Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project
Abstract
:1. Introduction
2. Materials and Methods
Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Pearson, C.; Janz, T.; Ali, J. Mental and Substance Use Disorders in Canada; Statistics Canada: Ottawa, ON, Canada, 2013.
- Whiteford, H.A.; Degenhardt, L.; Rehm, J.; Baxter, A.J.; Ferrari, A.J.; Erskine, H.E.; Charlson, F.J.; Norman, R.E.; Flaxman, A.D.; Johns, N. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 382, 1575–1586. [Google Scholar] [CrossRef]
- Smetanin, P.; Stiff, D.; Briante, C.; Adair, C.; Ahmad, S.; Khan, M. The Life and Economic Impact of Major Mental Illnesses in Canada: 2011 to 2041; RiskAnalytica on behalf of the Mental Health Commission of Canada: Toronto, ON, Canada, 2011. [Google Scholar]
- Public Health Agency of Canada. Report from the Canadian Chronic Disease Surveillance System; Public Health Agency of Canada: Ottawa, ON, Canada, 2015.
- Johansen, H.; Finès, P. Acute care hospital days and mental diagnoses. Health Rep. 2012, 23, 61–65. [Google Scholar]
- Tugault-Lafleur, C.N.; Black, J.L. Differences in the Quantity and Types of Foods and Beverages Consumed by Canadians between 2004 and 2015. Nutrients 2019, 11, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieffers, J.R.; Ekwaru, J.P.; Ohinmaa, A.; Veugelers, P.J. The economic burden of not meeting food recommendations in Canada: The cost of doing nothing. PLoS ONE 2018, 13, e0196333. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; Stubbs, B.; Schuch, F.B.; Carvalho, A.F.; Jacka, F.; et al. The Effects of Dietary Improvement on Symptoms of Depression and Anxiety: A Meta-Analysis of Randomized Controlled Trials. Psychosom. Med. 2019, 81, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Opie, R.S.; O’Neil, A.; Itsiopoulos, C.; Jacka, F.N. The impact of whole-of-diet interventions on depression and anxiety: A systematic review of randomised controlled trials. Public Health Nutr. 2015, 18, 2074–2093. [Google Scholar] [CrossRef]
- Satija, A.; Yu, E.; Willett, W.C.; Hu, F.B. Understanding nutritional epidemiology and its role in policy. Adv. Nutr. 2015, 6, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Satija, A.; Stampfer, M.J.; Rimm, E.B.; Willett, W.; Hu, F.B. Perspective: Are Large, Simple Trials the Solution for Nutrition Research? Adv. Nutr. 2018, 9, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Nicolaou, M.; Colpo, M.; Vermeulen, E.; Elstgeest, L.E.M.; Cabout, M.; Gibson-Smith, D.; Knuppel, A.; Sini, G.; Schoenaker, D.A.; Mishra, G.D. Association of a priori dietary patterns with depressive symptoms: A harmonized meta-analysis of observational studies. Psychol. Med. 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Molendijk, M.; Molero, P.; Ortuño Sánchez-Pedreño, F.; Van der Does, W.; Angel Martínez-González, M. