Changes of Physical Activity and Ultra-Processed Food Consumption in Adolescents from Different Countries during Covid-19 Pandemic: An Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population, Eligibility Criteria
2.3. Data Privacity
2.4. Data Collection
2.5. Data Processing and Statistical Analysis
2.6. Ethical Issues
3. Results
Socio-Demographic Characteristics and Physical Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 4 April 2020).
- World Health Organization. Coronavirus Disease (COVID-19) Advice for the Public. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 4 April 2020).
- Scarmozzino, F.; Visioli, F. Covid-19 and the Subsequent Lockdown Modified Dietary Habits of Almost Half the Population in an Italian Sample. Foods 2020, 9, 675. [Google Scholar] [CrossRef]
- Wu, X.Y.; Han, L.H.; Zhang, J.H.; Luo, S.; Hu, J.W.; Sun, K. The influence of physical activity, sedentary behavioron health related quality of life among the general population of children and adolescents: A systematic review. PLoS ONE 2017, 9, e0187668. [Google Scholar]
- Bann, D.; Sholes, S.; Fluharty, M.; Shure, N. Adolescents’ physicalactivity: Cross-National comparisons of levels, distributions and disparities across 52 countries. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 141. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Cureau, F.V.; Da Silva, T.L.N.; Bloch, K.V.; Fujimori, E.; Belfort, D.R.; De Carvalho, K.M.B.; De Leon, E.B.; De Vasconcellos, M.T.L.; Ekelund, U.; Schaan, B.D. ERICA: Leisure-Time physical inactivity in Brazilian adolescents. Rev. Saúde Pública 2016, 50. [Google Scholar] [CrossRef] [PubMed]
- Enes, C.C.; Camargo, C.M.; Justino, M.I.C. Consumo de alimentos ultraprocessados e obesidade em adolescentes. Rev. Nutr. 2019, 32, 170–180. [Google Scholar]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- R Development Core Team. R Foundation for Statistical Computing; R Development Core Team: Vienna, Austria, 2008. [Google Scholar]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy-Costa, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2017, 21, 5–17. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. IBM SPSS Statistics for Windows; Version 24.0; IBM Corporation: Armonk, NY, USA, 2016. [Google Scholar]
- Pinto, R.O.; Pattussi, M.P.; Fontoura, L.P.; Poletto, S.; Grapiglia, V.L.; Balbinot, A.D.; Teixeira, V.A.; Horta, R.L. Validação de instrumento desenvolvido para avaliação da promoção de saúde na escola. Rev. Saúde Pública 2016, 50, 2. [Google Scholar] [PubMed]
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Abreu, N.; Dias, I.; Cascais, M.; Luz, A.; Moleiro, P. Quais os diagnósticos mais frequentes na adolescência? A realidade de uma consulta de Medicina do Adolescente. Einstein São Paulo 2018, 16, eAO4225. [Google Scholar] [PubMed]
