% | <0.001 | 0.91 (0.87, 0.96) | 8.78% | <0.001 |
MMDS d | 0.94 (0.92, 0.96) | 5.82% | <0.001 | 0.97 (0.95, 0.99) | 2.75% | 0.004 | 0.98 (0.96, 0.99) | 2.46% | 0.011 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marozoff, S.; Veugelers, P.J.; Dabravolskaj, J.; Eurich, D.T.; Ye, M.; Maximova, K. Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project. Nutrients 2020, 12, 2437. https://doi.org/10.3390/nu12082437
Marozoff S, Veugelers PJ, Dabravolskaj J, Eurich DT, Ye M, Maximova K. Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project. Nutrients. 2020; 12(8):2437. https://doi.org/10.3390/nu12082437
Chicago/Turabian StyleMarozoff, Shelby, Paul J. Veugelers, Julia Dabravolskaj, Dean T. Eurich, Ming Ye, and Katerina Maximova. 2020. "Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project" Nutrients 12, no. 8: 2437. https://doi.org/10.3390/nu12082437
APA StyleMarozoff, S., Veugelers, P. J., Dabravolskaj, J., Eurich, D. T., Ye, M., & Maximova, K. (2020). Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project. Nutrients, 12(8), 2437. https://doi.org/10.3390/nu12082437