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Lv, M.R.; Wei, Y.J.; Sun, L.; Zhang, J.X.; Zhang, H.G.; Li, B. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.S.; Hiles, S.; Bisquera, A.; Hure, A.J.; McEvoy, M.; Attia, J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am. J. Clin. Nutr. 2014, 99, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the Beck Depression Inventory-II; Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- World Health Organization. Composite International Diagnostic Interview–Version 1.1; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Parslow, R.A.; Jorm, A.F. Who uses mental health services in Australia? An analysis of data from the National Survey of Mental Health and Wellbeing. Aust. N. Z. J. Psychiatry 2000, 34, 997–1008. [Google Scholar] [CrossRef]
- Bryant, H.; Robson, P.J.; Ullman, R.; Friedenreich, C.; Dawe, U. Population-based cohort development in Alberta, Canada: A feasibility study. Chronic Dis. Can. 2006, 27, 51–59. [Google Scholar]
- Csizmadi, I.; Kahle, L.; Ullman, R.; Dawe, U.; Zimmerman, T.P.; Friedenreich, C.M.; Bryant, H.; Subar, A.F. Adaptation and evaluation of the National Cancer Institute’s Diet History Questionnaire and nutrient database for Canadian populations. Public Health Nutr. 2007, 10, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Friedenreich, C.M.; Courneya, K.S.; Neilson, H.K.; Matthews, C.E.; Willis, G.; Irwin, M.; Troiano, R.; Ballard-Barbash, R. Reliability and validity of the Past Year Total Physical Activity Questionnaire. Am. J. Epidemiol. 2006, 163, 959–970. [Google Scholar] [CrossRef]
- Ye, M.; Robson, P.J.; Eurich, D.T.; Vena, J.E.; Xu, J.Y.; Johnson, J.A. Cohort Profile: Alberta’s Tomorrow Project. Int. J. Epidemiol. 2017, 46, 1097–1098l. [Google Scholar] [CrossRef] [Green Version]
- National Institutes of Health. Diet History Questionnaire; National Institutes of Health: Washington, DC, USA, 2007. [Google Scholar]
- Subar, A.F.; Midthune, D.; Kulldorff, M.; Brown, C.C.; Thompson, F.E.; Kipnis, V.; Schatzkin, A. Evaluation of alternative approaches to assign nutrient values to food groups in food frequency questionnaires. Am. J. Epidemiol. 2000, 152, 279–286. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health Canada. Eating Well with Canada’s Food Guide; Health Canada: Ottawa, ON, Canada, 2007.
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Galbete, C.; Schwingshackl, L.; Schwedhelm, C.; Boeing, H.; Schulze, M.B. Evaluating Mediterranean diet and risk of chronic disease in cohort studies: An umbrella review of meta-analyses. Eur. J. Epidemiol. 2018, 33, 909–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fransoo, R.; Martens, P.; Burland, E.; The Need to Know Team; Prior, H.; Burchill, C. Manitoba RHA Indicators Atlas 2009; Manitoba Centre for Health Policy: Winnipeg, MB, Canada, 2009. [Google Scholar]