- Tremblay, M.S.; Barnes, J.D.; González, S.A.; Katzmarzyk, P.T.; Onywera, V.O.; Reilly, J.J.; Tomkinson, G.R.; GMR Team. Global Matrix 2.0: Report Card Grades on the Physical Activity of Children and Youth Comparing 38 Countries. J. Phys. Act. Health 2016, 13, S343–S366. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.J.; Tremblay, M.S.; Léger, L.; Olds, T.; Tomkinson, G.R. International variability in 20 m shuttle run performance in children and youth: Who are the fittest from a 50-country comparison? A systematic literature review with pooling of aggregate results. Br. J. Sports Med. 2016, 52, 276. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Public Health. Time to tackle the physical activity gender gap. Lancet Public Health 2019, 4, e360. [Google Scholar] [CrossRef]
- Laird, Y.; Fawkner, S.; Kelly, P.; McNamee, L.; Niven, A. The role of social support on physical activity behaviour in adolescent girls: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 79. [Google Scholar] [CrossRef]
- Mediouni, M.; Madiouni, R.; Kaczor-Urbanowicz, K.E. COVID-19: How the Quarantine could lead to the Depreobesity. Obes. Med. 2020, 100255. [Google Scholar] [CrossRef]
- Viner, R.M.; Ozer, E.M.; Denny, S.; Marmot, M.; Resnick, M.; Fatusi, A.; Currie, C. Adolescence and the social determinants of health. Lancet 2012, 379, 1641–1652. [Google Scholar] [CrossRef]
- Elgar, F.J.; Pförtner, T.-K.; Moor, I.; De Clercq, B.; Stevens, G.W.J.M.; Currie, C. Socioeconomic inequalities in adolescent health 2002–2010: A time-series analysis of 34 countries participating in the Health Behaviour in School-aged Children study. Lancet 2015, 385, 2088–2095. [Google Scholar] [CrossRef]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef]
- Rauber, F.; Campagnolo, P.D.; Hoffman, D.J.; Vitolo, M.R. Consumption of ultra-processed food products and its effects on children’s lipid profiles: A longitudinal study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 116–122. [Google Scholar] [CrossRef]
- Chen, P.; Mao, L.; Nassis, G.P.; Harmer, P.; Ainsworth, B.E.; Li, F. Returning Chinese school-aged children and adolescents to physical activity in the wake of COVID-19: Actions and precautions. J. Sport Health Sci. 2020. ahead of print. [Google Scholar] [CrossRef]
- Levy, R.B.; De Castro, I.R.R.; Cardoso, L.D.O.; Tavares, L.F.; Sardinha, L.M.V.; Gomes, F.D.S.; Da Costa, A.W.N. Consumo e comportamento alimentar entre adolescentes brasileiros: Pesquisa Nacional de Saúde do Escolar (PeNSE), 2009. Ciênc. Saúde Colet. 2010, 15, 3085–3097. [Google Scholar] [CrossRef]
- Santaliestra-Pasías, A.M.; Mouratidou, T.; Verbestel, V.; Huybrechts, I.; Gottrand, F.; Le Donne, C.; Cuenca-García, M.; Díaz, L.E.; Kafatos, A.; Manios, Y.; et al. Food Consumption and Screen-Based Sedentary Behaviors in European Adolescents: The Helena study. Arch. Pediatr. Adolesc. Med. 2012, 166, 1010–1020. [Google Scholar] [CrossRef]
- Pearson, N.; Biddle, S.J.H. Sedentary Behavior and Dietary Intake in Children, Adolescents, and Adults: A systematic review. Am. J. Prev. Med. 2011, 41, 178–188. [Google Scholar] [CrossRef]
- Dos Santos Costa, C.; Ramos Flores, T.; Wendt, A.; Garcia Neves, R.; Formoso Assunção, M.C.; Santos, I.S. Comportamento sedentário e consumo de alimentos ultraprocessados entre adolescentes brasileiros: Pesquisa Nacional de Saúde do Escolar (PeNSE), 2015. Cad. Saúde Pública 2018, 34, 1–12. [Google Scholar]
- Mais, L.A.; Warkentin, S.; Latorre, M.D.R.D.D.O.; Carnell, S.; Taddei, J.A.A.D.C. Parental Feeding Practices among Brazilian School-Aged Children: Associations with Parent and Child Characteristics. Front. Nutr. 2017, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rydén, P.J.; Hagfors, L. Diet cost, diet quality and socio-economic position: How are they related and what contributes to differences in diet costs? Public Health Nutr. 2011, 14, 1680–1692. [Google Scholar] [CrossRef]
- Molina, M.B.; Lopéz, P.M.; Faria, C.P.; Cade, N.V. Zandonade, E. Preditores socioeconômicos da qualidade da alimentação de crianças. Rev. Saúde Pública 2010, 44, 732–785. [Google Scholar] [CrossRef]
- Fernández-Alvira, J.M.; Mouratidou, T.; Bammann, K.; Hebestreit, A.; Barba, G.; Sieri, S.; Reisch, L.; Eiben, G.; Hadjigeorgiou, C.; Kovacs, E.; et al. Parental education and frequency of food consumption in European children: The IDEFICS study. Public Health Nutr. 2012, 16, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Roso, M.B.; Padilha, P.D.C.; Mantilla-Escalante, D.C.; Ulloa, N.; Brun, P.; Acevedo-Correa, D.; Peres, W.A.F.; Martorell, M.; Aires, M.T.; Cardoso, L.D.O.; et al. Covid-19 Confinement and Changes of Adolescent’s Dietary Trends in Italy, Spain, Chile, Colombia and Brazil. Nutrients 2020, 12, 1807. [Google Scholar] [CrossRef]
- Hallal, P.; Knuth, A.G.; Cruz, D.K.A.; Mendes, M.I.; Malta, D.C. Prática de atividade física em adolescentes brasileiros. Ciênc. Saúde Colet. 2010, 15, 3035–3042. [Google Scholar] [CrossRef]
Brazil (n = 115) | Chile (n = 170) | Colombia (n = 161) | Spain (n = 147) | Italy (n = 133) | Overall (n = 726) | |
---|---|---|---|---|---|---|
Age group (years) | ||||||
10–15 | 67 (58.3%) | 106 (62.4%) | 49 (30.4%) | 66 (44.9%) | 44 (33.1%) | 332 (45.7%) |
16–19 | 48 (41.7%) | 64 (37.6%) | 112 (69.6%) | 81 (55.1%) | 89 (66.9%) | 394 (54.3%) |
Sex | ||||||
Female | 65 (56.5%) | 97 (57.1%) | 91 (56.5%) | 87 (59.2%) | 93 (69.9%) | 433 (59.6%) |
Male | 50 (43.5%) | 72 (42.4%) | 69 (42.9%) | 60 (40.8%) | 38 (28.6%) | 289 (39.8%) |
Maternal education | ||||||
Middle school or less | 7 (6.1%) | 20 (11.8%) | 17 (10.6%) | 21 (14.3%) | 1 (0.8%) | 66 (9.1%) |
High school | 13 (11.3%) | 42 (24.7%) | 104 (64.6%) | 28 (19.0%) | 44 (33.1%) | 231 (31.8%) |
College | 91 (79.1%) | 105 (61.8%) | 35 (21.7%) | 92 (62.6%) | 81 (60.9%) | 404 (55.6%) |
Does not know | 4 (3.5%) | 3 (1.8%) | 5 (3.1%) | 6 (4.1%) | 7 (5.3%) | 25 (3.4%) |
Number of residents at home | ||||||
1–3 people | 48 (41.7%) | 60 (35.3%) | 31 (19.3%) | 23 (15.6%) | 23 (17.3%) | 185 (25.5%) |
4 or more people | 67 (58.3%) | 110 (63.5%) | 130 (80.7%) | 124 (83.7%) | 110 (82.7%) | 541 (74.1%) |
Lives with the father | ||||||
Does not live | 0 (0%) | 63 (37.1%) | 41 (25.5%) | 24 (16.3%) | 15 (11.3%) | 143 (19.7%) |
Lives | 115 (100%) | 107 (62.9%) | 120 (74.5%) | 123 (83.7%) | 118 (88.7%) | 583 (80.3%) |
Lives with the mother | ||||||
Does not live | 9 (7.8%) | 7 (4.1%) | 24 (14.9%) | 4 (2.7%) | 2 (1.5%) | 46 (6.3%) |
Lives | 106 (92.2%) | 163 (95.9%) | 137 (85.1%) | 143 (97.3%) | 131 (98.5%) | 680 (93.7%) |
PA 1 before | ||||||
Inactive | 47 (40.9%) | 136 (80.0%) | 117 (72.7%) | 116 (78.9%) | 114 (85.7%) | 530 (73.0%) |