- Burchill, C.; Burland, E.; Chateau, D.; De Coster, C.; Ekuma, O.; Fransoo, R.; Jebamani, L.; Martens, P.J.; McKeen, N.; Metge, C.; et al. Patterns of Regional Mental Illness Disorder Diagnoses and Service Use in Manitoba: A Population-Based Study; Manitoba Centre for Health Policy: Winnipeg, MB, Canada, 2004. [Google Scholar]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Lewis, J.D.; Bilker, W.B.; Weinstein, R.B.; Strom, B.L. The relationship between time since registration and measured incidence rates in the General Practice Research Database. Pharmacoepidemiol. Drug Saf. 2005, 14, 443–451. [Google Scholar] [CrossRef]
- McMartin, S.E.; Kuhle, S.; Colman, I.; Kirk, S.F.; Veugelers, P.J. Diet quality and mental health in subsequent years among Canadian youth. Public Health Nutr. 2012, 15, 2253–2258. [Google Scholar] [CrossRef] [Green Version]
- Timonen, M.; Horrobin, D.; Jokelainen, J.; Laitinen, J.; Herva, A.; Räsänen, P. Fish consumption and depression: The Northern Finland 1966 birth cohort study. J. Affect. Disord. 2004, 82, 447–452. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Toledo, E.; de Irala, J.; Ruiz-Canela, M.; Pla-Vidal, J.; Martínez-González, M.A. Fast-food and commercial baked goods consumption and the risk of depression. Public Health Nutr. 2012, 15, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Loewen, O.K.; Maximova, K.; Ekwaru, J.P.; Faught, E.L.; Asbridge, M.; Ohinmaa, A.; Veugelers, P.J. Lifestyle Behavior and Mental Health in Early Adolescence. Pediatrics 2019, 143, e20183307. [Google Scholar] [CrossRef]
- Copeland, K.T.; Checkoway, H.; McMichael, A.J.; Holbrook, R.H. Bias due to misclassification in the estimation of relative risk. Am. J. Epidemiol. 1977, 105, 488–495. [Google Scholar] [CrossRef] [PubMed]
Number of Physician Visits | ||||
---|---|---|---|---|
Total (n = 25,016) | 0 (n = 17,227) | 1–2 (n = 3881) | 3+ (n = 3908) | |
% or Mean (SD) | % or Mean (SD) | % or Mean (SD) | % or Mean (SD) | |
Age (years) | 50.39 (9.17) | 50.56 (9.21) | 50.49 (9.28) | 49.50 (8.87) |
Sex | ||||
Male | 37.18% | 42.70% | 28.45% | 21.52% |
Female | 62.82% | 57.30% | 71.55% | 78.48% |
BMI (kg/m2) | ||||
Underweight/normal weight (≤24.9) | 34.03% | 34.14% | 35.02% | 32.55% |
Overweight (25.0–29.9) | 39.11% | 40.29% | 37.64% | 35.36% |
Obese (≥30.0) | 26.63% | 25.37% | 27.11% | 31.70% |
Location | ||||
Rural | 23.64% | 24.50% | 22.78% | 20.70% |
Urban | 76.36% | 75.50% | 77.22% | 79.30% |
Smoking status | ||||
Never | 45.12% | 47.75% | 41.07% | 37.54% |
Former | 37.73% | 36.96% | 38.52% | 40.32% |
Current | 17.13% | 15.27% | 20.41% | 22.11% |
Household income | ||||
<$30,000 | 12.71% | 10.89% | 14.33% | 19.14% |
$30,000–59,999 | 26.89% | 26.09% | 28.06% | 29.25% |
$60,000–99,999 | 31.87% | 32.58% | 30.92% | 29.68% |
≥$100,000 | 26.29% | 28.22% | 24.19% | 19.83% |
Highest level of education | ||||