Active | 68 (59.1%) | 34 (20.0%) | 44 (27.3%) | 31 (21.1%) | 19 (14.3%) | 196 (27.0%) |
PA1 during | ||||||
Inactive | 107 (93.0%) | 154 (90.6%) | 114 (70.8%) | 104 (70.7%) | 98 (73.7%) | 577 (79.5%) |
Active | 8 (7.0%) | 16 (9.4%) | 47 (29.2%) | 43 (29.3%) | 35 (26.3%) | 149 (20.5%) |
PA status | ||||||
Active before/during | 6 (5.2%) | 7 (4.1%) | 23 (14.3%) | 15 (10.2%) | 12 (9.0%) | 63 (8.7%) |
Active during | 2 (1.7%) | 9 (5.3%) | 24 (14.9%) | 28 (19.0%) | 23 (17.3%) | 86 (11.8%) |
Not active before/during | 45 (39.1%) | 127 (74.7%) | 93 (57.8%) | 88 (59.9%) | 91 (68.4%) | 444 (61.2%) |
Not active during | 62 (53.9%) | 27 (15.9%) | 21 (13.0%) | 16 (10.9%) | 7 (5.3%) | 133 (18.3%) |
Change in PA status | ||||||
Status changed | 64 (55.7%) | 36 (21.2%) | 45 (28.0%) | 44 (29.9%) | 30 (22.6%) | 219 (30.2%) |
Status did not change | 51 (44.3%) | 134 (78.8%) | 116 (72.0%) | 103 (70.1%) | 103 (77.4%) | 507 (69.8%) |
Ultra-processed foods consumption | ||||||
≥5 ×/week | 70 (60.9%) | 118 (69.4%) | 96 (59.6%) | 115 (78.2%) | 88 (66.1%) | 487 (81.3%) |
≤5 ×/week | 45 (39.1%) | 52 (22.6%) | 65 (41.4%) | 32 (21.8%) | 45 (33.9%) | 239 (18.7%) |
Active Before/During (n = 63) | Active During (n = 86) | Not Active Before/During (n = 444) | Not Active During (n = 133) | p-Value * | |
---|---|---|---|---|---|
Country | |||||
Brazil | 6 (9.5%) | 2 (2.3%) | 45 (10.1%) | 62 (46.6%) | <0.001 |
Chile | 7 (11.1%) | 9 (10.5%) | 127 (28.6%) | 27 (20.3%) | |
Colombia | 23 (36.5%) | 24 (27.9%) | 93 (20.9%) | 21 (15.8%) | |
Spain | 15 (23.8%) | 28 (32.6%) | 88 (19.8%) | 16 (12.0%) | |
Italy | 12 (19.0%) | 23 (26.7%) | 91 (20.5%) | 7 (5.3%) | |
Continent | |||||
Europe | 27 (42.9%) | 51 (59.3%) | 179 (40.3%) | 23 (17.3%) | <0.001 |
Latin America | 36 (57.1%) | 35 (40.7%) | 265 (59.7%) | 110 (82.7%) | |
Age group (years) | |||||
10–15 | 25 (39.7%) | 40 (46.5%) | 204 (45.9%) | 63 (47.4%) | 0.777 |
16–19 | 38 (60.3%) | 46 (53.5%) | 240 (54.1%) | 70 (52.6%) | |
Sex | |||||
Female | 27 (42.9%) | 54 (62.8%) | 274 (61.7%) | 78 (58.6%) | 0.031 |
Male | 36 (57.1%) | 32 (37.2%) | 167 (37.6%) | 54 (40.6%) | |
Maternal education | |||||
Middle school or less | 6 (9.5%) | 14 (16.3%) | 39 (8.8%) | 7 (5.3%) | 0.034 |
High school | 24 (38.1%) | 28 (32.6%) | 145 (32.7%) | 34 (25.6%) | |
College | 30 (47.6%) | 42 (48.8%) | 244 (55.0%) | 88 (66.2%) | |
Does not know | 3 (4.8%) | 2 (2.3%) | 16 (3.6%) | 4 (3.0%) | |
Number of residents at home | |||||
1–3 people | 8 (12.7%) | 16 (18.6%) | 112 (25.2%) | 49 (36.8%) | 0.001 |
4 or more people | 55 (87.3%) | 70 (81.4%) | 329 (74.1%) | 84 (63.2%) | |
Lives with the father | |||||
Does not live | 12 (19.0%) | 20 (23.3%) | 90 (20.3%) | 21 (15.8%) | 0.556 |
Lives | 51 (81.0%) | 66 (76.7%) | 354 (79.7%) | 112 (84.2%) | |
Lives with the mother | |||||
Does not live | 3 (4.8%) | 5 (5.8%) | 28 (6.3%) | 10 (7.5%) | 0.893 |
Lives | 60 (95.2%) | 81 (94.2%) | 416 (93.7%) | 123 (92.5%) |
Active Before/During * | Active During * | Inactive During * | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Crude model | ||||||
Continent | ||||||