High school | 27.49% | 26.97% | 29.27% | 28.02% |
Some university | 46.94% | 46.18% | 47.46% | 49.80% |
Post-graduate | 25.56% | 26.85% | 23.27% | 22.16% |
Charlson comorbidity index | ||||
0 | 83.24% | 85.52% | 80.06% | 76.33% |
1 | 14.31% | 12.56% | 16.52% | 19.83% |
2+ | 2.45% | 1.92% | 3.43% | 3.84% |
Energy intake (Kcal/day) | 1826.81 (730.92) | 1840.59 (732.73) | 1797.23 (719.15) | 1795.47 (732.82) |
Category/Component | Possible Range | Mean (SD) |
---|---|---|
Overall HEI-C 2015 | 0–100 | 61.56 (11.02) |
Adequacy | 0–60 | 34.93 (8.88) |
Total vegetables and fruit | 0–10 | 8.02 (2.28) |
Whole fruits | 0–5 | 4.04 (1.40) |
Greens and beans | 0–5 | 2.53 (1.65) |
Whole grains | 0–10 | 3.64 (2.30) |
Dairy | 0–10 | 5.86 (3.14) |
Total protein foods | 0–5 | 3.43 (1.26) |
Seafood and plant proteins | 0–5 | 2.42 (1.44) |
Fatty acids | 0–10 | 4.98 (2.78) |
Moderation | 0–40 | 26.64 (6.33) |
Refined grains | 0–10 | 5.29 (2.33) |
Sodium | 0–10 | 7.08 (3.39) |
Added sugars | 0–10 | 7.86 (2.37) |
Saturated fats | 0–10 | 6.42 (2.90) |
Unadjusted | Parsimonious a | Fully Adjusted b | |||||||
---|---|---|---|---|---|---|---|---|---|
RR (95% CI) | (1-RR)% | p-Value | RR (95% CI) | (1-RR)% | p-Value | RR (95% CI) | (1-RR)% | p-Value | |
HEI-C 2015 c | 0.96 (0.94, 0.99) | 3.68% | 0.010 | 0.95 (0.92, 0.98) | 5.12% | 0.001 | 0.95 (0.92, 0.98) | 4.68% | 0.002 |
Moderation c | 0.94 (0.89, 0.99) | 6.03% | 0.016 | 0.93 (0.88, 0.99) | 6.55% | 0.034 | 0.96 (0.89, 1.02) | 4.48% | 0.172 |
Adequacy c | 0.97 (0.94, 1.01) | 2.75% | 0.122 | 0.92 (0.88, 0.96) | 8.10% | <0.001 | 0.91 (0.87,0.96) | 8.78% | <0.001 |
MMDS d | 0.94 (0.92, 0.96) | 5.76% | <0.001 | 0.97 (0.95, 0.99) | 2.75% | 0.004 | 0.98 (0.96, 0.99) | 2.48% | 0.010 |
Unadjusted | Parsimonious a | Fully Adjusted b | |||||||
---|---|---|---|---|---|---|---|---|---|
RR (95% CI) | (1-RR)% | p-Value | RR (95% CI) | (1-RR)% | p-Value | RR (95% CI) | (1-RR)% | p-Value | |
Six-Month Exclusion Prior to Enrollment (n = 22,419) | |||||||||
HEI-C 2015 c | 0.96 (0.93, 1.00) | 3.58% | 0.025 | 0.94 (0.91, 0.98) | 5.60% | 0.001 | 0.95 (0.91, 0.98) | 5.39% | 0.002 |
Moderation c | 0.94 (0.89, 1.00) | 5.85% | 0.033 | 0.92 (0.86, 0.99) | 7.69% | 0.026 | 0.93 (0.86, 1.00) | 7.00% | 0.056 |
Adequacy c | 0.97 (0.94, 1.01) | 2.53% | 0.202 | 0.92 (0.87, 0.96) | 8.36% | 0.001 | 0.91 (0.86, 0.96) | 8.98% | 0.001 |
MMDS d | 0.95 (0.93, 0.97) | 5.39% | <0.001 | 0.97 (0.95, 0.99) | 2.61% | 0.014 | 0.98 (0.96, 1.00) | 2.31% | 0.030 |
One-Year Exclusion Prior to Enrollment (n = 19,625) | |||||||||
HEI-C 2015 c | 0.96 (0.93, 0.99) | 4.07% | 0.023 | 0.94 (0.91, 0.98) | 5.85% | 0.002 | 0.95 (0.91, 0.98) | 5.38% | 0.006 |
Moderation c | 0.92 (0.86, 0.98) | 8.35% | 0.006 | 0.91 (0.84, 0.98) | 9.21% | 0.017 | 0.92 (0.84, 1.00) | 8.50% | 0.039 |
Adequacy c | 0.98 (0.94, 1.03) | 1.91% | 0.395 | 0.92 (0.87, 0.97) | 7.96% | 0.004 | 0.92 (0.86, 0.98) | 8.12% | 0.006 |
MMDS d | 0.94 (0.92, 0.97) | 5.58% | <0.001 | 0.97 (0.95, 0.99) | 2.84% | 0.017 | 0.98 (0.95, 1.00) | 2.50% | 0.036 |
Two-Year Exclusion Prior to Enrollment (n = 12,359) | |||||||||
HEI-C 2015 c | 0.99 (0.94, 1.03) | 1.50% | 0.537 | 0.96 (0.91, 1.01) | 4.39% | 0.088 | 0.98 (0.93, 1.03) | 2.14% | 0.426 |
Moderation c | 0.94 (0.86, 1.02) | 6.12% | 0.144 | 0.89 (0.80, 0.99) | 11.03% | 0.035 | 0.94 (0.84, 1.05) | 6.05% | 0.278 |
Adequacy c | 1.01 (0.95, 1.07) | −0.78% | 0.796 | 0.96 (0.89, 1.04) | 4.11% | 0.290 | 0.98 (0.90, 1.07) | 1.83% | 0.660 |
MMDS d | 0.96 (0.93, 0.99) | 3.94% | 0.013 | 0.98 (0.95, 1.00) | 2.27% | 0.160 | 0.98 (0.95, 1.01) | 2.06% | 0.203 |
Variable-Length Exclusion Prior to Enrollment (n = 17,335) | |||||||||
HEI-C 2015 c | 0.92 (0.89, 0.96) | 7.61% | <0.001 | 0.91 (0.87, 0.95) | 9.17% | <0.001 | 0.92 (0.88, 0.96) | 8.34% | <0.001 |
Moderation c | 0.88 (0.82, 0.94) | 11.87% | <0.001 | 0.87 (0.79, 0.95) | 13.45% | 0.002 | 0.87 (0.79, 0.96) | 12.85% | 0.005 |
Adequacy c | 0.94 (0.90, 0.99) | 5.74% | 0.022 | 0.87 (0.81, 0.93) | 13.04% | <0.001 | 0.87 (0.81, 0.93) | 12.76% | <0.001 |
MMDS d | 0.94 (0.92, 0.97) | 5.91% | <0.001 | 0.97 (0.95, 1.00) | 2.75% | 0.043 | 0.97 (0.95, 1.00) | 2.57% | 0.059 |
Exclusion of Visits Three Months Following Enrollment (n = 25,016) | |||||||||
HEI-C 2015 c | 0.96 (0.94, 0.99) | 3.75% | 0.009 | 0.95 (0.92, 0.98) | 5.08% | 0.001 | 0.95 (0.92, 0.98) | 4.68% | 0.002 |
Moderation c | 0.94 (0.89, 0.99) | 6.11% | 0.015 | 0.94 (0.88, 1.00) | 6.41% | 0.039 | 0.96 (0.89, 1.02) | 4.48% | 0.172 |
Adequacy c | 0.97 (0.94, 1.01) | 2.81% | 0.115 | 0.92 (0.88, 0.96) | 8.06% | <0.001 | 0.91 (0.87, 0.96) | 8.78% | <0.001 |
MMDS d | 0.94 (0.92, 0.96) | 5.82% | <0.001 | 0.97 (0.95, 0.99) | 2.75% | 0.004 | 0.98 (0.96, 0.99) | 2.46% | 0.011 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marozoff, S.; Veugelers, P.J.; Dabravolskaj, J.; Eurich, D.T.; Ye, M.; Maximova, K. Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project. Nutrients 2020, 12, 2437. https://doi.org/10.3390/nu12082437
Marozoff S, Veugelers PJ, Dabravolskaj J, Eurich DT, Ye M, Maximova K. Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project. Nutrients. 2020; 12(8):2437. https://doi.org/10.3390/nu12082437
Chicago/Turabian StyleMarozoff, Shelby, Paul J. Veugelers, Julia Dabravolskaj, Dean T. Eurich, Ming Ye, and Katerina Maximova. 2020. "Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project" Nutrients 12, no. 8: 2437. https://doi.org/10.3390/nu12082437
APA StyleMarozoff, S., Veugelers, P. J., Dabravolskaj, J., Eurich, D. T., Ye, M., & Maximova, K. (2020). Diet Quality and Health Service Utilization for Depression: A Prospective Investigation of Adults in Alberta’s Tomorrow Project. Nutrients, 12(8), 2437. https://doi.org/10.3390/nu12082437