Latin America ** | 0.90 (0.53–1.54) | 0.701 | 0.46 (0.29–0.74) | 0.001 | 3.23 (1.98–5.26) | <0.001 |
Adjusted model | ||||||
Continent | ||||||
Latin America | 0.85 (0.48–.51) | 0.586 | 0.42 (0.26–0.70) | 0.001 | 2.98 (1.80–4.94) | <0.001 |
Sex | ||||||
Male | 2.22 (1.28–3.86) | 0.005 | 1.04 (0.63–1.70) | 0.878 | 0.96 (0.63–1.46) | 0.858 |
Maternal education | ||||||
High school | 0.99 (0.37–2.62) | 0.982 | 0.53 (0.25–1.12) | 0.096 | 1.35 (0.55–3.32) | 0.507 |
College | 0.69 (0.26–1.79) | 0.445 | 0.41 (0.20–0.84) | 0.015 | 2.32 (0.99–5.44) | 0.053 |
Number of residents at home | ||||||
4 or more people | 2.40 (1.05–5.53) | 0.039 | 1.22 (0.67–2.24) | 0.518 | 0.65 (0.42–1.01) | 0.42 |
Variables | Crude Model | Adjusted Model | ||||
---|---|---|---|---|---|---|
OR | IC95% | p | OR | IC95% | P | |
Maternal Education | ||||||
High School College | 0.73 EU | 0.45–1.21 | 0.130 | 0.76 EU | 0.44–1.21 | 0.235 |
Time of Physical Activity | ||||||
<60 min/day ≥60 min/day | 0.90 EU | 0.66–1.23 | 0.123 | 0.80 EU | 0.58–1.11 | 0.200 |
Continent | ||||||
Latin America Europe | 1.50 EU | 1.08–2.08 | 0.014 | 1.58 EU | 1.13–2.22 | 0.007 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruíz-Roso, M.B.; de Carvalho Padilha, P.; Matilla-Escalante, D.C.; Brun, P.; Ulloa, N.; Acevedo-Correa, D.; Arantes Ferreira Peres, W.; Martorell, M.; Rangel Bousquet Carrilho, T.; de Oliveira Cardoso, L.; et al. Changes of Physical Activity and Ultra-Processed Food Consumption in Adolescents from Different Countries during Covid-19 Pandemic: An Observational Study. Nutrients 2020, 12, 2289. https://doi.org/10.3390/nu12082289
Ruíz-Roso MB, de Carvalho Padilha P, Matilla-Escalante DC, Brun P, Ulloa N, Acevedo-Correa D, Arantes Ferreira Peres W, Martorell M, Rangel Bousquet Carrilho T, de Oliveira Cardoso L, et al. Changes of Physical Activity and Ultra-Processed Food Consumption in Adolescents from Different Countries during Covid-19 Pandemic: An Observational Study. Nutrients. 2020; 12(8):2289. https://doi.org/10.3390/nu12082289
Chicago/Turabian StyleRuíz-Roso, María Belén, Patricia de Carvalho Padilha, Diana C. Matilla-Escalante, Paola Brun, Natalia Ulloa, Diofanor Acevedo-Correa, Wilza Arantes Ferreira Peres, Miquel Martorell, Thais Rangel Bousquet Carrilho, Letícia de Oliveira Cardoso, and et al. 2020. "Changes of Physical Activity and Ultra-Processed Food Consumption in Adolescents from Different Countries during Covid-19 Pandemic: An Observational Study" Nutrients 12, no. 8: 2289. https://doi.org/10.3390/nu12082289
APA StyleRuíz-Roso, M. B., de Carvalho Padilha, P., Matilla-Escalante, D. C., Brun, P., Ulloa, N., Acevedo-Correa, D., Arantes Ferreira Peres, W., Martorell, M., Rangel Bousquet Carrilho, T., de Oliveira Cardoso, L., Carrasco-Marín, F., Paternina-Sierra, K., Lopez de las Hazas, M.-C., Rodriguez-Meza, J. E., Villalba-Montero, L. F., Bernabè, G., Pauletto, A., Taci, X., Cárcamo-Regla, R., ... Dávalos, A. (2020). Changes of Physical Activity and Ultra-Processed Food Consumption in Adolescents from Different Countries during Covid-19 Pandemic: An Observational Study. Nutrients, 12(8), 2289. https://doi.org/10.3390/nu12082289